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ABSTRACT Recognizing normal and anomalous events in long and complex videos with multiple
sub-activities has received considerable attention in recent years. This task is more challenging than
traditional action recognition in short and relatively homogeneous video clips. Other than the difficulty in
recognizing activities in long videos, one other challenge is the varying activity rhythms. The rhythm of
sub-actions in an activity can differ in nature and can pose additional challenges that affect the performance
of activity recognition methods. In this article, five video activity recognition methods were evaluated using
two publicly available video datasets, Breakfast and VIRAT, which consist of long and complex videos.
Extensive experiments and analyses showed that among these methods, VideoGraph, was found to perform
distinctly better than the other investigated methods while maintaining high accuracy even if the test videos
were exposed to severe rhythm changes. The results indicated that VideoGraph is less sensitive to varying
rhythms in contrast to other investigated methods. By changing some of the architecture parameters, we also
observed performance improvements in VideoGraph.

INDEX TERMS Activity recognition, human action recognition, varying rhythm, event recognition, video,
surveillance.

I. INTRODUCTION
There is an emerging interest in automating human activ-
ity recognition using intelligent systems. This growing field
has a wide range of applications such as human–computer
interaction and identity detection [1], [2], surveillance and
home monitoring [3]–[5], healthcare [6], [7], elderly care
[8], [9], and traffic monitoring [10] and video summarization
[11], [12]. One of the easiest acquired input data that can
be used for activity recognition are color (RGB) videos
captured by cameras. Recognizing activities in videos thus
has received significant attention in recent years. The
works in this emerging field mostly consist of recognizing
human actions using datasets like UCF101 [13], KTH [14],
HMDB51 [15], Kinetics [16]. These datasets consist of rel-
atively short and homogeneous video clips, which are gen-
erally well-segmented and contain only one action event
in which human actions take few seconds to unfold [17].
As an example in [18], the authors used UCF101 and
HMDB51 datasets for demonstrating their two-stream
3-D-convNet fusion pipeline, which can recognize human
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actions in videos of arbitrary size and length using multi-
ple features. In [19], UCF101 and HMDB51 datasets were
used and saliency-aware three-dimensional (3-D) CNN with
LSTM is introduced for video action recognition. However,
it is highly likely that some of these methods using datasets
which consist of only short homogenous video clips could
face challenges when it comes to recognizing normal and
anomalous events in datasets that consist of long and complex
videos with multiple sub-actions in it such as Breakfast [20]
and VIRAT [21].

Graph-based methods have also found their use for video
activity recognition. In [22], the authors proposed a semi-
supervised annotation approach by learning an optimized
graph from multi-cues (i.e., partial tags and multiple fea-
tures). There are some other graph-based methods which
utilize the sub-action level annotations for human activity
recognition in long and complex video datasets [23]–[30].
However, finding datasets with sub-action annotations is not
easy and not very practical. Other than the difficulty in recog-
nizing activities in long videos, one other essential challenge
is the varying activity rhythms. The rhythm of sub-actions in
an activity can differ in nature. As an example, considering
‘‘getting into a car’’ activity in the VIRAT dataset, one can
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open the door and get in the car immediately, or open the
door then take some time before getting in the car. Even
though these two sets of actions are both categorized with
the same label, their temporal rhythms differ considerably.
Varying rhythm of actions in real videos may arise from at
least two sources. First, the rhythm of sub-activities in an
event can differ in nature such as the different rhythms of
getting in a car. Second, the rhythm issue may occur due to
non-uniform or different sampling rates between the training
and testing stages of the applied recognitionmethod. Ignoring
varying rhythms may seriously affect the activity recognition
performance. It is quite likely that an event recognition algo-
rithm may fail to accurately classify the activity when trained
with one rhythm but tested with another rhythm.

The objective of this article is to investigate the perfor-
mance of video recognition methods which do not use any
sub-action level annotations for long duration and complex
videos that are captured with stationary cameras and also
to examine the recognition sensitivity of these methods to
varying rhythms. Five video activity recognition methods
were evaluated using the RGB color videos of two challeng-
ing public domain video datasets. These are Breakfast [20]
and VIRAT 2.0 dataset [21], which are prepared by Brown
University and DARPA, respectively. To simulate varying
rhythms in these videos, we manipulated the original test
videos in these datasets in three different ways and exam-
ined the sensitivity of the trained models with these methods
(which were trained using the original rhythm videos in the
training set) on the manipulated varying rhythm test videos.

Two of the investigated video activity recognition meth-
ods are Convolutional Neural Network - Long Short-Term
Memory (CNN-LSTM) of which its source codes were
found from [31] and Long Term Recurrent Convolutional
Networks (LRCN) [32]. These two methods are consid-
ered as benchmark methods. The third method is CNN-
IndRNN method [33], or IndRNN in short, which consists
of a two-stage, end-to-end framework and is inspired in part
by how humans identify events with varying rhythms. In the
first stage, the most significant frames are selected while
the second stage recognizes the event using the selected
frames. The fourth method is called CNN-SkipRNN+ [33],
or SkipRNN+ in short, which uses the same framework of
IndRNN.However, SkipRNN+ has advantages over IndRNN
by alleviating the gradient vanishing problem that occurs
because of the many RNN (Recurrent Neural Network) layers
used in the frame selection phase of the framework. Video-
Graph [34] is the fifth and the last method. VideoGraph is
a graph-based method in which the graph nodes are fully
inferred from data and it is also extensible to datasets with-
out node-level annotations. Similar to SkipRNN+ and other
investigated methods, it also does not need annotations in
sub-action level to train a model. VideoGraph learns an undi-
rected graph from the video dataset. The nodes in the formed
graph represent the key latent concepts (or the so-called
sub-actions) that the human activity is composed of. The
edges in the graph are considered to represent the temporal

relationship between the latent concepts. VideoGraph is noted
to model human activities for up-to thirty-minute videos [34].
It not only learns the graph nodes without any need for node-
level annotation but also learns the relationships between
graph nodes. The temporal structure of long-range human
activities are represented via the constructed graph which
is another interesting attribute of VideoGraph that can be
utilized for visualization and video understanding. IndRNN,
SkipRNN and VideoGraph are included in this work since
these three methods were used with long and complex videos
in some past works [33], [34].

In our results, the recognition results of VideoGraph were
found to be superior to the other investigated methods reach-
ing to close to 60% in the Breakfast dataset (Split-4), 92%
for Breakfast 3-grouped class dataset, 92.5% accuracy in the
VIRAT 4-event dataset, and over 62% in the VIRAT 6-event
dataset. Among the five investigated methods, the varying
rhythm sensitivity analysis investigations were conducted for
IndRNN, SkipRNN+ and VideoGraph methods. The two
conventional methods, CNN-LSTM and LRCN were applied
to the original rhythm (R0) videos only. Since these two
conventional methods had relatively lower recognition per-
formance in the original rhythm (R0) case in the investigated
datasets, no further investigation was conducted for the three
varying rhythms. The sensitivity to varying rhythm results
indicated that VideoGraph maintained its high recognition
accuracy with varying rhythms. Some additional investiga-
tions with VideoGraph on the Breakfast dataset by varying
some of the design parameters in its architecture also showed
some slight performance improvements. Other than superior
recognition results, VideoGraph’s representation of activities
via constructed graphs is demonstrated to bring significant
value to the overall video understanding and activity recogni-
tion analyses.

The most significant novelty of this article is providing
a comprehensive evaluation of five video recognition algo-
rithms with respect to their sensitivity to varying rhythms
when long and complex videos are used. It is our thinking that
in the evaluation of activity recognition methods, assessing
their robustness to varying rhythms is an important measure
which needs to be taken into account. The contributions of
this article are as follows:
• We provided a comprehensive evaluation of five video
activity recognition methods using two highly challeng-
ing activity recognition datasets with long and complex
videos.

• We assessed the sensitivity of three of these methods to
varying rhythms.

• We demonstrated that if similar activities are grouped in
Breakfast dataset, the recognition performances can be
improved for the grouped activity classes.

• We showed that by varying some of VideoGraph’s
design parameters, some performance improvements
can be observed.

Our paper is organized as follows. Section 2 provides
technical information about the investigated video activity
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TABLE 1. Breakfast dataset main events and the number of videos for
each event.

FIGURE 1. Sample images from the Breakfast Dataset.

recognition methods and the datasets used in our experi-
ments. Section 3 contains the performance evaluations for the
original videos and the sensitivity to varying rhythm results.
Section 4 contains some discussions about the results. Finally,
Section 5 concludes the paper with some remarks.

II. DATASETS AND METHODS
A. DATASETS
In the conducted analyses with the five video activity recogni-
tion methods, we used the RGB color images of the Breakfast
and VIRAT dataset. Information about these datasets and data
subsets formed from them are provided in the following.

1) BREAKFAST DATASET
The Breakfast dataset [20] was assembled by Serre Lab of
Brown University. The videos in this dataset capture partici-
pants preparing breakfast food in many different kitchens at
varying camera angles. There are 52 participants where each
participant is denoted by P. Each participant was filmed in
one of 18 different kitchens and with up to five different cam-
eras from different angles and lighting conditions. The videos
from these cameras film up to 10 different activities including
making coffee, pouring orange juice, making chocolate milk,
making tea, preparing a bowl of cereal, frying eggs, cooking
pancakes, preparing a fruit salad, making a sandwich, and
cooking scrambled eggs. Each video in the dataset is down
sampled to 320× 240 with a frame rate of 15 fps. This dataset
was designed to be challenging in that it captured real world
conditions with diverse range of lighting and environment.
Table 1 shows the Breakfast dataset main events and the
number of videos for each event. Fig. 1 shows sample image
frames from the Breakfast dataset.

TABLE 2. Four splits in the breakfast dataset.

TABLE 3. Number of events in the three-group breakfast dataset.

There are four different splits in the Breakfast dataset for
forming the training and testing datasets [20]. Table 2 shows
the distributions of the videos which belong to the 52 partic-
ipants (P) (P03-P54) in these four splits.

In the Breakfast dataset investigations, we considered
Split-4. One interesting observation from the resultant con-
fusion matrices was that the breakfast activities that are sim-
ilar to each other like {coffee} and {milk}, or {friedegg}
and {scrambled egg} were considerably confused among
each other by the classifiers. We considered grouping these
10 breakfast activities into three major classes and formed
a three-class version of the breakfast dataset. In addition to
using the original 10-event Breakfast dataset, we also used
this three-class Breakfast dataset version, and trained mod-
els with the five activity recognition methods to examine
the recognition accuracy after grouping of similar activities.
Among the three groups, the set of five activities, {coffee,
milk, tea, juice, cereals} forms the first group. The second
group consists of {friedegg, pancake, scrambledegg}. Finally,
the third group consists of {salad, sandwich}. Table 3 shows
the number of events in the three-group Breakfast dataset.
In both Breakfast datasets (10-class and 3-grouped class) we
used 65% of videos for training and 35% of videos for testing.

2) VIRAT DATASET
The VIRAT 2.0 dataset [21] is a publicly available video
dataset supported by DARPA. The videos in this dataset
consist of surveillance footage capturing public areas such
as parking lots and college campuses. The VIRAT 2.0 dataset
consists of high-definition videos and the original size of the
image frames in these videos are 1920 × 1080 in size. Each
video contains multiple activities with accompanied labels
and bounding boxes. The classified activities in this dataset
include: Loading an object, Unloading an object, Opening
trunk, Closing trunk, Getting into vehicle, Getting out of a
vehicle, Person gesturing, Person carrying an object, Person
running, Person entering facility, and Person exiting a facility.
Table 4 shows these events and the number of videos for
each event. Some of these events, such as person loading an
object to a vehicle have very few videos indicating a data
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FIGURE 2. Sample images from the VIRAT Dataset.

TABLE 4. VIRAT 2.0 dataset main events and the number of videos for
each event.

imbalance problemwhich poses challenges to applied activity
recognition methods. A few image frames for the first six
events in VIRAT dataset can be seen in Fig. 2.

We did not use all 13-events of the VIRAT dataset in
this work and instead used subsets of it. The reason for this
is that the number of videos for each event significantly
varies in the VIRAT dataset with some of the events not
having enough videos for effective model training as can be
seen from Table 4. Because including all 13 events would

TABLE 5. Number of events in the small four-event subset of VIRAT
2.0 dataset.

TABLE 6. VIRAT 6-event dataset and the number of videos for each event.

have resulted in additional challenges such as a significant
data imbalance problem with not enough videos for some
events, we formed two smaller subsets of the original VIRAT
dataset for our investigations. The first subset contains four
events with close number of videos for each included event.
The four classes in this four-event subset can be seen in
Table 5. In the VIRAT dataset annotation files, for all the
videos, event ids, event types, start and end frames of the
events are provided together with the bounding box loca-
tions of the event within these annotation files. Videos in
the VIRAT 2.0 database are cropped with respect to the
event annotation files. Using the start and end frames in
the event annotation files for the four events of interest,
these image frames are considered as videos and used for
activity recognition. For each of the four VIRAT events, 10
videos are randomly selected for validation purposes while
the remaining videos for that event are used for training a
model. That is, in the formed subset, there are 40 videos in
the validation dataset (10 videos for each of the four events)
and there are 457 videos for the four events in the training set
(total 497 videos for four events). The high-resolution video
image frames are cropped with respect to the bounding box
regions.

The second VIRAT subset used in the investigations con-
sists of six events which relate to all six human-vehicle
interactions as can be seen in Table 6. This 6-event VIRAT
data subset is more challenging than the VIRAT 4-event data
subset since the VIRAT 6-event data subset is imbalanced
and some activities do not have enough number of videos
(such as Event-1, Event-3 and Event-4). This poses additional
challenges for the video activity recognition methods. 90%
(train)-10% (test) random split is used with this data subset
in our investigations.

B. METHODS
1) CNN-LSTM
CNN-LSTM approach [33] first extracts features from the
image frames of the video with a Convolutional Neural Net-
work (CNN) and forms features sequences. These feature
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FIGURE 3. SkipRNN+ architecture [33].

FIGURE 4. VideoGraph block diagram [34].

sequences are passed to a separate LSTM, which is a type
of a Recursive Neural Network (RNN) with some additional
units [35].

2) LRCN
LRCN makes use of a pretrained CNN in conjunction with a
LSTM unit [32]. During the training of a LRCN model, each
training frame in a video is individually passed through the
CNN where a vector of features is created. These features are
then passed on to the LSTM unit. A prediction is generated
from the LSTM unit and its state is also passed to the LSTM
unit in the next frame until all frames are processed in that
video. The predictions across all frames are averaged to get a
final prediction for that particular video.

3) CNN-INDEPENDENT RNN (INDRNN)
IndRNN [33] is inspired in part by how humans identify
events with varying rhythms by quickly catching frames con-
tributing most to a specific event. The CNN part consists
of a VGG16 network and is used to extract visual feature
per frame. The RNN part consists of two layers. The most
significant frames are selected in the first RNN layer via
the use of a regularization term which is included when
computing the final loss of the model. The second RNN layer
recognizes the event using the selected frames and a cross-
entropy based loss is utilized in the recognition part. The
sum of regularization term controlled by a parameter and
cross entropy loss becomes the final loss of the model. For
the classification RNN, Gated Recurrent Units (GRU) [36] is
used. In this framework, only activity-level labels are needed
in the training stage with no need of sub-action labels.

4) CNN-SKIP RNN (SKIPRNN+)
The details of SkipRNN+ can be found in [33]. In IndRNN
method, because the input dimension to the IndRNN layer is
high (4096), the output value in the stacked IndRNN layers
increase by orders of magnitude resulting in the gradient
vanishing problem [33]. In SkipRNN+ method, to miti-
gate this problem, an improved IndRNN structure is used
by skipping state updates to shorten the computation. This
idea is originally inspired by [37] which implements skip
operation on conventional RNN. Unlike [16], SkipRNN+
structure uses Hadamard’s product [38] when computing the
gate value. This way the gradient of the SkipRNN+ depends
on the weight value instead of the weight matrix product
alleviating the gradient vanishing problem. An illustration of
SkipRNN+’s architecture is shown in Fig. 3.

5) VIDEOGRAPH
Graph methods, which learn structured representations from
videos, are being investigated for human activity recognition
in the past [23]–[25]. Even though these graph based methods
learn structured representations from videos, they require the
graph nodes and/or edges to be known in advance which
limits their practical use since they cannot be used when
node or frame-level annotations are not available. In contrast,
VideoGraph [34] is a graph-based method in which the graph
nodes are fully inferred from data and it is extensible to
datasets without node-level annotations. The block diagram
of VideoGraph can be seen in Fig. 4. The video is first
sampled into T segments and each segment, si, contains
8 consecutive frames. Using Two-Stream Inflated 3D Con-
vNet (I3D), which is a 3D CNN model [39], features are
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extracted from si, where they are denoted by xi. An undirected
graph with N nodes corresponds to key unit actions in the
video whereas the edges of the graph provides the temporal
relationship between theseN nodes. The node attention block
in VideoGraph learns the latent concept representation. For
the initialization of these latent features, the features maps of
the last convolutional layer of the I3D backbone are clustered
and the resultant centroids are used for initialization. The
graph embedding layer learns the graph edges and finalizes
the graph structure. VideoGraph extracts two types of rela-
tionships and represents them via graph edges. There are the
timewise edges indicating how the nodes transition over time
and the node wise edges providing information about the
relationships between nodes. The activation output of the first
graph embedding layer is used to construct the final graph.
Among the two graph embedding layers in VideoGraph,
the second one is used for activity prediction. Following a
set of pooling operations to the output of the second graph
embedding layer both in time and node, the resultant output
feature is feed-forwarded to a classifier to arrive at the activity
prediction of the video.

III. RESULTS
In addition to applying the investigated methods to the videos
with the original rhythm (R0), we also demonstrated the
impact of varying rhythm via three other rhythms (R1, R2 and
R3) [33]. The testing video sequences have the same sam-
pling rate as the training inputs in the original rhythm (R0).
The other three varying rhythm scenarios are designed with
different kinds of sampling rates. To prepare the three varying
rhythms, the number of frames of each testing video is first
divided into three equal intervals and different sampling rates
are applied to each interval to form a new testing sequence.
To generate the first rhythm (R1), the first and the third
intervals are subsampled with every two and five frames
respectively to make those two interval periods sparser, while
keeping the rhythm intact for the middle interval. The testing
inputs of the second rhythm (R2) are similar to R1 except
the first and third intervals are subsampled every five and
two frames, respectively. As can be noticed this is the reverse
of R1. For the last rhythm (R3), half length of the testing
video is randomly sampled. All five methods were applied to
the original rhythm (R0) videos whereas the varying rhythm
sensitivity investigation was conducted only for three meth-
ods which are IndRNN, SkipRNN+ and VideoGraph. This is
because, overall, the other two methods, LSTM and LRCN,
had relatively lower recognition performance in the original
rhythm (R0) case and no further investigation was considered
for the three varying rhythms.

For performance comparison of the video activity recogni-
tion methods, we used the overall accuracy (OA) and Kappa
metric [40] measures. Other than these, confusion matrices
are also generated to examine which of the activities are
generally confused with each other.

In the following, for each dataset and their subsets, we first
provide a table that shows the overall accuracy (OA) and

FIGURE 5. Breakfast 10-class dataset overall accuracy comparisons for
four rhythms.

Kappa values for the five methods with four rhythms. A bar
plot showing the overall accuracies of these methods with
four rhythms is provided next. The resultant confusion matri-
ces that belong to the highest overall accuracy for each dataset
are also included. The constructed graphs with VideoGraph
for the activities in the Breakfast-10 event, VIRAT 4-event
and VIRAT 6-event datasets are presented with some brief
discussion as well.

A. BREAKFAST 10-EVENT RESULTS
Table 7 shows the 10-event Breakfast dataset results (Split-
4) for the original rhythm (R0) and three different rhythms
(R1, R2, R3) with five activity recognition methods. For
VideoGraph, we used the default ‘64 segments/8 frames’
parameter setting. Figure 5 shows the overall accuracy values
for the five methods in a bar plot. From these results, it can
be seen that VideoGraph significantly outperforms all other
methods and the performance gap between VideoGraph and
the next best method is quite wide. VideoGraph is observed to
performwell with varying rhythms as well. VideoGraphman-
ages to maintain its original rhythm recognition performance
for the varying rhythms and its overall accuracy variation
is found to be relatively less in comparison to other three
methods. The confusion matrix of the best performing case of
VideoGraph is shown in Table 8. From the confusion matrix,
it can be observed that breakfast events similar to each other
like {cereals} and {milk}, or {fried egg} and {scrambled
egg} were confused with each other. Figure 6 shows con-
structed graphs with VideoGraph for three of the 10 events
in the Breakfast dataset. In each constructed graph for an
event, the nodes correspond to the latent concepts learned
by VideoGraph’s graph-attention block. If a node’s size is
big, it indicates that latent concept is dominant. The edges
in the graph emphasize the relationship between these latent
concepts represented in the form of nodes. It can be noticed
that the node sizes and edge formations are similar in fried egg
and scrambled egg events whereas the corresponding graphs
of these two events are quite different than the graphs of
cereals and milk. Yet, the graphs of cereals and milk also
show similarities to each other. We can see more confu-
sions among events when their graphs are similar to each
other. The graph representations in VideoGraph can thus add
significant value to the recognition and video interpretation
analyses.
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TABLE 7. Breakfast dataset (10-event) Split-4 results for the original rhythm (R0) and three different rhythms (R1, R2, R3).

TABLE 8. Confusion matrix for Breakfast dataset’s best overall accuracy in original rhythm (R0): VideoGraph, 55.49%.

FIGURE 6. Constructed graphs with VideoGraph for 10 breakfast events.

B. BREAKFAST 3-CLASS RESULTS
Figure 7 and Table 9 correspond to the three-class Breakfast
dataset results (Split-4) for the original rhythm (R0) and
three different rhythms (R1, R2, R3). The default setting of
‘64 segments/8 frames’ is used in VideoGraph. A similar per-
formance trend is observed and VideoGraph performs signif-
icantly better, reaching to an overall accuracy of∼92% in the

original rhythm (R0). We also included the confusion matrix
for VideoGraph with the original rhythm (R0) in Table 10.
The recognitions are also found to be extremely good with
VideoGraph for the three varying rhythms. Although this
can be considered as an imbalanced dataset, VideoGraph’s
performance reaching to ∼ 92 % overall accuracy is quite
significant.
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TABLE 9. Three-class Breakfast dataset Split-4 results for the original rhythm (R0) and three different rhythms (R1, R2, R3).

FIGURE 7. Three-class Breakfast dataset overall accuracy comparison
using bar charts.

TABLE 10. Confusion matrix for three-class Breakfast dataset best overall
accuracy in original rhythm (R0): VideoGraph, 91.93%.

FIGURE 8. VIRAT 4-event dataset overall accuracy comparison using bar
charts.

C. VIRAT 4-EVENT RESULTS
Figure 8 and Table 11 correspond to VIRAT 4-event dataset
results. The default parameter setting (64 segments/8 frames)
is used in VideoGraph. Similarly, VideoGraph performs
superior to other methods, reaching to an overall accuracy
of 92.5% in the original rhythm. The corresponding confu-
sionmatrix for the best VideoGraph case is shown in Table 12.
The recognitions are also found to be considerably well with
VideoGraph for the three varying rhythms. The constructed
graphs with VideoGraph for VIRAT 4-event dataset can be
seen in Figure 9. From Figure 9, it is interesting to observe
that the nodes in the graphs for ‘Getting in vehicle’ and ‘Get-
ting out vehicle’ events significantly differ from the graphs
of the two other events which are ‘Getting in facility’ and
‘Getting out facility’. That is, the differences between the
graphs of human-car and human-facility interaction events
can be clearly observed.

FIGURE 9. Constructed graphs with VideoGraph for all four events of
VIRAT-4 event dataset.

FIGURE 10. VIRAT 6-event dataset overall accuracy comparison using bar
charts.

D. VIRAT 6-EVENT RESULTS
Figure 10 and Table 13 correspond to the six-event VIRAT
dataset results. The default parameter setting of ‘64 seg-
ments/8 frames’ is used for VideoGraph. This is not only a
highly imbalanced dataset but also contains very small num-
ber of videos for some of the events. From the results, we can
see that VideoGraph performs better than others especially
in the original rhythm and reaches to an overall accuracy of
∼63%. The confusion matrix of the best performing case
(VideoGraph) is shown in Table 14. However, there is not
a wide performance gap between VideoGraph and the other
methods as was previously observed in the former three
datasets. It is thought that being an imbalanced dataset and
containing not enough number of videos for some of the
activities could be contributing to this result. In any event,
overall, VideoGraph still performs considerably better than
the others especially in the original rhythm. Figure 11 shows
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TABLE 11. VIRAT 4-Event Dataset results for the original rhythm (R0) and three different rhythms (R1, R2, R3).

FIGURE 11. Constructed graphs with VideoGraph for all six events in VIRAT-6 event dataset.

TABLE 12. Confusion matrix for VIRAT 4-Event dataset best overall
accuracy in original rhythm (R0): VideoGraph, 92.50%.

the constructed graphs for the six events in VIRAT-6-event
dataset.

E. CHANGING SEGMENT AND FRAME NUMBER
PARAMETERS IN VIDEOGRAPH
For VideoGraph, in addition to the default ‘64 seg-
ments/8 frames’ parameter setting, two other segment/frame
combinations are considered as well. This investiga-
tion was conducted using the Breakfast 10-event dataset.
Table 15 shows the resultant performance metrics for three
parameter combinations of VideoGraph including the default
setting of ‘64 segments and 8 frames’. It can be noticed
that when using ‘16 segments/32 frames’, relatively a higher
recognition accuracy is achieved in the original rhythm

and also in two of the three simulated varying rhythms.
Table 16 shows the confusion matrix for the ‘16 seg-
ments/32 frames’ case which provided the highest overall
accuracy in the original rhythm.

F. COMPUTATION TIME COMPARISON
The computation time comparison of the five investigated
methods using the Split-4 of the Breakfast 10-event dataset
can be seen in Table 17. The comparisons are with respect
to feature extraction time, training time and test times. The
computer platforms used for retrieving these times are also
provided.

IV. DISCUSSIONS
The investigations with Breakfast and VIRAT datasets
which contain long and complex videos clearly showed that
among the five investigated activity recognition methods,
VideoGraph performs significantly better than the oth-
ers. Especially in the 10-event Breakfast dataset, Video-
Graph’s classification performance is distinctively better
than SkipRNN+ (VideoGraph: 59.21% vs SkipRNN+:
24.8%). Similarly, in VIRAT-4 event dataset, the performance
gap between VideoGraph and SkipRNN+ is quite wide
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TABLE 13. VIRAT 6-Event dataset results for the original rhythm (R0) and three different rhythms (R1, R2, R3).

TABLE 14. Confusion matrix for VIRAT 6-event dataset’ best overall accuracy in original rhythm (R0): VideoGraph, 62.86%.

TABLE 15. Breakfast dataset (10-event) Split-4 results for the original rhythm (R0) and three different rhythms (R1, R2, R3) with different segment and
frame number combinations in VideoGraph.

TABLE 16. Confusion matrix for Breakfast dataset’s best overall accuracy in original rhythm (R0) using ‘16 segments/32 frames’: VideoGraph, 59.21%.

(VideoGraph: 92.5% vs SkipRNN+: 55.0%). The same per-
formance trend can be also observed in the other two datasets.
VideoGraph is also found to be less sensitive to varying
rhythms because it provided accuracy values close to the
accuracy value with the actual rhythm for all three vary-
ing rhythms. One other analysis with VideoGraph on the
10-event Breakfast dataset was to examine the recognition
performancewhen the segment and frame number parameters
are varied. We observed that some parameter combinations
provided better results than VideoGraph’s default parameter
setting and this showed that there could be more room to
further improve the accuracy values by varying these param-
eters and some other parameters such as kernel sizes used
in graph embedding layer in VideoGraph’s architecture. The
constructed graphs with VideoGraph demonstrated that these
graphs have the potential to add significant value to the

overall video understanding and activity recognition analyses
which could be further tapped into and exploited. The results
for the Breakfast-3-grouped class dataset also provided some
potential future investigation ideas with VideoGraph and
other classifiers in the sense that if a set of additional clas-
sifiers trained specifically for the activities within each of
the three groups are applied, this second layer of classifiers
could perhaps further boost VideoGraph’s performance for
the 10-event case via a potential two-step activity recogni-
tion framework (three-grouped class classification followed
by individual classifications for each group). Another future
investigation idea is to examine VideoGraph’s recognition
performance on video datasets that consist of videos with
varying image resolutions and various actors in the scene that
are captured with moving cameras such as the UCF-Crime
dataset [41].
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TABLE 17. Computation Time Comparison of the Investigated Methods
Using Breakfast dataset (10-event) Split-4.

V. CONCLUSION
Robustness to varying rhythms can be a discerning mea-
sure when comparing the performance of activity recognition
methods since the rhythm of sub-actions in an activity can
differ in nature and pose challenges for the activity recogni-
tion methods due to the fact not all rhythm variations can be
included in training dataset for model learning. This article
contained comprehensive investigations of five video activity
recognition methods with two datasets that consist of long
and complex videos in consideration of varying rhythms. The
results showed that among them, VideoGraph performs sig-
nificantly better than others and is found to be less sensitive to
varying rhythms since it provided accuracy values for vary-
ing rhythms close to the accuracy values observed with the
original rhythm. Having noted some performance improve-
ments after varying some of VideoGraph’s parameters also
indicated that there could be more room for improvement in
VideoGraph by searching optimal hyperparameters.
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