
Received September 14, 2020, accepted October 12, 2020, date of publication October 22, 2020,
date of current version December 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033024

Erasure Coding-Oriented Data Update for
Cloud Storage: A Survey
YIFEI XIAO , SHIJIE ZHOU, AND LINPENG ZHONG
School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: Shijie Zhou (sjzhou@uestc.edu.cn)

ABSTRACT Erasure coding is the leading technique to achieve resilient redundancy in cloud storage
systems. However, it introduces two prominent issues: data repair and data update. Compare to data repair,
data update is much more common. A variety of update schemes based on erasure coding have been
proposed in the literature to optimize data update, such as computation optimization, network traffic overhead
reduction, IO overhead reduction, and modern hardware acceleration. However, all of these techniques were
proposed individually previously. In this work, we seek to summarize them systematically and group them
in a new form. First, we generalize the state-of-the-art researches and introduce existing classifications.
Moreover, based on our observation, we propose two classifications: resource-based classification and
tier-based classification. In resource-based classification, we group these techniques according to the
resource they optimize and introduce them in detail. In tier-based classification, we propose a novel hybrid
technique framework with five tiers and conduct a comprehensive comparison between these techniques.
We make a conjecture that most techniques in different tiers can be used jointly. Finally, we conclude the
research challenges and potential future works.

INDEX TERMS Data update, cloud storage, erasure coding, survey.

I. INTRODUCTION
Currently, it is estimated that approximately 3.6 billion users
utilize cloud storage services in 2018 [53], with Dropbox
alone claiming 500million users in 2016 [20]. YouTube needs
1 PB of storage to save new videos every day [7]. Thus,
cloud storage systems (CSS) are facing tremendous storage
pressure. At the same time, large-scale CSS are constantly
facing the risk of data loss, which is caused by either soft-
ware failures or hardware failures [36]. The common way to
improve data reliability and data availability is data redun-
dancy, which can be achieved by replication or erasure cod-
ing. Replication is the conventional technique which repeats
the stored data at multiple geo-distributed locations. But
this mechanism incurs considerably large storage overhead
(e.g., 200% storage overhead for 3-replication). Compare to
replication, erasure coding can dramatically reduce storage
overhead. Taking QFS (Quantcast File System) [38] as an
example, the implementation of QFS with erasure coding
can save 50% of storage overhead over the original HDFS
which uses 3-replication, while tolerating the same number

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Ciani .

of failures. The property of low storage overhead on erasure
coding is so attractive for many cloud computing providers
that erasure coding is gradually employed by many leading
players in cloud storage, such as Amazon S3 [5], Google
cloud [23], Microsoft Azure [28], Facebook cluster [43] and
Alibaba Cloud [62].

However, erasure coding brings some new issues to CSS,
such as data repair (DR) and data update (DU). In DR, when
a data block is lost, replication can simply replace the data
link with another one. While erasure coding has to call the
regeneration paradigms to recover the data block, which will
inevitably consume a large number of resources (e.g., compu-
tation, network and IO). To improve DR efficiency, the main
body of the literature on erasure coding has made great
contributions on designing excellent erasure codes or improv-
ing existing erasure codes [9], [27], [29], [41], [52], [64].
However, an additional significant, and arguably overlooked
problem for CSS is DU, which is much more common than
DR for many real-world workloads in enterprise servers and
network file systems [14]. Especially, DU is quite common
for big data applications which have rapid data changing.
DU is a process of maintaining data consistency between the
data blocks and the corresponding parity blocks, which is

227982 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-7372-6561
https://orcid.org/0000-0001-7820-6656

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

triggered by data changing. In other words, once a data block
is changed, the corresponding parity blocks should be regen-
erated with the updated data block. For replication, DU is a
simple process of sending the modified info to the copies.
While for erasure coding, DU is much more complicated than
replication for the following reasons:

¶ Efficiency: Unlike the simple replication, DU in era-
sure coding is much more time-consuming. To achieve data
consistency without disturbing the normal operations of
other applications, the update process should achieve high
efficiency.

· Compatibility: There exist various erasure codes
adopted in current storage systems [9], [18], [22], [40], [42],
[60]. Once the code is changed, a data transformation process
will be conducted inevitably. It is typically time-consuming to
change the code since amassive volume of heterogeneous and
rapidly changing data in the storage system has to transform
to adapt to the new code [14], [28], [49]. What’s more,
the analysis [14] of MSR Cambridge traces [37] and Harvard
NFS traces [21], infers updates are small, since most of the
traces have more than 60% of updates smaller than 4KB.
While Shen et al. [50] have a different observation that update
requests with large update sizes are quite common in existing
distributed storage systems, especially for online applications
[16], [32], [57]. These different observations show that DU
is mutable, thus update schemes should be compatible with
small updates and large updates.

¸Adaptivity: It is known that the failure is a norm in CSS.
Once a failure occurs during an update, an efficient update
scheme with rollback-based strategy [59] or similar strategies
should be considered.

According to these reasons (requirements) of DU in era-
sure coding, a variety of update schemes based on erasure
coding have been proposed in the literature to optimize
DU, including optimizing computation schedule [27], [41],
traffic overhead reduction [39], [59], IO overhead reduc-
tion [50] and modern hardware acceleration [58]. All of these
techniques were proposed individually previously. However,
there no exist survey work to summarize them systematically.
In this paper, we seek to fill this gap in the literature. Our work
mainly makes the following contributions:

l We summarize the state of the art on DU and introduce
the existing classifications of DU in the literature.

l According to the optimization goals (computation, net-
work, IO) of different update schemes, we propose the
resource-based classification and divide these schemes into
3 types (computation optimization, network optimization,
and IO optimization).

l To use different schemes jointly, we design a new hybrid
technique framework with 5 tiers. According to their charac-
teristics, we propose the tier-based classification and place
these schemes into different tiers.

lWe discuss the current challenges and explore the poten-
tial future works on DU.

The rest of this paper is organized as follows.
In Section II, we introduce the related work on DU.

In Section III, we describe the development of DU from
2 perspectives: application scope and resource optimization.
In Section IV, we summarize the existing classifications of
DU. In Section V, we propose a resource-based classifica-
tion and describe the state-of-the-art researches involved in
DU. In Section VI, we propose a novel hybrid technique
framework with 5 operation tiers and conduct a compre-
hensive comparison between different techniques of DU.
In Section VII, we discuss current challenges of DU. Finally,
in Section VIII, we conclude this paper and point out the
potential future works.

II. RELATED WORK
Although there no exist relevant survey work on DU, several
categories of DU have been proposed in the literature.

Chan et al. [14] described 3 typical approaches of DU
that can be easily found in RAID systems: ¬ Reconstruct
writes (RCW) [56], Read-modify writes (RMW) [56],
® Full-segment writes (FSW). Besides, they introduced
another classical class of DU, called the delta-based update,
which only transfer the modified data range to the cor-
responding nodes, instead of transferring the entire data
block. In the delta-based update, they describe 3 typical
approaches: ¬ Full-overwrite (FO), Full-logging (FL),
® Parity-logging (PL). The details of them will be described
in Section V.
Based on Chan’s work, Pei et al. [39] gave an overview

of these approaches on DU. That is, ¶ according to whether
transferring the whole data block, DU can be classified into
2 types: RAID-based update [39], [54], [59] and delta-based
update. · According to whether the data is overwritten,
DU can be divided into 3 types: in-place update, log-based
update and hybrid update [39], [59]. In Section V, we will
re-examine them in detail.

III. STATE OF THE ART
As Figure 1 depicted, in this section, we discuss the devel-
opment of DU from 2 perspectives: application scope and
resource optimization.

A. APPLICATION SCOPE
Initially, erasure coding is introduced to RAID [24], such as
RAID5, RAID6. There exist 3 typical approaches of DU in
RAID: ¬ Reconstruct writes (RCW) [56], Read-modify
writes (RMW) [56], ® Full-segment writes (FSW) [35]. But
the constraint of FSW is too strict (it won’t perform updating
until all data blocks in a stripe are updated), which makes the
other two become 2 in fact common update approaches.

With the rapid growth of data variety, volume, and velocity
in data storage systems, erasure coding is gradually popular
in various data storage systems, ranging from RAID [15],
P2P storage systems [61], to distributed storage systems
[31], [34], and CSS [11]. Among them, except RAID, there
exist multiple geo-distributed nodes in other systems, leading
that DU is not only sensitive to CPU and IO, but also sensitive
to network.

VOLUME 8, 2020 227983

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

FIGURE 1. The figure depicts the development of DU from 2 perspectives: application scope and resource optimization.

B. RESOURCE OPTIMIZATION
In this subsection, we will discuss the development of DU
from the perspective of resource optimization (computation,
network and IO). Although many works do not concentrate
on CSS, even not for DU, their ideas are significant for DU
and can be applied to CSS.
Computation Optimization: Initially, DU directly calls

encoding process (e.g., RCW), so it is helpful for DU when
researchers are devoted to improving the encoding. The main
idea is either reducing the computational overhead or accel-
erating the computation process, thus we divide them into
2 types: ¬ Generator Matrix Optimization (GM Opt) and
 Scheduling Optimization (Scheduling Opt).

In GMOpt, it is known that the redundancy info (the parity
blocks in CSS) is the linear combination of the data blocks,
which is accomplished by encoding, with the help of gener-
ator matrix. The well-known RS codes or RS-based codes
use Vandermonde matrix [46] or Cauchy matrix [10], [47]
as the genenrator matrix, where all elements are in GF(2w).
However, this will incur a large number of multiplica-
tions, thus degrading the performance of DU. To optimize
the generator matrix, in 1995, Binary Distribution Matrix
(BDM) was employed in [9], [10], where elements of encod-
ing were only bits (0 or 1). Thus, all the multiplications
and additions can be converted to XORs in GF(2), which
can greatly improve the encoding efficiency. To optimize
BDM, Plank et al. [41] proposed Bitmatrix Normaliza-
tion (BN) in 2008, the main idea of which is reducing
the ones in BDM, thus improving the encoding efficiency.
In 2010, Anthapadmanabhan et al. employed randomization

to optimize the BDM [6], in which Update Complexity was
defined and the update-efficient KG code was proposed.
In 2011, Rawat et al. [45] combined the KG code with
interference-alignment (IA), which achieved both update
efficiency and repair efficiency mathematically. In 2013,
Han et al. [26] constructed 2 update-efficient regenerating
codes based on MSR [26] and MBR [25], respectively, and
proved their efficiency mathematically.

In Scheduling Opt, Huang et al. [27] recognized that
we can adjust the scheduling order of encoding to reduce
computational overhead. In 2007, they proposed Matching
(Cardinality Matching and Weighted Matching) to optimize
DU, with the idea of computing the common part first,
which achieved a great improvement of DU. Similarly,
Plank et al. [41] proposed Smart Scheduling (SS) in 2008.
Network Optimization: Although it is useful for DU to

optimize CPU, Agarwal et al. [1] noted that the bottleneck of
the performance of DU is network, especially the rack-across
network [51]. Therefore, some researchers focus on network
optimization. DUM and PUM are 2 typical network-aware
approaches [63] in DU. In fact, DUM and PUM are the
implement of RCW and RMW in distributed storage systems,
respectively. The difference is, DUM and PUM use a special
node called Update Manager (UM) to compute the update
info of the parity nodes. Based on PUM, PUM-P and PDN-P
were proposed in 2012 [63]. Besides, in 2016, Pei et al. [39]
recognized that the conventional update transmission path
employs star structure, which is easy to cause a single point
of bottleneck. To end this, they proposed a new update
scheme called T-Update with a tree-structured transmission

227984 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

path, dispatching the burden of the single data node to the
corresponding parity nodes. In 2017, based on T-Update,
Wang et al. [59] proposed TA-Update to handle the node
failure while updating. In 2018, Shen and Lee [51] proposed
CAU to mitigate the burden of the rack-across network.
IO Optimization: In IO optimization, as stated before,

according to whether the data is overwritten, DU can be
divided into 3 types: in-place update, log-based update
and hybrid update [39], [59]. These approaches are
devoted to accelerating IO access while updating. Besides,
Shen et al. [50] proposed UCODR in 2017, which is a heuris-
tic of scheduling. They defined the distance between 2 parity
nodes and started to update from the closest nodes, which can
reduce the number of disk read.

In order to fully demonstrate the main ideas of these
approaches, A detailed description of all above approaches
will be conducted in Section V.

IV. EXISTING CLASSIFICATION
A. AN EXAMPLE OF DU
Figure 2 depicts a typical erasure-based CSS, in which there
exist k = 3 data nodes and m = 2 parity nodes (i.e., n = 5).
All files in the CSS are splited into equal-sized data blocks
(di,j) which are encoded into n blocks (including k data blocks
and m parity blocks). These n blocks group into a stripe,
scattering in different nodes. The blocks in the same node
group into a strip. Let di,j represent the jth data block in the
ith data node and pi,j represent the jth parity block in the ith
parity node.

FIGURE 2. A typical CSS with RS(5, 3), where k = 3, m = 2, and w = 3. The
data blocks are yellow and parity blocks are green.

It is known that popular erasure codes can be divided
into 2 classes: RS-based codes and XOR-based codes [62].
Accordingly, we will discuss RS-based DU and XOR-based
DU.

1) RS-BASED DU
Figure 3 shows a typical RS-based encoding about Figure 2,
where the leftmost matrix is called generator matrix.

As mentioned above, generator matrix can be generated from
Vandermonde matrix or Cauchy matrix. The top k rows of the
generatormatrix compose a k×k identity matrix (here k = 3).
Compare to Figure 2, d0 represents (d0,0, d0,1, d0,2), d1 rep-
resents (d1,0, d1,1, d1,2) and d2 represents (d2,0, d2,1, d2,2).
In other words, a strip in Figure 2 is denoted by a big data
block (di, i = 0, 1, 2) in Figure 3. The remaining m rows are
called coding matrix [41] (here m = 2). Similarly, p0 rep-
resents (p0,0, p0,1, p0,2) and p1 represents (p1,0, p1,1, p1,2).
In Figure 3, the generator matrix encodes the data blocks
(denoted by d0, d1, d2) into a codeword (d0, d1, d2, p0, p1).
Each block can refer to one symbol in the codeword. After
that, data blocks (d0, d1, d2) will be sent to the corresponding
data nodes and the parity blocks (p0, p1) will be sent to
the corresponding parity nodes. From Figure 3 we can infer
that, in a (n, k) RS-based CSS, each parity block could be
represented by the linear combination of the k data blocks
with the following equation,

pi =
k−1∑
j=0

αi,jdj, i ∈ [0,m− 1] (1)

where all elements are numbers in GF(2w) for some value
of w. Suppose d0,0 is changed, Eq.(1) can be called for DU.
However, in this way, all parity blocks (p0, p1) are related to
d0,0, thus both p0 (p0,0, p0,1, p0,2) and p1 (p1,0, p1,1, p1,2) are
required to be updated.

FIGURE 3. Encoding with RS(5, 3): the leftmost generator matrix encodes
data blocks (d0, d1, d2) into the rightmost codeword (d0, d1, d2, p0, p1).

On the other hand, we can apply another class of genenrator
matrix which is based on the delta info. The idea is to fully
use the old blocks, which can be represented by the following
equations,

pr+1i =

k−1∑
j=0

αijδ
r+1
j + pri (2)

δr+1j = d r+1j − d rj (3)

where pr+1i denotes the updated value of pi in round r + 1,
and pri denotes the old value of pi in round r . δ

r+1
j represents

the delta related to dj from round r to round r + 1. Similarly,
suppose d0,0 is changed (j = 0), although all parity blocks are

VOLUME 8, 2020 227985

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

still required to be updated, the number of blocks involved
in the calculation can be reduced (the comparison between
RCW and RMW in Figure 5 will prove this).

2) XOR-BASED DU
As shown in Eq.(1) and Eq.(2), a considerable number ofmul-
tiplications are generated, which will significantly impede
the performance of DU. To end this, XOR-based encoding
is proposed (as shown in Figure 4), where BDM is used.
Using BDM representation, each element e in GF(2w) can
be denoted by a matrix M(e) of w × w or a vector V(e)
of 1 × w, thus the generator matrix of size k × m can be
converted to a new generator matrix of size wk × wm in
GF(2) [64]. On this light, we can use the smaller block as the
basic element in encoding (here we use di,j and pi,j, instead
of using di and pi). Thus, according to Figure 4, the parity
blocks can be computed by the following equations,

p0,0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d2,2 (4)

p0,1 = d0,1 ⊕ d1,1 ⊕ d2,0 (5)

p0,2 = d0,2 ⊕ d1,2 ⊕ d2,1 (6)

p1,0 = d0,0 ⊕ d1,0 ⊕ d1,2 ⊕ d2,0 (7)

p1,1 = d0,1 ⊕ d1,0 ⊕ d2,1 (8)

p1,2 = d0,2 ⊕ d1,1 ⊕ d2,2 (9)

where the matrix multiplications are now converted to XORs
of data bits corresponding to the ones in BDM. Similarly,
if d0,0 is changed, it can be found that only p0,0 and p1,0
are required to be updated, thus DU with BDM significantly
reduces the computation overhead. It is noted that the smaller
block makes the less data updates, because more accurate
relations between the data blocks and parity blocks can be
established.

FIGURE 4. Encoding with BDM: the Cauchy matrix is converted to BDM,
where the blue block denotes bit 1 and the white block denotes bit 0,
identically, k = 3, m = 2, w = 3.

Similarly, XOR-based DU also has the delta style. Without
loss of generality, let Si,j denote the set of data blocks for

updating pi,j, and Sru denotes the set of updated data blocks in
update round r . To simplicity, we use ⊕dm,n∈Si,j to represent
the computational result of all the elements in Si,j performing
XOR operations. So we have,

pr+1i,j = pri,j ⊕ (⊕dm,n∈(Si,j∩Sr+1u)(d
r+1
m,n ⊕ d

r
m,n)) (10)

where d r+1m,n ⊕ d rm,n is the delta related to dm,n from round r
to round r + 1.

B. DATA TRANSMISSION APPROACHES
Before computing the newest parity blocks with RS-based
DU or XOR-based DU, we have to transfer relevant data
blocks to the corresponding parity nodes. According to
whether transferring the whole data block, Pei et al. [39]
divide update schemes into 2 types: 1) RAID-based update
and 2) delta-based update.

1) RAID-BASED UPDATE
The RAID-based update transfers the whole data block.
As mentioned above, RCW and RMW are 2 classical
approaches of RAID-based update.

l Reconstructed write (RCW): when DU is required,
RCW reads all data blocks in a stripe and transmit them to the
corresponding parity nodes to reconstruct the parity blocks.
The updated value pr+1i of the parity block pi in update round
r + 1 is either based on RS-based DU(Eq.(1)) or XOR-based
DU (Eq.(4) to Eq.(9)).

An example of RCW is shown in Figure 5(1), where the
leftmost 3 green blocks are updated while the 3 red blocks are
not. For updating the rightmost parity block, RCW sends all
these 6 blocks to the parity node. In this round, RCW needs
to read 3 blocks and write 4 blocks (as 3 green data blocks
stay in memory and do not need to be read).

FIGURE 5. An example of RCW and RMW [50]. Assuming there are n = 7
nodes and k = 6 data nodes.

lRead-modify write (RMW):Unlike RCW, RMWcom-
putes the deltas by reading the old blocks in data nodes and
transfering them to the corresponding parity nodes. Simi-
larly, RMW can employ RS-based DU (Eq.(2) and Eq.(3))
or XOR-based DU (Eq.(10)). An example of RMW is shown

227986 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

in Figure 5(2), where the leftmost 3 yellow blocks are updated
and will be sent to the parity node. The rightmost yellow
block is the parity block to be updated. In this round, RMW
needs to read 4 blocks and write 4 blocks.

In a word, the difference between RCW and RMW is the
accessing range of data blocks. In RCW, all data blocks in a
stripe have to be read, while in RMW, disk read only involves
updated data blocks.

2) DELTA-BASED UPDATE
In the RAID-based update, DU transfers the entire block from
the data nodes to the corresponding parity nodes. But such
mechanism will cost an incredibly large network bandwidth
for data transmission, thus may have a negative effect on the
normal running of applications. A typical class of approaches
to reduce traffic cost is called delta-based update, which can
eliminate redundant network traffic by only transferring a
parity delta which is of the same size as the modified data
range [13], [55]. The delta-based update fully employs the
old blocks to compute the deltas based on Eq.(3) or Eq.(10).

A variety of delta-based schemes have been proposed in
the literature, such as PDN-P, T-Update and CAU.All of these
schemes will be discussed in Section V.

C. DATA STORAGE APPROACHES
Data storage approaches discuss how to store the data blocks
and parity blocks, the goal of which is to reduce IO overhead.
According to whether the data is overwritten, Pei et al. [39]
summarized 3 data storage approaches in DU: ¶ In-place
Update, such as Full-overwrite (FO) [2], · Log-based
Update, such as Full-logging (FL) and ¸ Hybrid Update,
such as Parity-logging (PL) [30], [54] and Parity Logging
with Reserved Space (PLR) [14].

1) IN-PLACE UPDATE
In-place update is adopted widely in CSS, since it guarantees
strong data consistency. In the in-place update, once a data
block is changed, the primitive data block will be overwritten
immediately, which triggers the parity block be updated [39].
For example, in FO, clients perform write operations by
in-place overwriting on data nodes and compute the deltas
which will be transferred to the corresponding parity nodes.
After that, these parity nodes compute the newest parity
blocks with the deltas and overwrite the old parity blocks
immediately. Such mechanism ensures the data blocks and
parity blocks are always the newest.

On the downside, however, computing the deltas and parity
updates both need extra disk read of the old blocks, which
may aggravate the update time. What’s more, noting that DU
is common in CSS, which will easily degrade the perfor-
mance of CSS.

2) LOG-BASED UPDATE
Noting that the in-place update needs extra disk read, which
incurs a large amount of IO overhead. To end this, another

class of DU called log-based update is proposed. Log-based
update stores update information as logs. For instance, FL is
a typical approach of log-based update which mitigates IO
overhead by appending all data and parity updates to the
old blocks. Specifically, the deltas of data blocks and parity
blocks are simply recorded to logs. If clients need to read
blocks, the merge operation of the primitive data and their
updates in logs must be applied in advance. Such mechanism
is faster than in-place update, thus it is employed by GFS [23]
and Azure [12].

On the other hand, although log-based update (such as FL)
is fast for DU, it aggravates the access time in common cases
because of merging. Thus, it is probably unacceptable for
cloud applications with many read requests [39].

3) HYBRID UPDATE
To solve the problem of log-based update, another class of
update called hybrid update is proposed. Parity-logging (PL)
is a typical approach of hybrid update, which combines the
real-time performance of FO with the smooth IO usage of
FL. In hybrid update, considering data in data nodes will
be accessed with much higher probability than that in parity
nodes, FO is applied to data nodes and FL is applied to parity
nodes. In this way, not only it can save IO overhead of DU,
but also it can guarantee the read performance of data blocks.

To accelerate IO further, Chan et al. [14] proposed a novel
scheme based on PL, called Parity Logging with Reserved
Space (PLR), which preserved some extra space in each
parity block to save the deltas, so that the parity block and
its deltas can be saved in continuous physical locations on
disk. Experimental results showPLR shortens the update time
further.

In order to visually compare the various approaches of data
storage, Figure 6 illustrates the differences between them,
where RS(3, 2) is employed and the incoming data stream
indicates the sequence of operations: ¬ write data blocks a
and b, update part of awith a′, ® write data blocks c and d ,
and finally ¯ update parts of b and c with b′ and c′, respec-
tively. Figure 6 shows FO performs in-place overwriting for
both data and parity blocks; FL performs appending for both
data nodes and parity nodes; PL employs in-place overwriting
for data nodes while employs appending for parity nodes;
PLR does the same thing with PL, but it appends parity deltas
in reserved space.

FIGURE 6. Illustration on different parity update schemes [14].

VOLUME 8, 2020 227987

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

In this section, We re-examine existing schemes that fall
into two classes: 1) data transmission approaches and 2) data
storage approaches. We recognize that, various excellent
schemes have been proposed in the literature either to directly
reduce one resource overhead (such as computation, network
and IO overhead), or to accelerate the update process by dif-
ferent techniques. Accordingly, we propose a resource-based
classification to classify them into 3 types in terms of their
goals: ¶ computation optimization, · network optimization,
¸ IO optimization.

V. RESOURCE-BASED CLASSIFICATION
In this section, we begin to introduce our classifications
(resource-based classification and tier-based classification).
Table 1 clearly shows the comparison between existing
classifications and our classifications.

TABLE 1. The comparison between existing classifications and our
classifications.

A. COMPUTATION OPTIMIZATION
The computational reduction is the most straightforward way
to achieve DU efficiency. As stated before, DU depends on
encoding or its delta style. Several excellent techniques have
been proposed in the literature, which significantly improve
encoding efficiency, such as Bitmatrix Normalization
(BN) [41], Smart Scheduling (SS) [41], Randomization [6],
Interference Alignment [45], Update-Efficient Regenerating
Codes (UERC) [26], Matching [27], RAPID [4]. While
Vectorization [64] is a typical technique of accelerating the
computation process.

1) BITMATRIX NORMALIZATION
A simple procedure for computational reduction is using
Bitmatrix Normalization (BN), the main idea of which is to
reduce blue ones in BDM (Figure 4), thus make computa-
tion convenient. Here is the simple heuristic to create BDM
from [41],

¶ Create a Cauchy matrix P such that Pi,j = 1
i⊕(m+j) ,

where m = n− k and division is over GF(2w).
· For each column-j, to make each element in row 0 to

one, division is performed on each element by P0,j.
¸ For each row-i except the first,
(a) Collect the number of ones.
(b) Divide row-i by Pi,j for each j, and collect the number

of ones.
(c) Employing the Pi,j which generates the minimum num-

ber of ones from previous two steps, replace the values with
new row-i after division of Pi,j. That is, row-i is normalized
with the element in the row which induces the minimum
number of ones in the P.

Finally, we got a new matrix P′, as shown in Figure 4,
the M(e) representation of P′ is BDM.

Here is the example given by Plank et al. [41], where
n = 6, k = 3,w = 3. The initial P is as follows, 6 7 2

5 2 7
1 3 4

First of all, column 0 is divided by 6, column 1 is divided

by 7 and column 2 is divided by 2, for instance, we can get
P0,0 = 1,P1,0 = 4,P2,0 = 3 from Table 2, to yield, 1 1 1

4 3 6
3 7 2

TABLE 2. Multiplication table for GF(23).

Now, we can count the ones in every row according to
Figure 7. We concentrate on the second row, in which bit-
matrix representation has 5+ 7+ 7 = 19 ones. If we divide
it by P1,0/P1,1/P1,2, we can get the bitmatrix has 12/11/16
ones. Thus, we use row 1 divided by P1,1 = 3 as the new
row 1, which generates the minimum number of ones.

FIGURE 7. Vector and matrix representation of the elements of GF(23).

227988 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

We do the same with the third row and notice P2,0 = 3 is
optimal. Thus, the new matrix P′ is, 1 1 1

5 1 2
1 4 7

Replacing every number (e) with M(e) representation

(Figure 7), we can get BDM. This example shows BN can
reduce 12 ones in the BDM (from 46 to 34). This approach is
very simple and useful.

2) SMART SCHEDULING
The idea of Smart Scheduling (SS) is to reuse some parity
computation to reduce the overall computation, which is also
proposed by Plank et al. [41]. For example, if we update
p0,0, p1,0 by Eq.(4) and Eq.(7),

10p0,0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d2,2
p1,0 = d0,0 ⊕ d1,0 ⊕ d1,2 ⊕ d2,0

which requires 6 XOR operations. But if we update p0,0 first,
p1,0 can be updated with the following equation,

p1,0 = p0,0 ⊕ d1,2 ⊕ d2,2

which requires only 5 XORs. Compare to BN, SS needs
slightly more effort to implement and optimize because
searching for the optimal schedule to update parity blocks
is proved to be the NP-Complete problem [27], [50]. For-
tunately, the computation schedule can be in fact generated
offline [64] or be resorted to a heuristic algorithm that can
quickly find an excellent schedule [50].

3) RANDOMIZATION
Similar to Anthapadmanabhan et al. [6] were also interested
in constructing an efficient BDM to optimize DU. They took
advantage of randomization to generate BDM and proved
that, a code can be designed that requires at most O(log n)
updates per change in a single data block.

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1

×

d1
d2
d3
d4

 =

d1
d2
d3
d4
p1
p2
p3

(11)

Eq.(11) shows an example of BDMwith [7, 4, 3]Hamming
code [6], which has update complexity of 4. That is, if any
single block is changed, 4 blocks are required to be updated
at most (e.g., if d4 is changed, the corresponding p1, p2, p3 are
required to be updated). In general, the [2r −1, 2r −1− r, 3]
Hamming code has an update complexity of r + 1 (here
r = 3). Thus, the update complexity scales logarithemically
with the code length. Based on randomization, they con-
structed an update-efficientKG code and proved it has update
complexity of O(log n) in mathematically (n still represents

the number of nodes in CSS). Besides, they also proved that
RS code is not update efficient because RS code is a MDS
code which has the minimum distance n − k + 1, leading to
update complexity of n− k + 1 at least.

4) INTERFERENCE ALIGNMENT
Based on KG code, Rawat et al. [45] used a combination of
KG code for update efficiency with interference-alignment
(IA) strategy for distributed storage systems and proved that,
as long as we have large enough alphabet, there exist an
encoding matrix G ∈ C, thus, the repair bandwidth per
symbol of repaired data for the proposed code with IA tends
to n−1

n−kn
. In other words, it can achieve simultaneously repair

efficiency and update efficiency.
However, both the KG code and KG-based codes stay at

the theoretical level, experiments are required to prove their
efficiency.

G =

1 1 . . . 1
a0 a1 . . . an−1

(a0)2 (a1)2 . . . (an−1)2

(a0)3 (a1)3 . . . (an−1)3

. . . .

. . . .

. . . .

(a0)α−1 (a1)α−1 . . . (an−1)α−1

,

1 =

(a0)α 0 . . . 0
0 (a1)α . . . 0
. . . .

. . . .

. . . .

0 0 . . . (an−1)α

 (12)

5) UPDATE-EFFICIENT REGENERATING CODES
It is well-known that regenerating codes [19] represent a
class of erasure codes which can achieve the minimum
bandwidth cost or the minimum storage cost in DR, or the
balance between bandwidth and storage in per node. To min-
imize storage overhead, Minimum Storage Regenerating
codes (MSR) are proposed, which first minimize the amount
of data stored per node, and then the repair bandwidth. While
Minimum Bandwidth Regenerating (MBR) codes pursue
minimization in the reverse order. MSR and MBR repre-
sent the two ends of optimal curve of regenerating codes,
respectively.

Han et al. [26] constructs an update-efficient MSR regen-
erating codes (UERC) with error correction capability based
on RS codes, and specifies the conditions need to satisfy:

1) G =
[
G
G1

]
, G contains the first α rows in G and 1 is

a diagonal matrix.
2) G is a generator matrix of the RS(n, α) and G is a

generator matrix of RS(n, d = 2α) code C .
From Eq.(12) we can see, a is the generator of GF(2w),

as long as w ≥ dlog2 nαe, every element in G, 1 is
distinct. Thus, all elements in G are distinct. Noting that

VOLUME 8, 2020 227989

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

RS(n, d = 2α) code C is a cyclic code which can be arranged
as a systematic code. Thus, G can be transformed into
G=[D I] style:

G = [D I]

=

b00 b01 . . . b0(n−α−1) 1 0 . . . 0
b10 b11 . . . b1(n−α−1) 0 1 . . . 0
b20 b21 . . . b2(n−α−1) 0 0 . . . 0
.

.

.

b(k−1)0 b(k−1)1 . . . b(k−1)(n−α−1) 0 0 . . . 1

(13)

AsG is the generator matrix of RS(n, k), theMDS property
causes the Hamming weight of G is n − α + 1 at least.
As shown in Eq.(13), each row ofG is nonzero codeword with
the minimum Hamming weight n − α + 1. In other words,
it achieves the minimum Hamming weight while keeping
theMDS property. Therefore, it is update-efficient. Similarly,
Han et al. [25] construct update-efficient MBR codes.
However, similar with KG codes, their efficiency needs to

be validated in experiments.

6) MATCHING
In fact, the idea of SS has a related form. To optimize
XOR-based codes (OXC), Huang et al. [27] proposed
2 greedy algorithms (Cardinality Catching and Weighted
Matching) in terms of COF (computing common operations
first) rule. Instead of reusing computed parity bits, they
referred common XOR operations as intermediate results
which can be reused for others. They related the OXC prob-
lem to a graph where all inputs are as nodes in the graph
and connected two nodes with an edge whenever there is a
potential XOR computation.

0 1 1 1 1 0
1 1 1 0 0 1
1 1 0 1 1 0
1 0 1 1 0 1

×

i1
i2
i3
i4
i5
i6

 =

o1
o2
o3
o4

 (14)

For example, The inputs (data blocks) are i1, i2, i3, i4, i5
and i6. The outputs (parity blocks) are o1, o2, o3 and o4.
Based on Eq.(14), we can get the graph like Figure 8(a),

FIGURE 8. Illustration of two greedy approaches: Cardinality Matching
and Weighted Matching [27].

where each edge has a counter shows the number of sharing
between different outputs for a specific XOR. A matching
is a set of edges in a graph, in which there no exist two
edges share the same node. As illustrated in Figure 8(b),
the cardinality matching is the matching with the maximum
number of edges. To compute such edges first, all edges with
fewer counter values are removed.

Based on the cardinality matching, Figure 8(c) depicts the
weighted matching which takes density (degree) into consid-
eration. For each edge with the maximum counter value, its
weight is set to be a large constant (i.e., E) minus the degrees
of its both end nodes. In every round, the edge with maximum
matching and the minimum density should be computed first
such that it’s probably to contain more matchings for the
next round. Huang made a conjecture about OXC’s NP-
completeness, and proved that the two algorithms proposed
can be solvable in polynomial time.

Matching is a heuristic of searching for optimal update
scheduling, which can be accomplished in polynomial time.
The experimental results show its great improvement for DU.

7) RAPID
Another approach for optimizing DU is to reduce the total
number of parity updates, which is called RAPID [4].
Akash et al. recognized that it is not necessary to update
parity nodes if no failures occur in this update round. RAPID
is a protocol, which draws an update window in each round
and rules that, only parity nodes within this window can be
updated. Roughly speaking, RAPID sacrifices part of data
consistency to accelerate the process of DU, which may lead
to permanent data loss in the face of bulk failures. While
according to the failure model in [48] and statistics of failure
in Facebook cluster (Table 3), the probability of bulk failures
is rather low, which motivates the design of RAPID. To lever-
age the failure handling and data consistency, Akash et al.
proposed a dynamic window strategy as follows,

Ti = P ∗ Ni + (1− P) ∗ Ti−1

where Ti denotes the window size of round i, and P denotes
the failure probability. Ni represents the number of fail nodes
in round i. Therefore, if Ni is large, the window size will
become larger in the next round to avoid data loss.

TABLE 3. Failure statistics in Facebook [44].

RAPID carefully combines locking and buffering tech-
nologies to implement this protocol, where locking is
designed for data consistency and buffering is designed for
concurrency. To broaden concurrency, buffering has a higher
priority than locking, but a threshold is used to restrict too
much concurrency.

227990 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

FIGURE 9. The models of DUM, PUM, PUM-P, and PDN-P.

RAPID is a high-level strategy, it fully uses the low proba-
bility of bulk failures. We argue that any other approach can
combine with it to make a deeper improvement for DU.

8) VECTORIZATION
Modern CPUs are typical with SIMD capability, which
can significantly accelerate the computation process of DU.
SIMD can be used in XOR operations and more general finite
field operations.

Vectorization is a typical technique for DR [64], which
was implemented by invoking the 128-bit SSE vectorization
instruction set for INTEL and AMD CPUs. Recent 256-bit
AVX2 and 512-bit AVX-512 vectorization instructions are
becoming more and more common in newer generations of
CPUs.

B. NETWORK OPTIMIZATION
While the computation optimization is helpful for DU,
the network bandwidth often becomes the bottleneck of
update performance in CSS [51]. To mitigate the negative
effect of network traffic on the performance of DU, many
works make contributions for designing new transmission
schemes to reduce the network traffic overhead or increase
the bandwidth utilization among multiple storage nodes.

1) BASIC APPROACHES
As mentioned earlier, DUM and PUM are 2 typical
network-aware approaches [63], both of which use a special
manage node to accomplish the updates.

DUM: DUM is the implement of RCW in distributed
storage systems. Figure 9a illustrates how it works: according
to the update equations (e.g., Eq.(4) to Eq.(9)), the new parity
blocks p0, . . . , pm−1 are regenerated with all data blocks in
the same stripe by a special node called Update Manager
(UM).

PUM: Similar to RMW, PUM uses the deltas of updated
data blocks and the old parity blocks by UM to compute
the new parity blocks. Specifically, as shown in Figure 9b,
the updated data blocks (here is d ′0) and their old data blocks
will be sent to UM to compute the deltas, after that the new
parity blocks will be regenerated with the deltas and the old
parity blocks according to Eq.(3) or Eq.(10). If the update
is small, generally PUM performs better than DUM, since it
does not have to fetch all irrelevant data blocks as DUM does.

Zhang et al. [63] focused on small updates, and proposed
2 novel PUM-based schemes called PUM-P and PDN-P to
optimize the small updates. The underlying idea is to utilize
the computational capability of storage nodes to shorten the
access chain length of DU and alleviate the update traffic over
network.

PUM-P: As depicted in Figure 9c, PUM-P computes the
new parity blocks with the parity blocks which are generated
by UM and the parity nodes. In PUM-P, UM only computes
the deltas (p∗i , i ∈ [0,m − 1]) of updated data blocks. Sub-
sequently, UM sends the deltas to the corresponding parity
nodes to accomplish DU.

PDN-P: PDN-P computes the new parity blocks with the
parity blocks that are directly generated by the data nodes

VOLUME 8, 2020 227991

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

FIGURE 10. A comparision between star-structured and tree-structured
transmission path, where Di denotes the updated data node and
P1, P2, P3, P4 denote the corresponding parity nodes [39].

and parity nodes (as depicted in Figure 9d), the difference
between PDN-P and PUM-P is that, PDN-P simply utilizes
data nodes to compute p∗i , while PUM-P gets p∗i by UM.
Therefore, compare to PUM-P, PDN-P can slightly save stor-
age overhead, but the burden of DU is partially transferred to
data nodes.

The experimental results show that, for small updates,
PUM-P and PDN-P can achieve greater performance than
DUM and PUM. But for large updates, DUM is optimal.

2) DATA TRANSMISSION OPTIMIZATION
Pei et al. [39] noticed that it has long been assumed that
the update process is performed on a star structure. In other
words, the updated data node sends its delta to the cor-
responding parity nodes directly when DU is required.
However, the traditional star-structured update schemes (e.g.,
PDN-P) put all the burden of data computing and forward-
ing tasks of parity information on the data node, increasing
the risk of the performance bottleneck [39]. To end this,
Pei et al. proposed a tree-structured update scheme called
T-Update [39], which constructs an update tree to organize
the data connections. In T-Update, each updated data node
is handled separately. Specifically, each updated data node

is the root node and the corresponding parity nodes are the
intermediate nodes and the leaf nodes. When the root node
is updated, it transfers the delta to its children, until to the
leaf nodes. Every parity node updates its parity block with
the delta and forwards it to its children. In this way, the data
transmission and computation can be accomplished in paral-
lel to optimize DU, where the non-leaf parity nodes compute
parity updates and forward the delta at the same time.

T-Update in fact constructs an MST (Minimum Spanning
Tree) based on network distance. If two nodes connect
with each other in one switch, the network distance is 1.
Figure 10(a) depicts an example of the node connections,
where Di is the updated data node and P1,P2,P3,P4 are the
relevant parity nodes. The weights of edges between different
nodes represent different network distances. Figure 10(b) and
Figure 10(c) show the corresponding star structure and tree
structure, respectively.

The core idea of T-Update is derived from [33], which
constructs another MST (Maximum Spanning Tree) based
on available bandwidth capability (e.g., 40KB/s). It in fact
represents the same meaning with network distance, but the
bandwidth capability changes with time, which may compli-
cate DU.

Based on T-Update, Wang and Pei recognized the signif-
icance of adaptivity in DU, thus proposed a novel scheme
called TA-Update [59], which introduces a rollback-based
approach to handle the node failure during DU.

Both T-Update and TA-Update are efficient and compati-
ble. We argue they can also combine with other approaches.

It is well-known that CSS organizes nodes in racks, while
the cross-rack bandwidth is often oversubscribed, and much
more scarce than the inner-rack bandwidth [3], [8], [17].
To end this, Shen and Lee [51] proposed CAU, which
builds on 3 design elements: ¬ selective parity updates,
which select the appropriate DU approach (data-delta commit
or parity-delta commit) to mitigate the cross-rack network

FIGURE 11. Figure 7(a) shows the network topology before scheduling and figure 7(b) shows the comparision of scheduling
between delta-based, T-Update and XORInc.

227992 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

overhead, data grouping, which groups and relocates the
updated data blocks in one rack by exchanging data to miti-
gate the cross-rack bandwidth, ® interim replication, which
creates a transient copy of updated data blocks in another
parity node to avoid data loss in face of failures.

CAU divides the DU into 2 phases: ¬ Append Phase,
which is similar to FL, employs logs to save the updated infor-
mation of data blocks, Commit Phase, when a threshold is
reached (e.g., 50 blocks), the merge operation of primitive
blocks and appending logs can be triggered. It sounds like a
kind of batch update. In the commit phase, CAU has 2 choice:
1) data-delta commit, which means each updated node sends
its delta to one parity node of a rack, as shown in Figure 12(a),
2) parity-delta commit, which means the deltas of multiple
data blocks aggregates into one data node i, and node i sends
themix of deltas to the parity nodes in other racks, as depicted
in Figure 12(b).

FIGURE 12. Selective parity updates: (a) data-delta commit and
(b) parity-delta commit. In (a), CAU sends i ′ = 2 data-delta chunks from
Ri to Rj ; in (b), CAU sends j ′ = 2 parity-delta chunks from Ri to Rj [51].

To mitigate cross-rack network overhead further, data
grouping, which is illustrated in Figure 13, groups updated
blocks into one rack, which is implemented by swapping
blocks (as long as the swapping network overhead is lower
than the orignal cross-rack network overhead).

FIGURE 13. Data grouping: we can swap the updated data chunk in Ri2
with one of the chunks in Ri1, such that the four updated data chunks are
now stored in Ri1 [51].

Themain features of CAU are batch update and data group-
ing. It is noting that CAU is generic and can be applied to any
practical erasure code.

3) NETWORK DEVICE ACCELERATION
With the emergence of programmable network devices,
the concept of in-network computation has been pro-
posed [58]. The key idea is to offload compute operations

onto intermediate network devices. Inspired by this idea,
Wang et al. [58] noted that many works focusing on design-
ing new transmission schemes (e.g., T-Update and CAU) to
improve bandwidth utilization amongmultiple storage nodes,
but they do not actually reduce network traffic. Besides, they
figured out that all network traffic is required to pass through
the switches, no matter which node computes the deltas.
Therefore, they proposed XORInc, a framework based on
programmable network devices (i.e., modern switches, with
XOR computation capability and sufficient buffers to save
intermediate results). Based on XORInc, they proposed a new
scheme called NetUpdate to optimize DU.
Here is an example to illuminate the idea of XORInc,

as shown in Figure 11a, the client C updates the data block
with dnew and sends it to the storage system, and then D1
receives dnew from switch SW1 and sends its old block dold
back to SW1, where the delta δ will be computed. Obviously,
to achieve data consistency, the parity nodes (P1,P2,P3) are
required to be updated with δ.

To update P1,P2,P3, three update schemes (PDN-P,
T-Update and NetUpdate) are compared in Figure 11b, where
they found the length of the data transmission path in NetUp-
date is the shortest, the worst one is in PDN-P. The main rea-
sons are as follows: ¬ Modern switches has the computation
capability, thus they do not have to forward updated data to
other nodes to compute the deltas. Switches have sufficient
links, thus multiple data transmissions can be accomplished
simultaneously.

Of course, with programmable network devices, we can
achieve better performance in DU. However, not every exist-
ing CSS has this environment.

C. IO OPTIMIZATION
Many works towards reducing the IO overhead in erasure-
coded distributed storage systems have been discussed in
Section IV, such as in-place update (e.g., FO), log-based
update (e.g., FL) and hybrid update (e.g., PL and PLR). These
ideas can also be applied to CSS.

Here we discuss a novel scheme called UCODR [50] for
IO optimization from another point of view.

1) UCODR
Similar to Matching, UCODR is another heuristic to search
for a good update sequence, but its update priority depends on
the distance between different parity blocks. The definition of
the distance between parity block pi and parity block pj is as
follows,

dispi,pj = {||dl ||, dl ∈ (pi ⊕ pj) ∩ dl ∈ Sd }

where || ∗ || is the number of elements, and dl is the data
block only stored in the disks (i.e., dl ∈ Sd). For example,
the distance between p0,0 (Eq.(4)) and p1,0 (Eq.(7)) is 1, since
by utilizing p0,0, d1,2 is required to be read for computing p1,0
(as d2,2 has been read into memory when p0,0 is updated, it is
unnecessary to read d2,2 twice).

VOLUME 8, 2020 227993

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

The distance shows the similarity of parity blocks, thus
UCODR tends to give priority to those similar blocks. Specif-
ically, UCODR starts from the parity blocks with the mini-
mum distance, and for each parity block, UCODR employs
RCW or RMW to select the minimum read times (as shown
in Figure 5, RCW and RMW have different read times for
updating the same block). An example is shown in Figure 14,
where p0,0, p0,1, p1,0, p1,1, p1,2, p1,3 are parity blocks need
to be updated. E1 and E2 represents RCW and RMW, respec-
tively. The green ones represent the data blocks need to be
read. For p0,0, the number of reading data blocks by RCW
and RMW are 0 and 5, respectively, if all the data blocks are
not cached in memory, RCW is the better choice for updating
p0,0. The example shows the main idea of UCODR for IO
optimization.

FIGURE 14. Two target elements of update approaches, E1 denotes
RCW and E2 denotes RMW, the green ones represent data blocks to be
read [50].

In a conclusion, UCODR is a fast update scheme for DU
scheduling, thus it is helpful for reducing computational
overhead, at the same time, it has great benefits for IO
optimization.

VI. TIER-BASED CLASSIFICATION
In this section, we introduce our another classification:
tier-based classification.

A. HYBRID TECHNIQUE FRAMEWORK
All of these techniques were proposed individually previ-
ously, and most of them mainly focus on optimizing one cer-
tain resource (computation, network or IO), which motivates
us to think: if we exploit multi-resource optimization, can
we use them jointly? Inspired by Zhou’s idea of operation
tiers [64], we propose a new hybrid technique framework
which divide these techniques into 5 tiers: Coding Tier,
Scheduling Tier, Network Tier, IO Tier and Hardware Tier
(As depicted in Figure 15), We use the different color to
differentiate the main goals of these techniques.

¶ Coding Tier:which mainly seeks to construct the gener-
ator matrix (BDM) or the update equation (e.g., RCW and
RMW), thus, this tier is devoted to improving the coding
theory of DU.

· Scheduling Tier: once the update equations are estab-
lished, if multiple parity blocks are required to be updated,
searching for the optimal scheduling is naturally required

(such as matching, which selects the common parts to com-
pute first). Thus, in this tier, researchers focus on scheduling
optimization.

¸ Network Tier: scheduling tier offers the schedule order
of DU, but before we conduct scheduling, we have to collect
data involved in the computing, which leads to data transmis-
sion. The techniques in network tier mainly solve the problem
of data transmission.

¹ IO Tier: as mentioned in Section IV, the IO tier mainly
consider data storage to accelerate disk read/write.

º Hardware Tier: which mainly considers modern hard-
ware techniques to accelerate DU (e.g., CPU with SIMD).

According to the characteristics of different schemes,
Figure 15 shows these schemes with distinct goals of resource
optimization, except the pink ones (RCW,DUMandRAPID).
As stated before, RCW is a simple and straightforward
approach, which goal is simply completing the update, and
DUM is the implement of RCW in CSS. While RAPID is a
protocol that sacrifices data consistency to reduce the total
number of parity updates. As we argue that RAPID is a
high-level strategy which can be combined with any other
schemes, thus we place it on the right side. After classi-
fication, most of these techniques in different tiers can be
applied in tandem theoretically, such as combination 1 and
combination 2 in Table 4.

TABLE 4. An example of combinations of individual techniques.

B. COMPARISON
According to the main features of these techniques,
wemake a comparison between these schemes systematically
in Table 5. The main goals (e.g., CPU, network and IO) of
these techniques are depicted in bold. Here, we first introduce
several concepts:

l Multiple Updates: which checks whether the scheme
supports multiple data updates optimization or not. For exam-
ple, T-Update only considers DU optimization separately,
while UCODR considers how to improve multiple data
updates.

l Parallelism Opt (Parallelism Optimization): which
checks whether the scheme is aware of parallelism acceler-
ation or not. For example, vectorization is a typical technique
for parallelism acceleration.

l Improvement: which is mainly derived from the results
of their experiments. We set 4 types to indicate their improve-
ment (low = 0%-30%, middle = 30%-50%, high = 50%-
100%, and very high = over 100%)

l Extra Requirement: which describes the extra
requirements for deploying the scheme.

227994 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

FIGURE 15. The different techniques are divided into 5 tiers (Coding Tier, Scheduling Tier, Network Tier, IO Tier and Hardware Tier).
We show the main goals of these techniques with different color (green, blue, yellow and pink represent CPU, Network, IO and others,
respectively).

TABLE 5. Comparision on typical update schemes.

l Implement Complexity: which is mainly inferred from
the algorithm complexity and deployment complexity.

l Optimal Environment: which shows the optimal envi-
ronment for the scheme, but it is not the constraint for the
scheme.

As shown in Table 5, in coding tier, optimizing CPU
(especially reducing ones in BDM) can not only reduce com-
putation overhead of DU, but also can benefit the network
and IO, because a sparse BDM involves less blocks, lead-
ing to less disk I/Os and transmission. As IA, Randomiza-

tion and UERC are only proved theoretically, not verified
by experiments, thus their improvement of optimization is
unclear.

In scheduling tier, the three schemes (SS, Matching and
UCODR) are aware of CPU, Network and IO, since they all
have the similar idea of reusing common parts. Among them,
SS has much higher implement complexity, since it is not
heuristic.

In network tier, some schemes need extra requirements,
such as update manager (DUM, PUM and PUM-P) and

VOLUME 8, 2020 227995

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

modern switches (XORInc), we argue that the implement
complexity of XORInc is high, since modern switches are not
very common in existing CSS.

In hardware tier, vectorization needs modern CPU with
SIMD, it is a typical technique in DR, while not yet
considered in DU.

VII. CHALLENGES
There are many open challenges in the field of DU. In this
section, we examine the challenges of optimizing DU based
on the 3 prominent requirements (efficiency, compatibility,
and adaptivity).

A. RESEARCH CHALLENGES
1) COMPUTATION EFFICIENCY
a: CONSTRUCT OPTIMAL BDM IS HARD
As mentioned above, BDM is significantly important for
computation efficiency. While IA notes that the requirements
of DR andDU can be seen as counteracting one another, as the
latter needs a sparse BDM and the former needs a dense one.
Therefore, we have to make a trade-off between them, but the
optimal leverage point is hard to be found.

b: SEEK OPTIMAL SCHEDULE IS HARD
As mentioned above, searching for the optimal scheduling
order is proved to be the NP-Complete problem [27], [50].
Although some excellent heuristic schemes (e.g., Matching
andUCODR) have been proposed, the potential improvement
space is large.

2) NETWORK EFFICIENCY
It is known that network bandwidth, especially rack-across
bandwidth is always a scarce resource in CSS. Bandwidth
usage is directly proportional to the amount of data trans-
ferred in the distributed storage. Therefore, we should speed
up network transferring by increasing bandwidth utilization
or reducing network traffic while keeping adequate band-
width for other applications. However, available bandwidth
changes with time, which complicates the network trans-
mission optimization. Although, T-Update improves the data
transmission path by tree structure, leading to load balance
and parallelism acceleration, it is still unknown which struc-
ture is optimal. Therefore, improving bandwidth efficiency
without sacrificing performance is one of the most important
challenges [36].

3) COMPATIBILITY
As mentioned earlier, there exist diverse erasure codes
adopted in existing CSS, we should consider how to adapt
to them with a little change, which may lead to a trade-off
between efficiency and compatibility.

Besides, as stated before, DU is mutable. Therefore,
a compatible scheme is required for DU.

4) ADAPTIVITY
It is well-known that the failure is a norm in CSS, which
may occur at any time, thus it is dramatically important
for DU to consider dealing with failures while updating.
Rollback-based schemes are excellent, however, they sacri-
fice performance to correct failures. Therefore, improving
adaptivity without sacrificing performance is also one of the
most important challenges in DU.

VIII. CONCLUSION
In this survey, we performed a comprehensive study of the
state-of-the-art update techniques which can be applied in
CSS. A set of introductions were conducted to understand
their ideas, improvements and constraints. A systematic com-
parison between them was performed to show their differ-
ences and relations. According to our observation of these
techniques, we proposed 2 classifications: resource-based
classification and tier-based classification. In resource-based
classification, based on their optimizing goals, we divide
them into 3 parts: computation optimization, network opti-
mization, and IO optimization. In tier-based classification,
we proposed a novel hybrid technique framework with 5 tiers
to group these techniques in a new form. We argued that most
of these techniques in different tiers can be used jointly.

DU is common, mutable, and full of challenges, based on
which, the following research directions are listed for future:

¶ Construct a proper BDM to achieve update efficiency
while keeping repair efficiency.

· Propose new techniques or hybrid techniques to reduce
network traffic overhead.

¸Among these update schemes in hybrid technique frame-
work, a set of tests can be conducted to select the best
combination to achieve update efficiency.

¹ Propose new compatible schemes or combinations of
schemes.

º Against failures, propose new techniques to improve
adaptivity.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for their insight-
ful feedback. The authors also appreciate Jingwei Li and
Hu Xiong for their sincere help.

REFERENCES
[1] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,

‘‘Reoptimizing data parallel computing,’’ in Proc. 9th USENIX Symp.
Netw. Syst. Design Implement. (NSDI), 2012, pp. 281–294.

[2] M. K. Aguilera, R. Janakiraman, and L. Xu, ‘‘Using erasure codes effi-
ciently for storage in a distributed system,’’ in Proc. Int. Conf. Dependable
Syst. Netw. (DSN), 2005, pp. 336–345.

[3] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. N. Vijaykumar, ‘‘Shuf-
flewatcher: Shuffle-aware scheduling in multi-tenant mapreduce clusters,’’
in Proc. USENIX Annu. Tech. Conf., 2014, pp. 1–12.

[4] G. J. Akash, O. T. Lee, S. D. Madhu Kumar, P. Chandran, and
A. Cuzzocrea, ‘‘RAPID: A fast data update protocol in erasure coded
storage systems for big data,’’ in Proc. 17th IEEE/ACM Int. Symp. Cluster,
Cloud Grid Comput. (CCGRID), May 2017, pp. 890–897.

[5] Amazon. Amazon S3. Accessed: Jul. 23, 2020. [Online]. Available:
https://aws.amazon.com/cn/s3/

227996 VOLUME 8, 2020

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

[6] N. P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath, ‘‘Update-
efficient codes for erasure correction,’’ in Proc. 48th Annu. Allerton Conf.
Commun., Control, Comput. (Allerton), Sep. 2010, pp. 376–382.

[7] B. Baesens, Analytics in a Big Data World: The Essential Guide to Data
Science and Its Applications. Hoboken, NJ, USA: Wiley, 2014.

[8] T. Benson, A. Akella, and D. A. Maltz, ‘‘Network traffic characteristics of
data centers in the wild,’’ in Proc. 10th Annu. Conf. Internet Meas. (IMC),
Jan. 2010, pp. 267–280.

[9] M. Blaum, J. Brady, J. Bruck, and J. Menon, ‘‘EVENODD: An efficient
scheme for tolerating double disk failures in RAID architectures,’’ IEEE
Trans. Comput., vol. 44, no. 2, pp. 192–202, 1995.

[10] J. Blömer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and
D. Zuckerman, ‘‘An XOR-based erasure-resilient coding scheme,’’
Tech. Rep., 1995.

[11] K. D. Bowers, A. Juels, and A. Oprea, ‘‘HAIL: A high-availability and
integrity layer for cloud storage,’’ in Proc. 16th ACM Conf. Comput.
Commun. Secur. (CCS), 2009, pp. 187–198.

[12] B. Calder et al., ‘‘Windows azure storage: A highly available cloud storage
service with strong consistency,’’ in Proc. 23rd ACM Symp. Oper. Syst.
Princ., 2011, pp. 143–157.

[13] P. Cao, S. B. Lin, S. Venkataraman, and J. Wilkes, ‘‘The TickerTAIP
parallel RAID architecture,’’ ACM Trans. Comput. Syst., vol. 12, no. 3,
pp. 236–269, Aug. 1994.

[14] J. C. W. Chan, Q. Ding, P. P. C. Lee, and H. H. W. Chan, ‘‘Parity
logging with reserved space: Towards efficient updates and recovery in
erasure-coded clustered storage,’’ inProc. 12th USENIXConf. File Storage
Technol. (FAST), 2014, pp. 163–176.

[15] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
‘‘RAID: High-performance, reliable secondary storage,’’ ACM Comput.
Surv., vol. 26, no. 2, pp. 145–185, Jun. 1994.

[16] Q. Chen, L. Liang, Y. Xia, H. Chen, and H. Kim, ‘‘Mitigating sync
amplification for copy-on-write virtual disk,’’ in Proc. 14th USENIX Conf.
File Storage Technol., 2016, pp. 241–247.

[17] M. Chowdhury, S. Kandula, and I. Stoica, ‘‘Leveraging endpoint flexibility
in data-intensive clusters,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 43, no. 4, pp. 231–242, Sep. 2013.

[18] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and
S. Sankar, ‘‘Row-diagonal parity for double disk failure correction,’’ in
Proc. 3rd USENIX Conf. File Storage Technol., San Francisco, CA, USA,
2004, pp. 1–14.

[19] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
‘‘Network coding for distributed storage systems,’’ in Proc. 26th IEEE Int.
Conf. Comput. Commun. (INFOCOM), May 2007, pp. 2000–2008.

[20] Drew and Arash. Celebrating Half a Billion Users. Accessed:
Jul. 23, 2020. [Online]. Available: https://blog.dropbox.com/topics/
company/500-million/

[21] D. J. Ellard, ‘‘Trace-based analyses and optimizations for network storage
servers,’’ Tech. Rep., 2004.

[22] Y. Fu and J. Shu, ‘‘D-code: An efficient RAID-6 code to optimize I/O loads
and read performance,’’ inProc. IEEE Int. Parallel Distrib. Process. Symp.,
May 2015, pp. 603–612.

[23] S. Ghemawat, H. Gobioff, and S.-T. Leung, ‘‘The Google file system,’’ in
Proc. 19th ACM Symp. Oper. Syst. Princ. (SOSP), 2003, pp. 29–43.

[24] L. Hellerstein, G. A. Gibson, R. M. Karp, R. H. Katz, and D. A. Patterson,
‘‘Coding techniques for handling failures in large disk arrays,’’ Algorith-
mica, vol. 12, nos. 2–3, pp. 182–208, Sep. 1994.

[25] Y. Han, H.-T. Pai, R. Zheng, and P. K. Varshney, ‘‘Update-efficient
error-correcting product-matrix codes,’’ 2013, arXiv:1301.4620. [Online].
Available: http://arxiv.org/abs/1301.4620

[26] Y. S. Han, H.-T. Pai, R. Zheng, and P. K. Varshney, ‘‘Update-efficient
regenerating codes with minimum per-node storage,’’ in Proc. IEEE Int.
Symp. Inf. Theory, Jul. 2013, pp. 1436–1440.

[27] C. Huang, J. Li, and M. Chen, ‘‘On optimizing XOR-based codes for
fault-tolerant storage applications,’’ in Proc. IEEE Inf. Theory Workshop,
Sep. 2007, pp. 218–223.

[28] C. Huang, H. Simitci, Y. Xu, A. W. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, ‘‘Erasure coding inwindows azure storage,’’ inProc. USENIX
Annu. Tech. Conf., 2012, p. 2.

[29] C. Huang and L. Xu, ‘‘STAR : An efficient coding scheme for correct-
ing triple storage node failures,’’ IEEE Trans. Comput., vol. 57, no. 7,
pp. 889–901, Jul. 2008.

[30] C. Jin, D. Feng, H. Jiang, and L. Tian, ‘‘RAID6L: A log-assisted RAID6
storage architecture with improvedwrite performance,’’ inProc. IEEE 27th
Symp. Mass Storage Syst. Technol. (MSST), May 2011, pp. 1–6.

[31] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and
B. Zhao, ‘‘OceanStore: An architecture for global-scale persistent stor-
age,’’ ACM SIGARCH Comput. Archit. News, vol. 28, no. 5, pp. 190–201,
Dec. 2000.

[32] D. Le, H. Huang, and H. Wang, ‘‘Understanding performance implications
of nested file systems in a virtualized environment,’’ in Proc. FAST, 2012,
p. 8.

[33] J. Li, S. Yang, X. Wang, X. Xue, and B. Li, ‘‘Tree-structured data regen-
eration with network coding in distributed storage systems,’’ in Proc. 17th
Int. Workshop Qual. Service, Jul. 2009, pp. 1–9.

[34] W. Litwin and T. Schwarz, ‘‘LH∗RS: A high-availability scalable dis-
tributed data structure using reed solomon codes,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2000, pp. 237–248.

[35] J. Menon, ‘‘A performance comparison of RAID-5 and log-structured
arrays,’’ in Proc. 4th IEEE Int. Symp. High Perform. Distrib. Comput.,
1995, pp. 167–178.

[36] R. Nachiappan, B. Javadi, R. N. Calheiros, and K. M. Matawie, ‘‘Cloud
storage reliability for big data applications: A state of the art survey,’’
J. Netw. Comput. Appl., vol. 97, pp. 35–47, Nov. 2017.

[37] D. Narayanan, A. Donnelly, and A. Rowstron, ‘‘Write off-loading: Practi-
cal powermanagement for enterprise storage,’’ACMTrans. Storage, vol. 4,
no. 3, p. 10, 2008.

[38] M. Ovsiannikov, S. Rus, D. Reeves, P. Sutter, S. Rao, and J. Kelly,
‘‘The quantcast file system,’’ Proc. VLDB Endowment, vol. 6, no. 11,
pp. 1092–1101, Aug. 2013.

[39] X. Pei, Y. Wang, X. Ma, and F. Xu, ‘‘T-update: A tree-structured update
scheme with top-down transmission in erasure-coded systems,’’ in Proc.
35th Annu. IEEE Int. Conf. Comput. Commun. (INFOCOM), Apr. 2016,
pp. 1–9.

[40] J. S. Plank, ‘‘The raid-6 liberation code,’’ Int. J. High Perform. Comput.
Appl., vol. 23, no. 3, pp. 242–251, 2009.

[41] J. S. Plank, S. Simmerman, and C. D. Schuman, ‘‘Jerasure: A library in
C/C++ facilitating erasure coding for storage applications-version 1.2,’’
Univ. Tennessee, Knoxville, TN, USA, Tech. Rep. CS-08-627, 2008,
vol. 23.

[42] L. X. James S. Plank, ‘‘Optimizing cauchy Reed–Solomon codes for fault-
tolerant network storage applications,’’ in Proc. 5th IEEE Int. Symp. Netw.
Comput. Appl. (NCA), Jul. 2006, pp. 173–180.

[43] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and K. Ramchan-
dran, ‘‘A solution to the network challenges of data recovery in erasure-
coded distributed storage systems: A study on the facebook warehouse
cluster,’’ in Proc. 5th USENIX Workshop Hot Topics Storage File Syst.
(HotStorage), 2013, pp. 1–5.

[44] K. Rashmi, N. B. Shah, D. Gu, H. Kuang, D. Borthakur, and
K. Ramchandran, ‘‘A,’’ hitchhiker’s" guide to fast and efficient data recon-
struction in erasure-coded data centers,’’ in Proc. 2014 ACM Conf. SIG-
COMM, pp. 331–342, 2014.

[45] A. Singh Rawat, S. Vishwanath, A. Bhowmick, and E. Soljanin, ‘‘Update
efficient codes for distributed storage,’’ in Proc. IEEE Int. Symp. Inf.
Theory Proc., Jul. 2011, pp. 1457–1461.

[46] I. S. Reed and G. Solomon, ‘‘Polynomial codes over certain finite fields,’’
J. Soc. Ind. Appl. Math., vol. 8, no. 2, pp. 300–304, Jun. 1960.

[47] R. M. Roth and A. Lempel, ‘‘On MDS codes via cauchy matrices,’’ IEEE
Trans. Inf. Theory, vol. 35, no. 6, pp. 1314–1319, Nov. 1989.

[48] B. Schroeder and G. A. Gibson, ‘‘Disk failures in the real world:What does
an mttf of 1, 000, 000 hours mean to you?’’ in Proc. FAST, vol. 7, 2007,
pp. 1–16.

[49] J. Shen, J. Gu, Y. Zhou, and X.Wang, ‘‘Cloud-of-Clouds storagemade effi-
cient: A pipeline-based approach,’’ in Proc. IEEE Int. Conf. Web Services
(ICWS), Jun. 2016, pp. 724–727.

[50] J. Shen, K. Zhang, J. Gu, Y. Zhou, and X. Wang, ‘‘Efficient scheduling
for multi-block updates in erasure coding based storage systems,’’ IEEE
Trans. Comput., vol. 67, no. 4, pp. 573–581, Apr. 2018.

[51] Z. Shen and P. P. C. Lee, ‘‘Cross-rack-aware updates in erasure-coded data
centers,’’ in Proc. 47th Int. Conf. Parallel Process., Aug. 2018, p. 80.

[52] Z. Shen, X. Li, and P. P. C. Lee, ‘‘Fast predictive repair in erasure-coded
storage,’’ in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw.
(DSN), Jun. 2019, pp. 556–567.

[53] Statista. Number of Consumer Cloud-Based Service Users Worldwide
in 2013 and 2018. Accessed: Jul. 23, 2020. [Online]. Available:
https://www.statista.com/statistics/321215/global-consumer-cloud-
computing-users/

VOLUME 8, 2020 227997

Y. Xiao et al.: Erasure Coding-Oriented DU for Cloud Storage

[54] D. Stodolsky, G. Gibson, and M. Holland, ‘‘Parity logging overcoming the
small write problem in redundant disk arrays,’’ ACM SIGARCH Comput.
Archit. News, vol. 21, no. 2, pp. 64–75, May 1993.

[55] M. W. Storer, K. M. Greenan, E. L. Miller, and K. Voruganti, ‘‘Pergamum:
Replacing tapewith energy efficient, reliable, disk-based archival storage,’’
in Proc. 6th USENIX Conf. File Storage Technol., 2008, p. 1.

[56] A. Thomasian, ‘‘Reconstruct versus read-modify writes in RAID,’’ Inf.
Process. Lett., vol. 93, no. 4, pp. 163–168, Feb. 2005.

[57] R. Verma, A. A. Mendez, S. Park, S. S. Mannarswamy, T. P. Kelly, and
C. B. Morrey, III, ‘‘Failure-atomic updates of application data in a Linux
file system,’’ in Proc. 13th USENIX Conf. File Storage Technol. (FAST),
2015, pp. 203–211.

[58] F. Wang, Y. Tang, Y. Xie, and X. Tang, ‘‘XORInc: Optimizing data
repair and update for erasure-coded systems with XOR-based in-network
computation,’’ in Proc. 35th Symp. Mass Storage Syst. Technol. (MSST),
May 2019, pp. 244–256.

[59] Y.Wang, X. Pei, X.Ma, and F. Xu, ‘‘Ta-update: An adaptive update scheme
with tree-structured transmission in erasure-coded storage systems,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 8, pp. 1893–1906, Jun. 2017.

[60] Y. Wang, X. Yin, and X. Wang, ‘‘MDR codes: A new class of RAID-6
codeswith optimal rebuilding and encoding,’’ IEEE J. Sel. Areas Commun.,
vol. 32, no. 5, pp. 1008–1018, May 2014.

[61] Z. Wilcox-O’Hearn and B. Warner, ‘‘Tahoe: The least-authority filesys-
tem,’’ in Proc. 4th ACM Int. Workshop Storage Secur. Survivability, 2008,
pp. 21–26.

[62] X. Xie, C. Wu, J. Gu, H. Qiu, J. Li, M. Guo, X. He, Y. Dong, and Y. Zhao,
‘‘AZ-code: An efficient availability zone level erasure code to provide high
fault tolerance in cloud storage systems,’’ inProc. 35th Symp.Mass Storage
Syst. Technol. (MSST), May 2019, pp. 230–243.

[63] F. Zhang, J. Huang, and C. Xie, ‘‘Two efficient partial-updating schemes
for erasure-coded storage clusters,’’ in Proc. IEEE 7th Int. Conf. Netw.,
Archit., Storage, Jun. 2012, pp. 21–30.

[64] T. Zhou and C. Tian, ‘‘Fast erasure coding for data storage: A comprehen-
sive study of the acceleration techniques,’’ ACM Trans. Storage, vol. 16,
no. 1, pp. 1–24, Apr. 2020.

YIFEI XIAO was born in Chengdu, Sichuan,
China, in 1989. He received the B.S. and M.S.
degrees in computer science and technology from
Sichuan University, Chengdu, in 2012 and 2015,
respectively. He is currently pursuing the Ph.D.
degree in software engineering with the University
of Electronic Science and Technology of China
(UESTC), China.

From 2015 to 2019, he was an Engineer with
the School of Computer Science and Engineering,

UESTC. His research interests include IaaS in cloud computing and erasure
coding in data storage.

SHIJIE ZHOU received the Ph.D. degree in com-
puter science and technology from the University
of Electronic Science and Technology of China
(UESTC), in 2004. He is currently a Professor with
the School of Information and Software Engineer-
ing, UESTC. His research interests include com-
munication and security in computer networks,
peer-to-peer networks, sensor networks, cloud
security, and big data.

LINPENG ZHONG was born in Chengdu,
Sichuan, China, in 1988. He received the B.S. and
M.S. degrees in information and communication
engineering from the University of Electronic Sci-
ence and Technology of China (UESTC), China,
in 2010 and 2013, respectively, where he is cur-
rently pursuing the Ph.D. degree in information
and communication engineering.

From 2016 to 2019, he was a Lecturer with the
School of Information and Software Engineering,

UESTC. His research interests include mobile computing and speech signal
processing.

227998 VOLUME 8, 2020

