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ABSTRACT Retinal blood vessel segmentation plays an important part in the early diagnosis and treatment
of eye disease. It is a tool for ophthalmologists. Many diseases can be identified by examining manifestations
and images of blood vessels, including diabetic retinopathy, retinopathy of prematurity, age-related macular
degeneration, retinopathy due to hypertension, glaucoma and others. Early detection allows physicians to
provide patients with effective treatment, while in the opposite case, the late detection of retinal disease
can ultimately lead to blindness. One of the indices when examining the retina is an evaluation of blood
vessels based on tortuosity, i.e. the degree of curvature of blood vessels. This article presents a comprehensive
overview of all segmentation techniques for retinal blood vessel extraction from images taken with a fundus
camera in adults and older children or with a RetCam fundus camera in new-borns and younger children
over the last 10 years. An integral part of this review is a comprehensive overview with information on all
available public and private databases with retinal images. The review includes an evaluation of segmentation
techniques based on objectivization parameters, including information on all objectivization parameters used
in this article. As already mentioned, the degree of curvature of retinal blood vessels is used to classify
severity of blood vessels tortuosity. There is no uniform metric for determining tortuosity, but this review
presents a comprehensive overview of all metrics and calculations used to determine the degree of tortuosity
of retinal blood vessels.

INDEX TERMS Review, retinal blood vessels, fundus camera, RetCam, retinopathy of prematurity, diabetic

retinopathy.

I. INTRODUCTION

Retinal blood vessel segmentation is an important area in the
field of ophthalmology [1]-[3]. A patient’s retinal vasculature
can be analysed by extracting blood vessels from retinal
images. Prompt analysis allows physicians to make early
diagnoses, evaluate disease, suggest appropriate treatment,
and monitor disease progression [4]-[7]. Monitored dis-
eases include diabetic retinopathy [5], [8], [9] and retinopa-
thy of prematurity (ROP) [10], [11], while atherosclerotic
retinopathy [12], haemorrhages [12], [13], age-related macu-
lar degeneration (AMD) [14], glaucoma [15]-[17] and hyper-
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tension [15], [17] are also diagnosed in databases. Table 4
clearly lists the databases used with established diagnoses.

The tortuosity or curvature of retinal blood vessels can
be examined. It is one of the indicators of manifested eye
disease. Blood vessel (vascular) tortuosity is associated with
diabetic retinopathy, which affects people with diabetes mel-
litus or retinopathy of prematurity, a disease that affects pre-
mature infants [5], [10], [11]. This disease occurs due to the
abnormal development of blood vessels. Ophthalmologists
can determine the degree of these diseases or diagnose plus
forms based on the degree of tortuosity. Left untreated, the
disease can lead to blindness [18]-[20].

Tortuosity can also be a secondary symptom in, for exam-
ple, people with high blood pressure, atherosclerosis and
other diseases. Nevertheless, it is a common manifestation of
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age and small aberrations in blood vessel curvature occur in
both humans and animals [21]. There is no gold standard for
measuring the tortuosity of blood vessels that could be under-
stood as the index for determining the degree of blood vessel
curvature. To date, physicians evaluate tortuosity visually by
comparing multiple images taken over time or manually using
a contour gauge [11], [20].

Given the significance and clinical importance of retinal
blood vessel tortuosity and the potential of image segmenta-
tion methods, modern trends are focusing on the development
of fully automated methods that allow the selection of blood
vessels from the retinal background with the aim of creating
a mathematical model that can identify the vascular system
from other retinal components. This model has the potential
to calculate the geometric parameters of the vascular system
corresponding to the curvature of each element thereof. Such
parameters have the potential to quantify the degree of tortu-
osity as a parameter that permits the evaluation of the degree
of pathological changes to the vascular system on the basis
of abnormal curvature. Such systems are of extreme impor-
tance for clinical practice in the sense of automating manual
clinical procedures, which are thus refined and objectivised.
Programs for the semi-automatic measurement of tortuosity
using software such as ROPtool are being tested at some
workplaces [22].

This publication presents a comprehensive review of recent
scientific literature focusing on two essential aspects in the
development of systems for the clinical evaluation of tortu-
osity. The main topic of the publication is an overview and
analysis of recent methods for the segmentation of retinal
images in the context of identifying the vascular system and
subsequent analysis of mathematical models for the calcula-
tion of tortuosity.

The publication is structured as follows. Section II deals
with the structure of the review for blood vessels segmen-
tation and calculation of tortuosity. Period from 2010 to
2020, keywords (blood vessels segmentation, fundus camera
etc.) were important for selection articles. Databases Scopus,
Web of Science, Google Scholar etc. were searched. More
information about structure of review is in this section.

Section III contains information about the available retinal
databases used in articles. In this section were describe open
access databases and private databases with retinal images
taken by fundus camera. In the tables were shown name
of database, type of modality, disease, university/hospital.
Quantity of used databases in selected articles were graph-
ically summarized. Diagnosed diseases from databases were
graphically summarized. The most used databases were open
databases DRIVE and STARE.

Section IV describes the segmentation algorithms for
retinal blood vessel extraction divided into groups accord-
ing to the common principle of the segmentation method.
This chapter is further divided into subsections in which
each group is clearly described. Overview tables are cre-
ated in each subsection. These tables include authors with
references, year of publication, used dataset, specified used
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method and values of evaluation parameters (accuracy, speci-
ficity, sensitivity). The methods with the highest value
of accuracy (Acc) were highlighted in green for database
DRIVE and STARE in every subsection.

Subsection A represents methods based on region-based
deformable models. Subsection B represents methods based
on multi-scale segmentation. Subsection C represents seg-
mentation methods based on morphological operations. Sub-
section D includes methods based on adaptive thresholding.
Subsection E describes methods with tracking approaches.
Subsection F contains methods kernel-based algorithms
for segmentation retinal blood vessels. Subsection G is
divided into part supervised methods and methods based on
CNN. Subsection H contains unsupervised machine learn-
ing. Subsection 22 is overview subsection with evaluating of
described methods based on used evaluation parameter.

Section V describes the objectivization parameters used to
evaluate the effectivity of the algorithm. Parameters such as:
accuracy (Acc), specificity (Sp), sensitivity (Se), ROC curve,
AUC, MSE, MCC, DSC, PPV, F1 score, AMTR and FMTR
were described here based on our knowledge.

Section VI contains information about the mathemati-
cal calculations used to describe and calculate the tortuos-
ity or degree of blood vessel curvature in retinal images.
An overview table with authors, year, dataset, methods is also
included.

Il. STRUCTURE OF THE REVIEW

The Section II contains information about structure of the
review. The articles were used in time period from 2010 to
2020. For review of segmentation blood vessels were selected
articles based on keywords (retinal images, image segmenta-
tion, blood vessels, vasculature, fundus camera etc.) in the
first part of review. Keywords (tortuosity, curvature, blood
vessels, metrics, index etc.) were used for selection of arti-
cles in the second part of review calculation of blood vessel
tortuosity. Articles were searched in databases Scopus, Web
of Science, Google Scholar etc. More information is below in
the Section II.

This review presents an overview of segmentation methods
for retinal blood vessel extraction and metrics for the calcu-
lation of blood vessel tortuosity.

Articles and studies selected for this review date from
2010 to the 2020 in order to ensure the overview of seg-
mentation methods used for blood vessel segmentation is as
up to date as possible. When deciding whether to use arti-
cles, keywords such as retinal images, image segmentation,
blood vessels, vasculature, fundus camera, Retcam, diabetic
retinopathy, retinopathy of prematurity, supervised and unsu-
pervised machine learning, morphological operations, fuzzy,
multi- scale, were decisive.

The review of segmentation methods for blood vessel
extraction therefore focused solely on retinal images of adults
and children. Articles were selected from websites such as:
Scopus, Web of Science, Google Scholar, PubMed, Semantic
Scholar, IEEE Xplore.
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TABLE 1. Overview of articles selected for the review of the blood vessel
segmentation methods in retinal images.

Number of journals

Type of article with IF factor
Q1 35
Q2 21
Q3 5
Q4 2
Conference, symposium, workshop 52

TABLE 2. Overview of articles selected for the review of the metrics and
calculation of blood vessel tortuosity.

Number of journals

Type of article with IF factor
Ql 3
Q2 3
Q3 1
Q4 1
Conference, symposium, workshop 10

The text contains 115 articles from QI to Q4 journals,
but also conference articles, because based on set criteria,
this area is not sufficiently comprehensive and examined in
QI journals only. The composition of articles for this review
is shown in Table 1 below. Segmentation methods for blood
vessel extraction were divided into subsections based on
the principle of segmentation, i.e. region-based deformable
models, multi-scale segmentation, morphological opera-
tions, adaptive thresholding, tracking approaches, kernel-
based algorithms, supervised and unsupervised machine
learning.

This review also provides an overview of the available
public and private databases of retinal images used, includ-
ing the number of images in these databases and the cam-
era with which they were taken. It includes the name of
the organisations that participated in the creation of the
database or dataset. The review includes a chapter on the
objectivization parameters used in articles and studies to
determine the quality of the segmentation algorithm.

The following part of the review provides an overview of
metrics for the calculation of retinal blood vessel tortuos-
ity. Once again, this review includes articles from 2010 to
the present, in order to provide an up-to-date overview of
this area. When deciding whether to use articles, keywords
such as retinal images, tortuosity, curvature, blood vessels,
metrics, index, classification, calculation, evaluation, diabetic
retinopathy, retinopathy of prematurity, were decisive.

The review of different metrics of tortuosity or blood vessel
curvature focused on retinal images only, where tortuosity
was mainly examined for diabetic retinopathy or retinopathy
of prematurity (see Table 19). Articles were selected from
websites such as: Scopus, Web of Science, Google Scholar,
PubMed, Semantic Scholar, IEEE Xplore. A total of 18 arti-
cles that met the criteria were selected. Table 2 shows the
number of articles of the given type used by quartile.
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1Il. DATABASES OF RETINAL IMAGES

The Section IIT deals with open access (public) and private
databases of retinal images. The mostly used databases are
DRIVE and STARE. This section includes overview tables
with name of database, modality, university/hospital, dis-
eases. Databases contains pathological and physiologically
healthy images. The disease is classified for retinal images
for each database. The section includes graph with plotted
diseases from databases. The mostly classified diseases in
database is diabetic retinopathy. Databases have variable res-
olution, various diseases, captured by different fundus cam-
eras mostly in adults, across databases. More information is
below in the Section III.

Segmentation algorithms were applied to datasets from two
basic fundus camera modalities. This relates to a widely used
colour fundus camera for capturing retinal images in adults
and older children and a fundus camera called a RetCam3,
which is used to capture retinal images in premature infants
up to approx. 1 year of age [11] or RetCam 130 for younger
children [18].

A substantial part of the research carried out on reti-
nal blood vessel segmentation is applied to medical data
from open access (public) databases. These are most often
DRIVE [23] and STARE [12], which offer native images,
but also already segmented images to enable an evaluation
of the effectivity of the proposed algorithm. The advantage
of these databases is that they have a defined gold standard,
which is important for evaluating the effectivity of the algo-
rithm. These databases include, among other things, images
of the retina with diabetic retinopathy, haemorrhages, age-
related macular degeneration (AMD), glaucoma, neoplasms
and hypertension.

There is no open access database for examining the retinal
blood vessels of premature infants, who usually suffer from
retinopathy of prematurity (see Table 4). For this reason,
it is difficult to classify or evaluate the quality of proposed
segmentation algorithms in this area.

Table 3 provides an overview of open access (public) and
private databases, including the type of modality by which
the data was scanned. The table also contains the names of the
institutions that are the authors and original researchers of the
databases. Retinal images of patients were taken with fundus
cameras by Canon, TopCon, Zeiss, Optos, EasyScan SLO.
In new-borns, the retina was scanned using a RetCam3 or
RetCam130 fundus camera.

Table 4 provides an overview with more detailed infor-
mation about individual databases in terms of dataset size,
image resolution and classification of the types of disease in
the images.

A. OPEN ACCESS (PUBLIC) DATABASES

The open access DRIVE database and STARE database are
among the most widely used datasets for working with reti-
nal images (see Fig. 2). These datasets are popular due to
the good resolution of retinal fundus images. DRIVE has a
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TABLE 3. Overview of available open access and private databases with

retinal images.

Database Modality University/Hospital

DRIVE [23] Canon CRS5 non- A diabetic retinopathy screening
mydriatic 3CCD programme in the Netherlands

STARE [12] TopCon TRV-50 University of California and

ARIA [14,24]

Zeiss FF450+
fundus camera

Veterans Administration Medical
Center in San Diego, USA

St. Paul’s Eye Unit, Royal
Liverpool University Hospital
Trust and Department of
Ophthalmology, Clinical
Sciences, University of Liverpool,
Liverpool, UK

CHASEDB Top Noc TRV-50 Kingston University London
[25]
HREF [16] Canon CR-1 Pattern Recognition Lab (CS5),
fundus camera the Department of
Ophthalmology, Friedrich-
Alexander University Erlangen-
Nuremberg (Germany), and the
Brno University of Technology,
Faculty of Electrical Engineering
and Communication, Department
of Biomedical Engineering, Brno
(Czech Republic)
IMAGERET Fundus camera Lappeenranta University of
[26,27] (not precisely Technology, Finland
specified)
MESSIDOR Topcon TRC NW6  Messidor program partners and
[28] non-mydriatic LaTIM laboratory Brest
University Hospital, France
VICAVR TopCon non- Varpa Research Group,
[29] mydriatic camera University of Coruna, Spain
NW-100
ROC [13] TopconNW100 Department of Electrical and
TopCon NW 200 Computer
Canon CR5-45NM  Engineering, University of lowa,
Towa, USA
REVIEW Cannon Department of Computing and
[30] 60 UV film Informatics at the University of
(HRIS) camera Lincoln, UK
REVIEW Zeiss fundus Department of Computing and
[30] camera and JVC Informatics at the University of
(VDIS) 3CCD Lincoln, Lincoln, UK
REVIEW Zeiss FF 450 Department of Computing and
[30] fundus camera and  Informatics at the University of
(CLRIS) JVC3CCD Lincoln, Lincoln, UK
REVIEW Canon 60 Department of Computing and
[30] UV fundus camera  Informatics at the University of

resolution of 768 x 584 pixels and STARE has a resolution of
650 x 700 pixels, with the possibility of using images already
segmented by experts as the gold standard.

Table 4 below lists databases with more detailed infor-
mation on the properties of the images, i.e. their resolu-
tion, the size of datasets, and the composition of images
with information about the indicated disease. Datasets con-
tain images that include, for example, physiological images
of healthy patients, diagnosed diseases such as diabetic
retinopathy, atherosclerosis, hypertension, embolism, and
more (see Table 4). More detailed information on classified
diseases and in how many datasets they are diagnosed is
shown below in the graphic overview Fig. 1.

The graph below (see Fig. 1) clearly shows the number of
databases in which the classified diseases were diagnosed.
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TABLE 3. (Continued.) Overview of available open access and private
databases with retinal images.

(KPIS) Lincoln, Lincoln, UK
IOSTAR [31]  EasyScan SLO Biomedical Engineering at
camera Eindhoven University of
Technology (TU/e, Eindhoven,
the Netherlands) Northeastern
University (NEU, Shenyang,
China
Shengjing Hospital, Shenyang,
the Maastricht Study, Netherlands
Eye Care, Shenyang
DRIONS DB Fundus camera Ophthalmology Service at Miguel
[15] (not precisely Servet Hospital, Saragossa, Spain
specified)
DR HAGIS Topcon TRC —
[17] NWos Faculty of Biology, Medicine and
Topcon TRC — Health, University Manchester,
NW8 UK
Canon CR Dgi
fundus camera
VAMPIRE Canon CR-Dgi University of Dundee, UK
[32] nonmydriatic University of Palermo, Italy
OPTOS p200 University of Verona, Italy
University of Edinburgh, UK
Clinical Research Imaging
Centre, UK
Ninewells Hospital, UK
Princess Alexandra Eye Pavilion,
UK
and others
RetCam3 RetCam3 camera Centre for Children with Eye

database [11] Defects, Department of
Ophthalmology, University
Hospital Ostrava

Biomedical Engineering, Faculty
of Electrical Engineering and
Computer Science, Technical
University of Ostrava

TROPIC RetCam130 Alberta

database [33]  camera Children’s Hospital, Calgary,
Canada

RET-TORT Topcon TR50 University of Padova, Italy

[34] fundus camera

Diabetic retinopathy was the most frequently diagnosed
disease in 12 databases. Physiological images were in 6
databases and the composition of data was not further speci-
fied in 5 databases.

The graph below shows the use of open access databases
in the articles covered in this review. The most frequently
proposed segmentation procedures were for images from
DRIVE in 105 articles and STARE in 68 articles, which are
open access and have gold standards, thanks to which the
proposed algorithm can be objectively evaluated. The third
most frequently used database was CHASE or CHASEDB
in 16 articles, followed by HRF, REVIEW, ARIA, the Ret-
Cam3 database, TROPIC, RET-TORT, VAMPIRE (see
Fig. 2).

DRIVE (Digital Retinal Image for Vessel Extraction) con-
tains 40 images that were randomly selected from images
taken from a total of 400 people aged from 25 to 90 dur-
ing screening. The dataset contains 33 physiological images
of the retina without symptoms of diabetic retinopathy and
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TABLE 4. Overview table with more detailed information about

Diagnosed diseases in databases databases.
ARTERIOSKLEROTIC RETINOPATHY Database Resolution Size of Disease
TOXOPLASMA [pixel] dataset
HAMARTOMS 33 control group
RETINOPATHY OF PREMATURITY DRIVE [23] 768x584 40 7 mild, early diabetic
MACRONEURYSM retinopathy
OCCLUSION Diabetic retinopathy,
EMBOLISM arteriosclerotic retinopathy,
NEOVASCULARIZATION STARE [12] 650x700 400 occlusion, hypertension,
MICRONEURYSM embolism, choroidal
ATHEROSCLEROTIC CHANGES neovascularisation,
HEMORRHAGE macroaneurysm,
PHYSIOLOGICAL IMAGES 23 AMD
T T ARIA [14,24] 768x576 143 59 diabetes
VASCULAR DISEASE 61 control group
e CHASEDB [25] 1280x960 28 Not specified
FELEE o | | 15 physio!ogicgl images
UNSPECIFIED —— HREF [16] 3304x2336 45 15 diabetic retinopathy
HYPERTENSION T | 15 glaucoma
DIABETIC RETIOPATHY —T— 5 diabetic retinopathy
. ‘ | | | | | | ImageRet [26, 27] 1500x1152 89 84 mild, proliferative
! (DIARETDBI) diabetic retinopathy
o 1 2 3 4 5 6 7 8 % 10 11 12 13
FIGURE 1. Graphic overview of diagnosed diseases in datasets. ImageRet [26, 27] 1500x1152 130 20 control group
(DIARETDBO) 110 diabetic retinopathy
MESSIDOR [28] 1440x960 1200 diabetic retinopathy
2240x1488 number of microaneurysms
» 2304x1536
2 VICAVR [29] 768x584 58 Not specified
B ROC [13] 768x576 100 diabetic retinopathy,
© 1058x1061 microaneurysms,
‘e 1389x1383 haemorrhages
>
-::_‘ REVIEW [30] 1360x1024 16 8 high resolution
g to 4 vascular disease
= 2 central light reflex
(=} 3584x2438 2 kick point
REVIEW (HRIS) 3584x2438 4 diabetic retinopathy
[30]
qu ][E%YIEW (VDIS) 1360x1024 8 diabetic retinopathy
REVIEW (CLRIS) 2160x1440 2 atherosclerotic changes
Database [30]
REVIEW (KPIS) 3300x2600 2 Not specified
[30]
IOSTAR [31] 1024x1024 30 Not specified
FIGURE 2. Graph of databases used for the application of segmentation DRIONS DB [15] 600x400 110 Chronic simple glaucoma,
algorithms for blood vessel extraction. hypertension
4752x3168 10 glaucoma
DR HAGIS [17] ;‘ggnggg 10 hypertension
7 images with symptoms of mild, early retinopathy. The data 289 6"1 o4 10 diabetic retinopathy
. . P . X 10 age-related macular
is saved in JPEG format. The dataset was divided into a 2816x1880 degeneration
training and test set, each containing 20 images. The images VAMPIRE [32] 400x400 8 Not specified
in the test set were segmented by two experts and can be 3000x3000
considered as the gold standard [23]. retinopathy of prematurity
. : hysiological images
STARE (Structured analyses of the retina) contains 400 RetCam3 database physiolog g
. . . . . 11] 640x480 2793 h h
images of the retina, with 40 images containing manually [ aemorrhages
segmented blood vessels. The disease is specified for each Toxoplasma
image in consultation with an ophthalmologist. The output Hypoplasia
of segmentation are binary images. The data was compressed hamartoma
into PPM format [12]. 30ROP 1
ARIA (Automatic Retinal Image Analysis) contains TROPIC database 640x480 130 30ROP2
143 i h divided into th : a health [33] R
1mages that are divided into three groups: a healthy 30 physiological images
control group, a group with age-related macular degradation Retinopathy in
. . hypertensi d health;
and group with diabetes. A reference standard was created RET-TORT [34] 13001100 60 T atients

for each image in the database by two experts, who examined
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the blood vessels, optic disc and macula. Data was scanned
in TIFF and converted into JPG format [14], [24].

CHASEDB consists of two sets of manually segmented
monochrome ground truth images. These images were seg-
mented by two experts. It contains 28 images with a resolu-
tion of 1280 x 960 pixels [25].

There is a total of 45 images in the open access HRF (High
Resolution Fund) database, sometimes called the Erlangen
database in the article [35]. Images are colour, in JPEG format
with low compression. A binary mask is created for each
image for further analysis. The binarized image of blood
vessels represents the gold standard. Masks determining the
field of view (FOV) can be used for certain parts of datasets.
The gold standard for images is set by a group of retinal
image analysis experts and ophthalmologists at an optical
clinic [16].

IMAGERET is an open access database, which consists
of two parts - DIARETDB0O and DIARETDBI. Images
are saved in PNG format. The dataset also contains ref-
erence standards and an evaluation script in MATLAB.
DIARETDBO contains 130 images, with 20 images from
the control group and 110 images with signs of diabetic
retinopathy. DIARETDB1 contains 5 images with diabetic
retinopathy and 84 images with mild manifestations of pro-
liferative diabetic retinopathy [26], [27].

MESSIDOR (Methods to Evaluate Segmentation and
Indexing Techniques in the field of Retinal Ophthalmology
within the Scope of Diabetic Retinopathy) is an open access
database that was primarily designed to compare and evaluate
different segmentation algorithms for the detection of lesions.
Images are saved in TIFF format. Medical diagnoses are
available for each image with the defined degree of diabetic
retinopathy in an Excel file. Images were taken in patients
aged 25 to 65 [28].

VICAVR contains 58 retinal images. It is used to calculate
the artery/vein ratio. The database focuses on the optic disc,
but also arteries/veins in different radii from the optic disc.
These arteries/veins were identified by three experts [29].

ROC (Retinopathy Online Challenge) contains 3 differ-
ent types of images with different resolutions, as they were
captured using three different fundus cameras (see Table 3).
Images were saved in JPEG format. The database can be
divided into two parts: 50 training images and 50 test images
[13].

REVIEW (Retinal Vessel Image Set for Estimation of
Widths) consists of 4 high-resolution HRIS datasets, VDIS
(vascular disease image set), CLRIS (central light reflex
image set) and KPIS (kick point image set). Images have a
higher resolution than images in the DRIVE database [30].

IOSTAR contains 30 images captured by a laser fundus
camera. The images were edited by two different experts,
the same ones as the DRIVE dataset [31].

110 retinal images from a total of 124 images captured by
a fundus camera in ophthalmology at Miguel Servet Hospital
in Saragossa (Spain) were selected for the DRIONS DB
database. A total of 14 images were discarded because they
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contained moderate or severe cataracts. The average age of
patients was 53. The database contains retinal images from
46.2% men and 53.8% women [15].

The DR HAGIS dataset was created as part of a screening
programme for diabetic patients in the United Kingdom.
The images were obtained at different screening centres, and
for this reason have different resolutions. The images were
captured using different types of fundus cameras. All were
saved in JPEG format. The dataset also offers a gold standard
for comparison [17].

VAMPIRE (Vascular Assessment and Measurement Plat-
form for Images of the Retina) is a dataset of images from a
fundus camera and software for semi-automatic detection of
retinal blood vessels. It is the result of international coopera-
tion by 4 groups in image processing and 5 clinical centres.
More information is available here:

https://vampire.computing.dundee.ac.uk/news.html [32].

The RetCam3 DATASET is a private database that was
created as a result of screening premature infants. The data
was obtained by the Centre for Children with Eye Defects
in Ostrava and processed for the purpose of segmentation by
the Department of Biomedical Engineering of the Faculty of
Electrical Engineering and Computer Science. The images
were taken with a RetCam3 camera with a resolution of
640 x 480 pixels.

Data was anonymised. Screening took place for 40 boys
and 40 girls. The images show observable structures such
as the blood vessels, optic disc and pathological formations,
such as lesions or haemorrhages. The images are significantly
different from each other, they have different contrast and
brightness properties. These are images of premature infants,
so, among other things, there is a large number of choroidal
vessels or artefacts caused by the movement of the child’s
eyes. The dataset clearly shows the gestational age of the child
at the time of birth and their birth weight [11], [36], [37].

Gestational age at birth ranges from 24 to 41 weeks in this
dataset. The highest percentage of 53% is a gestational age at
birth of 33-41 weeks, 32% are children born at 29-32 weeks,
and 15% in the dataset represents 12 children of a gestational
age of 24-28 weeks at birth (see Fig. 3).

The birth weight of premature infants and term infants was
also recorded in the dataset (see Fig. 4). The composition
of birth weight is as follows: 59% are patients with a birth
weight of more than 1500 g (number of patients: 47), 24%
are 19 patients with a birth weight of 1000 to 1499 g and 17%
with a birth weight of less than 1000 g (number of patients:
14) [38].

TROPIC (Telelemedicine for ROP in Calgary) is a private
database of retinal images taken in 41 premature infants.
The images were taken with a RetCam130 wide-angle cam-
era with a resolution of 640 x 480 pixels. There is a total
of 130 images in the database. Subsequently, 110 images
were selected at random, in which the stage of retinopathy of
prematurity was determined. 30 images were determined to
have no diagnosis, 30 images had 1% degree ROP, 30 images
had 2™ degree ROP and 20 images had determined 3" degree
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Gestational age
[weeks] at birth

15% W 24-28

32% e
0

33-41

FIGURE 3. Percentage distribution of patients in the dataset according to
gestational age.

Birth weight

M |ess than 1000 g

17%

20% W 1000-1499¢g
(1) (1)

more than 1500 g

FIGURE 4. Percentage distribution of patients in the dataset according to
birth weight.

ROP. Of these, 91 images were asymptomatic plus disease
[33].

RET-TORT is an open access database. It contains 60 reti-
nal images from healthy and hypertensive patients with
information on estimated tortuosity. The dataset can be
downloaded here:

http://bioimlab.dei.unipd.it/Retinal %20 Vessel %20
Tortuosity.htm [34].

IV. SEGMENTATION ALGORITHMS FOR BLOOD VESSELS
EXTRACTION

In a general way, the image segmentation is a process of
extracting objects that are in the user’s foreground and sup-
pressing unwanted objects in the background by using spe-
cific image intensity or geometric features. In this way, only
the given parts are segmented. Retinal images are composed
of observable objects as retinal blood vessels, optical disc
and retinal pathologies, including retinal lesions which are
standardly object of the retinal image segmentation. Retinal
blood vessels are composed of retinal veins, arteries, possibly
choroidal vessels which should be identified within the retinal
image segmentation.
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Segmentation of retinal blood vessels is a process for
extraction and identification of retinal blood vessels. Images
in databases have different resolution because images are
taken by different fundus cameras. Therefore, segmentation
algorithms utilize various approaches with different effectiv-
ity in particular retinal dataset as we report in this review.
A challenging issue in the retinal image segmentation is
building versatile segmentation algorithms which will have
the same effectivity for various retinal images and will be
sufficiently robust against image noise and artefacts, which
can occur in retinal images.

The retinal blood vessel segmentation procedures are fre-
quently completed with the image pre-processing meth-
ods. Blood vessel pre-processing is utilized before start-
ing the segmentation procedure. Images are pre-processed,
which is designed to optimise the brightness of blood ves-
sels and eliminate image noise. The image pre-processing
is generally aimed on improving the retinal image area
and increase accuracy of segmentation methods. These
procedures have the potential to optimise the effectiv-
ity and robustness of segmentation procedures. The first
step in pre-processing is to convert the colour image
to greyscale, the next steps are: suppression of image
noise (image filtering), improving contrast and brightness
transformation [11], [36], [39]-[41].

Images come from different modalities, so they have differ-
ent resolutions, amount of noise and contrast. For this reason,
it is necessary to approach image pre-processing in different
ways.

The next part of this section is devoted exclusively to
aspects of segmentation procedures. Manual segmentation,
semi-automatic and automatic methods are used to extract
blood vessels from retinal images.

Manual segmentation is time consuming and is not repeat-
able or reproducible. It requires certain experience and effort
to properly set segmentation procedures. For semi-automatic
and automatic methods, the cooperation of at least one expert
ophthalmologist is necessary to evaluate the segmentation
results. Automatic segmentation of retinal blood vessels is
a step towards the development of a computer diagnostic
system for eye disease [42]-[44].

A suitable indicator of the quality and effectivity of the seg-
mentation algorithm is a comparison with the gold standard
of open access databases.

In general, segmentation methods for extraction of reti-
nal blood vessels can be divided into the following
subcategories: subsection A contains methods based on
region-based deformable models, subsection B includes
multi-scale segmentation, subsection C contains methods
based on morphological operations, subsection D contains
method used adaptive thresholding, subsection E includes
tracking approaches, subsection F kernel-based algorithms,
subsection G contains supervised segmentation methods and
subsection H contains unsupervised machine learning. The
last subsection I is a summary chapter with evaluation of
individual methods based on Acc parameter.
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TABLE 5. Overview of the division of segmentation methods for retinal
blood vessel extraction into groups.

Number of Reference
Type of method publications
Region-based deformable 9 7,45-51, 155
models
Multi-scale segmentation 7 6,41, 52-56
Morphological operations 9 9,11, 18, 38, 57-61
Adaptive thresholding 6 5,35, 44, 62- 64
Tracking approaches 11 1,65-74
Kernel algorithms 11 19, 75-83, 156
Unsupervised machine 20 3,20, 36, 39, 41, 83 -97
learning
Supervised machine learning 46 2,8,98-141

In each subsection of this group of segmentation methods,
the values of objectivization parameters with the best result
are marked in green. Subsequently, the most effective method
was chosen by a comparison of the identified parameters in
the group. This method is coloured green with the appropriate
dataset in which segmentation was successful. It is difficult
to unequivocally define which method is most effective for
the use of the segmentation algorithm to extract retinal blood
vessels. There are certain limitations here, as the authors did
not uniformly use a certain type of dataset with a certain
number of samples and did not use the same objectivization
parameters to determine the quality of algorithms or they
were not objectively evaluated at all.

The most frequently used datasets are DRIVE and STARE
(see Fig. 2) and the most frequently used parameters are Acc
(accuracy), Sp (specificity) and Se (sensitivity) (see Table 5
- XIV). The best method for extracting blood vessels from
images in the DRIVE and STARE database was determined
in each group by green colour. A more detailed breakdown
by type of segmentation method and number of publications
used is given in Table 5 below.

A. REGION-BASED DEFORMABLE MODELS

Segmentation using deformable models is based on the defor-
mation of an initialized curve or surface so that their energy is
minimized. Within segmentation retinal blood vessels based
on deformable model, the following methods are available
Chan Vase, LBF (Local Binary Fitting) and active contours
driven by local Gaussian distribution fitting energy. More
information is below in this section.

Deformable models can be divided into parametric and
geometric models. These are approaches that use the action of
internal and external forces, on the basis of which the image
is deformed with the segmentation of curves or surfaces in
the image.

Region-based deformable models enable the separation of
the foreground from the background of the image based on
the assumption that each of these parts is statistically homo-
geneous. The main difference in the algorithms used is the
type of statistics used to describe the regions. This is a suitable
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method for the segmentation of images where there is a prob-
lem with edge detection, such as noisy images or images with
non-uniform brightness. Region-based deformable models
also depend on the choice of initialisation location for seg-
mentation. In contrast to edge detector-based image segmen-
tation methods, region-based deformable model algorithms
are more computationally intensive.

The authors use segmentation techniques such as active
contours or snake contours. Active contours can be further
divided into, for example, Chan Vase, LBF (Local Binary Fit-
ting) and active contours driven by local Gaussian distribution
fitting energy, which describes the local intensity of the image
with different deviations and diameters [45], [49].

Another method classed as a deformable model is the level
set method based on information on local clusters in regions
that form a non-homogeneous image of the retina [47]. Chen
et al. use acombination of a level set function with established
selective binary and Gaussian filtering in combination with
LBF to work with low contrast images [45].

The graph cut is the next method based on an energy-
based object segmentation. The main idea of this method
an optimization operation designed to minimize the energy
generated from a given image data. The relationship between
neighbourhood pixel elements in an image is defined by the
energy [156].

Combination of graph cut and active contours is existed
for better segmentation result. The graph cuts-based active
contour method is used for blood vessel segmentation, as this
method is effective for pre-processed images using a local
phase filter [7].

Further development of this method consisted of the use of
alocal phase filter, again in combination with active contours,
but with infinite perimeter active contours. By setting an infi-
nite perimeter, the segmentation algorithm is more suitable
for vessel detection than by using the conventional shortest
length [46].

Zhang et al. modified the active contour method using
correlational open active contours, i.e., each edge is
segmented based on the active contour, which is ini-
tialised by the corresponding boundary of the Hessian
response [46].

Wang et al. modified the region-based active contour
method, which takes into account the intensity of the image
and value of the vessel after local phase enhancement as two
independent variables for the construction of multifunctional
local Gaussian distribution fitting energy. This improves the
segmentation procedure of active contours [49].

Xiao et al. describe the use of the level set function based
on the Bayesian method, which takes into account the spatial
information in the image. The boundaries of blood vessels
are obtained, which are further used to minimise the energy
function in the level set [50].

Dizdaroglu et al. approach the application of the level set
method based on the selection of sampling seed points for
blood vessel segmentation [51].
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Table 6 presents a complete overview of segmentation
methods in the field of methods based on region-based seg-
mentation for retinal blood vessel extraction.

Based on the conditions specified in Section IV, the best
method for retinal blood vessel extraction in this category
appears to be the active contour method according to Zhao
et al. [46].

Due to the consistency of the tables, the table below does
not contain these parameters AU ROC in articles Zhao et al.
[7], Zhao et al. [46], Zhang et al. [48], Wang et al. [49],
parameters DC in article Zhao et al. [46]. It contains only
Acc, Se and Sp.

B. METHODS BASED ON MULTI-SCALE SEGMENTATION
Multi-scale segmentation is a method based on image char-
acteristics at multiple levels or scales. The image is divided
into rough levels, which are scales representing simplified
parts of the image on a fine scale in combination with smooth-
ing filters (e.g. Gaussian). The two most commonly used
approaches for multi-scale segmentation are the pyramid and
Quad-tree.

Multi-scale pyramid segmentation is based on the fact that
greyscale image data is a combination of sampling operations
and Gaussian smoothing filters [55]. The result of this process
is a 2D Hessian matrix in which eigenvalues determine reti-
nal blood vessels. The main directions of blood vessels can
be determined by analysing the Hessian matrix. Multi-scale
segmentation is suitable for structures with different widths
and lengths, i.e. blood vessels [53].

A multi-scale approach to blood vessel segmentation can
also be based on the superpixel division of the image into
parts, which are then used as basic units to track blood vessels.
A model of blood vessels is then formed by a chain of super-
pixel nodes. Two levels are set, which determine whether
this is an area of blood vessels with good or poor imaging
quality [6].

Nguyen et al. proposed a method based on the changing
length of the line detector, which enables the detection of
lines at different levels. To achieve the segmentation of blood
vessels, the responses of this detector are linearly combined
at different scales, thus creating a model of retinal blood
vessels [52].

Abdallah et al. proposed the combination of multi-scale
segmentation based on the eigenvectors of the Hessian
matrix and an anisotropic diffusion filter to reduce image
noise [54].

Moghimirad et al. performed multi-scale segmentation
based on a 2D function to find the midpoint of blood vessels.
Subsequently, these outputs are multiplied by the eigenval-
ues of the Hessian matrix. Blood vessels are then extracted
and the radii of retinal vessels are determined [56]. Another
possibility for the segmentation of blood vessels using multi-
scale methods is to track small groups of pixels according to
the brightness condition for whether or not it is part of the
vascular system [41].
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TABLE 6. Overview of methods used with results of algorithm effectivity
based on region-based segmentation.

Dataset Method Measure-
Authors Year  (size) lezgii(t)lfm
effectivity
Acc=0.94
STARE Se=0.74
Chen et al. 2016 Level Set Sp=0.96
[45] Method Acc=0.94
DRIVE Se = 0.74
Sp=0.97
STARE Acc=0.96
(20) - Se=0.78
ctive Sp=0.98
Zhaoetal. 2015 DRIVE Contour, Acc=0.95
[46] (20) Infinite Se =0.74
Perimeter Sp=0.98
VAMPIRE Acc=0.98
@®) Se =0.73
Sp =0.99
STARE Acc=0.95
(20) Se=0.79
Sp=0.97
DRIVE Acc=10.95
(20) Se=0.74
Active Sp=0.98
Zhao et al. 2015 ARIA Contour with Acc=0.94
(71 (143) Local phase Se=0.75
Sp=0.93
VAMPIRE Acc=10.98
®) Se=0.72
Sp =0.98
Level set Acc=0.94
Gongtetal. 2015 DRIVE without using Se =0.71
[47] local region Sp = 0.97
area
Correlational Acc=0.95
Zhangetal. 2015 DRIVE Open Active Se =0.75
(48] Contours Sp=0.97
Active A 0.94
Wangetal. 2015 STARE ~ contours o
driven b 8¢ =0.76
[49] (20) Y Sp=0.96
Gaussian p=y.
distribution
Salazar- STARE Graph-cut Acc=0.94
Gonzalezet 2014 method
al. [155] DRIVE Acc=0.94
Acc=10.95
_ STARE Level set el ok
Xiao et al. 2013 (20) based on Sp=0.97
[50] Bayesian A 0.95
cc=0.
DRIVE method Se = 0.75
(20) Sp=0.98
Level set in
terms of Acc=0.94
Dizdaroglu 2012  DRIVE initialisation Se=0.72 Sp
etal.[51] and edge =097
detection

Table 7 below provides a complete overview of segmen-
tation methods in the field of multi-scale segmentation for
retinal blood vessel extraction. Based on the conditions spec-
ified in Section IV, the best method for retinal blood ves-
sel extraction in this category appears to be the multi-scale
approach using chain coding when applied to an HRF dataset
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TABLE 7. Overview of multi-scale methods used for blood vessel
segmentation.

. Measurement
Authors Year Dataset(size)  Method of algorithm
effectivity
Acc=0.96
DRIVE Se=071
Sp=0.98
HRF - Acc=0.97
healthy . Se=0.77
images Multi-scale Sp=10.99
Zhaoetal. [6] 2018 superpixel 0097
HRF - chain
Gl . Se =0.75
aucomatous tra_ck]ng Sp ~0.98
HRF — Acc=10.96
Diabetic Se=0.76
retinopathy Sp=0.98
DRIVE . Acc=0.94
Multi-scale
I[\;gzl]xyen etal. 2013 STARE line Acc=0.93
REVIEW detection Nt gpecified
Multi-scale
Rattathanapad 2012 DRIVE based on Not specified
etal. [53] line
primitives
Multi-scale
Abdallahet 2011 STARE basedon — Acc =095
al. [54] Anisotropic
diffusion
. Acc=10.95
DRIVE Gaussian Se=0.65
Budai et al. 2010 pyramid Sp=0.97
[55] multi- Acc =0.94
STARE scaling Se=0.76
Sp=0.98
DRIVE Multi-scale ~ Acc =0.97
Moghimirad 2010 based on
etal. [56] STARE weighted Acc=0.98
medialness
function
Multi-scale  Acc =0.93
Vlachos etal. 2010 DRIVE confidence  Se=0.75
[41] matrix Sp =0.96

with physiologically healthy images of patients according to
Zhao et al. [6]. When applying segmentation algorithms to the
DRIVE and STARE databases, the best algorithm appears to
be that proposed by Moghimirad et al. [56] based on a multi-
scale approach using the detection of the midpoint of retinal
vessels.

Due to the consistency of the tables, the table
below does not contain these parameters AUC in article
Moghimirad et al. [56]. It contains only Acc, Se and Sp. “Not
specified” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

C. BLOOD VESSEL SEGMENTATION BASED ON
MORPHOLOGICAL OPERATIONS

Morphological operations are mathematical techniques that
use image processing with the aid of geometric structures.
Morphological transformations function as operators for an
image set and structural element set that characterises the
geometric structure [9].
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Basic morphological operations include dilatation, ero-
sion, skeletonization, closure, opening. Mathematical mor-
phologies were traditionally applied to binary or greyscale
images. These types of morphological operations can be used
in image pre-processing to highlight the structure of objects
of interest or applied to segment structures of interest. The
principle of the algorithm is the movement of the structural
element around the image according to the type of operation
and the creation of new pixel values in the image [11], [58].

Methods based on morphological operations were used
in this subsection. Using these geometric structures, it is
possible to work with the shape of objects and image trans-
formations, while preserving the shape of these objects.

Jadhav et al. applied the segmentation algorithm to arti-
ficially noisy retinal images and observed the effect of the
proposed algorithm on the segmentation of retinal blood
vessels with respect to different noise settings. The core of
the segmentation algorithm is the application of mathemat-
ical morphology and discrete wavelet transform to a pre-
processed and filtered image [57].

In another approach, the procedure was similar; the image
was pre-processed and then Otsu thresholding was applied.
Subsequently, the morphological opening operation removed
white pixels in the image that were identified as noise. The
result was segmented retinal blood vessels, with the retinal
edge eliminated by the Hough transform [58].

Multiple morphological operations can be combined for
retinal blood vessel segmentation in order to create a seg-
mentation algorithm as indicated in the literature [11], [59].
Canny edge detection was applied to a pre-processed image,
followed by the morphological operation of dilatation, clo-
sure, and in the final step skeletonization to form the skeleton
of blood vessels [11].

In another approach, a combination of Top-hat transform
and morphological erosion was used to find the optimal
global threshold for retinal blood vessel segmentation [59].

Kundu et al. combined the morphological operations of
erosion, dilation, opening, closure, top-hat transform into a
method called MASS (Morphological Angular Scale-Space).
The linear structural element moves around the image and
determines connected pixels that are part of blood vessels.
The scale is created by changing the length of the structural
element [61].

Frucci et al. approached segmentation by division, taking
into account the morphological properties of blood vessels
[60]. The approach developed by Oloumi et al. consists of
the application of a Gabor filter to detect vessels in each pixel,
followed by the morphological operation open to obtain the
skeleton of blood vessels [18].

Table 8 below provides a complete overview of segmenta-
tion methods based on morphological operations for retinal
blood vessel extraction.

Based on the conditions specified in Section IV, the best
method for retinal blood vessel extraction in this category
appears to be the method proposed by Lovely et al. [9]
based on the morphological gradient applied to the STARE
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TABLE 8. Overview of segmentation methods used based on
morphological operations.

Measurement
Authors Year Dfltaset Method of algorithm
(size) effectivity
Krestanova 2020  RetCam3 Morphological Not specified
etal. [11] database operation
(22) (dilatation, erosion,
skeletonization)
DRIVE Morphological Acc=0.95
Lovelyetal. 2019 gradient
[9] STARE Acc =0.96
Mathematical
Jadhavetal. 2019 DRIVE  operation with Not specified
[57] discrete wavelet
transform
Otsu thresholding Acc =0.96
O Gl 2018 DRIVE and Morphological ~ Se =0.85
al.[58] open Sp =0.96
Morphological
Kubicek et 2018  RetCam3  ©operation ) Not specified
al. [38] database (dilatation, erosion,
(22) skeletonization)
Global Acc=0.96
DRIVE thresholding based ~ Se = 0.84
on morphological Sp=10.97
Jiang et al. 2017 operations (Top-hat
[59] transform and Acc = 0.96
STARE morphology Se =078
erosion) Sp=0.97
Watershed
transform +
Frucci et al. 2014  DRIVE Contrast and Acc=0.52

[60] directional Maps
Gabor filter with

Oloumi et 2014  TROPIC morphological Not specified
al. [18] operation open

Morphological .
Kunduetal. 2012 DRIVE Angular Scale- Not specified
[61] space

database. The best method for the DRIVE database based
on the parameters Acc, Se and Sp, is the method proposed
by Ozkava et al. [58], which is based on Otsu thresholding
and morphological opening. Although the specificity of this
algorithm is marked as the lowest, it differs from the highest
value of specificity by 0.0072. It is marked as the lowest,
because Acc was used as the primary evaluation parameter
in this category, although in one case the MSE (mean square
error) parameter was used for evaluation or the algorithm was
not objectively evaluated at all.

Due to the consistency of the tables, the table below
does not contain these parameters PPV (precision) in article
Frucci et al. [60] and parameter MSE in article Kundu and
Chatterjee [61]. It contains only Acc, Se and Sp. “Not spec-
ified” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

D. ADAPTIVE THRESHOLDING

Adaptive thresholding is a thresholding method that uses a
different thresholding value for different parts of the image.
This is called variable thresholding. In medical images,
objects are represented by different pixel values in greyscale.
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The image can be divided into individual parts of the image
using thresholds, each of which is characterised by greyscale
pixel values with minimal noise. The threshold can be set
using a global value that optimally maximises the separation
between different classes in the image.

The problem with blood vessel segmentation using adap-
tive thresholding is uneven illumination, artefacts, noise
distortion, low image resolution, and also the fine transi-
tion between shades of grey. Thresholding using one global
threshold can then lead to the pixels of different objects
being segmented into one anatomical object. The thresh-
old for blood vessel segmentation can be divided into
methods based on statistical elements, knowledge or fuzzy
logic. In the individual approaches (see Table 9), images
were pre-processed in combination with wavelet trans-
form or filters, and subsequently adaptive thresholding was
applied [62], [64].

Ali et al. used the well-known B-COSFIRE (Bar-selective
Combination of Shifted Filter Responses) filter in combi-
nation with adaptive thresholding to achieve the binariza-
tion of retinal blood vessels. Two methods, ISODATA and
Otsu thresholding were used as part of adaptive thresholding
to find the optimal threshold. The combination of the B-
COSFIRE filter with the ISODATA method achieved better
results than the combination with Otsu thresholding [62].

Elbalaoui et al. applied a multi-scale Hessian filter on a
pre-processed image to further highlight and extract blood
vessels based on information about the image in greyscale
and local geometric properties. This improved filter is based
on the adaptive thresholding of blood vessels [5].

Christodoulidis ef al. use the multi-scale detection of reti-
nal blood vessels in combination with adaptive thresholding
of the pre-processed image. The adaptive threshold value is
found as:

T = |Gaussian| + & |0Gaussian| (D

where T is the threshold value and (Gaussian @ OGaussian are the
mean and standard deviation of the Gaussian function applied
to the histogram of the image [34].

Mapayi et al. used an algorithm based on the GLCM (grey
level cooccurrence matrix) energy information of retinal
blood vessels to find the local adaptive threshold [63].

Another possibility is the use of MCA (morphological
component analysis) for the extraction of blood vessels,
followed by the application of Morlet wavelet transform to
highlight retinal vessels. The resulting model of blood vessels
is created using adaptive thresholding. The threshold value is
determined as 88% of the CDF (Cumulative Density Func-
tion) applied to the output of Morlet wavelet transform [44].

Fathi et al. used complex continuous wavelet transform
(CCWT) and adaptive thresholding to highlight blood vessels.
CCWT parameters are set so that linear structures are sepa-
rated from the simple edges in the image in all directions.
Adaptive thresholding based on the histogram of the image
is then used to extract blood vessels [64]. Table 9 below
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TABLE 9. Overview of adaptive thresholding used for blood vessel
segmentation.

Measurement
Authors Year Dataset Method of algorithm
(size) effectivity
DRIVE B-COSFIRE Se=0.78
Alietal. [62] 2019 filter with Sp=0.97
STARE adaptive Se =10.80
thresholding Sp =0.96
Acc=0.94
DRIVE Se =0.76
Adaptive Sp=0.97
; thresholding =
Elbala[(;lil etal. 2016 STARE it Hessian g,ecc: 0%.23
multiscale Sp=0.95,
Acc=10.93
EI};I?SE* Se=10.79
Sp=0.95
Local adaptive
thresholding Acc =095
Christodoulidis 2016 HRF  based on multi- S¢ = 0-85
etal. [35] scale tensor Sp=0.96
voting
Adaptive
DRIVE  Thresholding Acc=0.95
Mapayi etal. 2015 based on grey ~ 5¢ = 0.77
[63] level cooccur- Acc =0.95
STARE  rence matrix Se =0.76
Combination Acc=0.95
DRIVE " pforlet Wavelet  Se = 0.75
Imani et al. 2015 Transform with ~ Sp = 0.98
[44] Adaptive -~
STARE Thresholding Ace =0.96
Se=0.75
Sp=0.97
Combination Acc=0.96
DRIVE complex Se=10.78
Fathi etal. [64] 2012 3;’;2’1‘::’“5 Sp=0.98
STARE transform with Acc_= 0.96
Adaptive Se =0.81
Thresholding Sp 0.97

provides a complete overview of segmentation methods using
adaptive thresholding for retinal blood vessel extraction.

Based on the conditions specified in Section IV, the best
method for retinal blood vessel extraction from images from
the DRIVE and STARE databases in this category appears to
be the method proposed by Fathi ez al. [64], which is based
on a combination of complex continuous wavelet transform
and adaptive thresholding.

Due to the consistency of the tables, the table below
does not contain these parameters PPV (precision) in article
Frucci et al. [60] and parameter MSE in article Kundu and
Chatterjee [61]. It contains only Acc, Se and Sp. “Not spec-
ified” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

E. ALGORITHMS FOR TRACKING BLOOD VESSELS
The initial step of vessel tracking algorithms is the definition
of seed (starting) pixels. These seed points can be defined
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manually or automatically using tracking approaches. The
disadvantage of manually selecting the starting pixel is that
the choice of this starting pixel affects resulting image seg-
mentation. The resulting segmentation is also affected by
the order of the regions in which they are connected. Non-
homogenous brightness of the image can be a problem as the
region grows.

The next step is the segmentation of blood vessels, which
can be achieved with a limited number of seed pixels;
this is also the basic difference between the algorithms
used. Models track blood vessels with minimal paths, these
approaches search for the minimum path between two
starting points according to metrics that are derived from
the image.

The image must be pre-processed prior to vessel detection
to improve vessel visibility of all vessel sizes and orientations.
Vessel ridges are detected by calculating zero crossing and
curvature.

The method based on mathematical graph theory is another
method for tracking blood vessels [66]. Edge points can be
detected iteratively based on the Bayesian approach using
local grey levels and vessel properties [1], [73]. Another
vessel tracking approach is tracking invertible orientation
scores using Euclidean calculation [66]. The aforementioned
method of minimal or geodesic path with respect to the local
weight potential is used for tracking blood vessels, i.e. the
connecting path between two endpoints. These methods are
being improved [67], [70]-[72], [74].

Bhuivan et al. modified vessel tracking with edge profil-
ing, where the first or second edge of the vessel is defined
to determine the direction and true width in microns using
image calibration and micron calculation. In contrast to other
methods, this approach takes into account the central reflex
of the vessel, thus identifying the vessel with high accuracy
and resolution [68].

Another approach allows particle filtration for local ves-
sel tracking based on the probability density function in
the image. The method is applied to the image after pre-
processing. The optic disc is used as the initialisation point.
In principle, this is about the uniform growth of particles
around each, even new initialisation point. Subsequently,
it is decided whether or not the particle is part of retinal
blood vessels based on the value of the number of particles
(weight) [69]. Table 10 below provides a complete overview
of segmentation methods using algorithms for tracking retinal
vessels for the purpose of their extraction.

Based on the conditions specified in Section IV, the best
method appears to be the method proposed by Liao et al. [70],
which is based on length regulation with the shortest path,
which was applied to 4 images in the DRIVE database with
an accuracy of up to 0.99. However, the method proposed
by Kaul et al. [74], also based on tracking vessels with the
shortest path, is also highly rated. Other parameters such as
sensitivity and specificity were marked for this method. This
method achieved an accuracy of 0.95, a sensitivity of 0.71 and
a specificity of 0.97 for the STARE database and an accuracy
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of 0.95, sensitivity of 0.75 and specificity of 0.98 for the
DRIVE database.

Due to the consistency of the tables, the table below does
not contain these parameters AMTR and FMTR in article
Nayebifar et al. [69], TPR and FPR in article Yin ez al. [1], AU
ROC in article Rouchdy and Cohen [71] or without parameter
by visual comparison in article Chen et al. [67], Li et al. [73],
Bekkers et al. [66]. It contains only Acc, Se and Sp. “Not
specified” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

F. KERNEL-BASED TECHNIQUE

The kernel-based method can be classified as machine learn-
ing. These are sorting algorithms that work on pattern anal-
ysis. The principle of this method is the creation of a filter
kernel based on tracking the distribution of pixel intensities
in retinal blood vessels. The filter kernel subsequently moves
around the image and detects the structure of blood vessels
and their boundaries, or it may be deformable according to
vessel boundaries, especially if they lie in or adjacent to
haemorrhages or microaneurysms.

Kernel-based techniques can be used to pre-process images
so that segmentation procedures can be applied to these
images. The principle of kernel-based methods is combined
filtering, which compares variations in pixel intensity with the
cross-sectional profiles of retinal blood vessels with a pre-set
kernel. In this way, the image is filtered and undergoes thresh-
olding. Gaussian, Laplacian of Gaussian or Gabor filter-based
kernels are mostly widely used [76]-[78], [80], [83].

In this area of image segmentation, it is possible to com-
bine several methods, which gives rise to hybrid approaches.
This can be, for example, a combination of morphological
operations and a combined filter based on Gaussian distribu-
tion or a combination of a Gabor filter with entropic adaptive
thresholding [77], [78].

Singh et al. used a modified filter in combination with
Gumbel probability distribution as the kernel for the detection
of blood vessels. By replacing typical Gaussian distribution
with Gumbel, there was higher accuracy in the detection of
retinal blood vessels [75].

Zolfagharnasab et al. replaced Gaussian distribution with
Cauchy probability distribution in the modified filter [79].
Table 11 below provides a complete overview of segmenta-
tion methods using kernel-based methods for retinal blood
vessel extraction.

Based on the conditions specified in Section IV, the best
method for the DRIVE database appears to be the method
proposed by Villalobos-Castaldi et al. [83], based on a Gaus-
sian adaptive filter with an adaptive thresholding kernel.
Kumar et al. [76] proposed a quality segmentation algorithm
for the STARE database based on a Laplacian of Gaussian
filter kernel.

Kaba et al. proposed method based on integrating bias
correction and combination matched filtering and expecta-
tion maximisation. The method expectation maximisation
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TABLE 10. Overview of algorithms used for blood vessel tracking.

Measurement
Authors Year Dgtaset Method of algorithm
(size) effectivity
DRIVE Vessel Acc=0.51
De et al. 2016 tracking
[65] STARE using Acc=10.43
mathematical
graph theory
Edge
tracking in
orientation
scores (cake
Bekkers 2014 REVIEW Kv/{ave.lets) Not specified
ulti-scale
et al. [66] Vessel
Centre-Line
Tracking
algorithm
using
orientation
scores
2 fundus .
camera Key pom(;sb
Chenet 2014  images connected by ~
al [67] 2 mignetic geodesic Not specified
resonance minimal
angiographs  paths
Private Central
Bhuiyan database Retinal
et al. [68] 2013 with fundus  Artery Acc=0.88
retinal Equivalent
images Central
Retinal Vein
Equivalent
. DRIVE Particle Not specified
Nayebifar 2013 filters based .
et al [69] STARE on Not specified
probability
density
function
Liao et Length
regularisation =
al[70] 2013 DRIVE (4) m,gtﬁ B Acc=0.99
paths
Rouchdy 5513 ARIA (143)  Geodesic aee 0(;’59 4
etal [71] path Sp— 093
Stuhmer Geodesic
etal [72] 2013 DRIVE shortestpath A€ = 0.95
tree
Lietal Vessel .
(73] 2013 REVIEW tracking by Not specified
Bayesian
theory
STARE Acc=0.95
(20) Se=10.71
Kauletal 2012 Vessel Sp=0.97
[74] DRIVE packingWith A .. - .95
(20) B Sc=0.75
Sp=0.98
Yinetal 5913 REVIEwW ~ Probabilistic  Not gpecified
[1] vessel
tracking

calculates expected value from probability function with
maximalisation function. Output of the algorithm is segmen-
tation blood vessel, because algorithm can determine which
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pixels are from blood vessels and pixels which belong to
background [156].

Due to the consistency of the tables, the table
below does not contain these parameters ROC in arti-
cle Kumar ef al. [76], FPR in article Zolfagharnasab and
Naghsh-Nilchi [79], AUC in article Odstrcilik et al. [80] or by
fusion in article Lu et al. [77]. It contains only Acc, Se and
Sp. “Not specified” was written in methods, where it was
not specified parameter or authors used different evaluation
parameter than Acc, Se, Sp.

G. UNSUPERVISED MACHINE LEARNING

Unsupervised machine learning methods do not work with
images as samples, as is the case with supervised machine
learning. Unsupervised methods use rule-based knowledge of
vascular structure. These include algorithms such as matched
filtering, morphological processing, multi-scale and track-
ing approaches. These methods have already been described
above with respect to division into smaller, more compre-
hensive groups. This subsection contains a list of other
common unsupervised methods, such as ANN (artificial neu-
ral network) [86], [90], Fuzzy C-means algorithms [41],
[89], [91], [93], [94], PSO (Particle Swarm Optimisation)
[39], ACO (Ant Colony Optimisation) [84] and others (see
Table 12 below). As these methods do not work with gold
standards, it is appropriate to use these methods for data
analysis, where gold standards are not available.

In general, unsupervised learning takes place as follows:
image segmentation is based on local intensity and gradient,
then the model is finetuned according to a minimisation
function to find the best separation of blood vessels from the
retinal background. This function is usually defined based on
Euclidean metrics or probability distance.

Images of blood vessels are not homogeneous; they have
different brightness and contrast. For this reason, phase con-
gruence is first performed before applying Fuzzy C-means,
which preserves the properties of phase frequency compo-
nents such as edges in the image and suppresses other parts.
The Fuzzy C-means clustering algorithm (FCM) uses lan-
guage descriptions to decide whether or not an object is a
blood vessel. Fuzzy tracking is based on determining the
membership of functions in two language values. The optic
nerve is usually used as the starting point of the algorithm.
The k-means method, which uses the natural grouping of pix-
els in an image, can also be included in clustering algorithms.
This is achieved by calculating the distances between pixels
and centroids. So-called clusters are subsequently formed
[41], [89], [91], [93], [94].

The fuzzy edge detector uses the method of Kubicek et al
[36]. for the extraction of retinal blood vessels, which uses
a combination of fuzzy logic and morphological techniques.
The fuzzy edge detector detects edges and suppresses high-
frequency noise in a non-contrast image. A binary model of
retinal blood vessels is subsequently obtained by morpholog-
ical operations [36].
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TABLE 11. Overview of kernel-based algorithms used.

Measurement
Authors Year Dataset  Method of algorithm
(size) effectivity
DRIVE  Filter Kernel: Acc=0.93
Singhetal [75] 2016 Gumbel
STARE  probability Acc =091
Density
Function
DRIVE . Acc=10.96
Filter Kernel:
K71;mar etal 2016 STARE Laplacia_n of Acc=0.96
[76] HRF Gaussian Acc =0.95
Mathematical
morphology
Luetal [77] 2016 DRIVE  with Not specified
combination
Gabor and
matched filter
Acc=0.94
DRIVE Se=072
Sp=10.96
Chakrabortiet 2015~y agp Adaptive IS\CCZ :0 %33
al [19] DB matched filter e="
Sp=10.96
Acc=0.94
STARE Se=0.68
Sp=10.96
Modified
Gaussian Acc=0.95
Singhetal [78] 2015 DRIVE  matched filter ~ 5¢=0-67
+ Entropy S8p=0.97
thresholding
Zolfah b Filter kernel:
etoala[%;]imasa 2014 DRIVE Caushy Acc =092
probability
Density
Function
Acc=10.93
DRIVE Se=0.71
Improved t- ip = 0-09;3
i i cc=0.
Odstrcilik etal 2013 STARE é‘;’;";‘;i;ﬁ“al Se=0.78
(80] matched filter Sp=10.95
Acc=0.95
HRF Se=0.77
Sp=0.97
Kaba et al. 2013 STARE pwched filter, 095
[156] Expgctatlop :
maximasation
Kauretal [81] 2012 PEVE Filter Kemel, 2163 = ?)‘_22’
STARE Gabor filter Se=0.85,
Sp=10.96
DRIVE Twokemels:  Acc=0.94
Zhang et al 2010 Gaussian +
[82] STARE  first-order Acc=0.94
derivative of
Gaussian
Villalobos (Caussian Acc=0.98
Castaldictal ~ 2010 DRIVE ~matched filer (7, o
[83] — Sp=0.95
adaptive P
thresholding

Another method classed as unsupervised learning is the
method of particle swarm optimisation (PSO). This is an
optimisation technique with a stochastic approach, based on
the behaviour of the population [39].
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Another type of optimisation method used is the ant colony
(ACO), which is a heuristic method. This method is based
on the behaviour of ant colonies, used to solve discontinuous
optimisation problems [84].

Itis possible to use a combination of a Gaussian filter, Top-
hat transform, morphological operations and adaptive thresh-
olding for blood vessel segmentation as found in the literature
[85]. As this is a hybrid method with multiple segmentation
procedures, it was included here under unsupervised learning.

Mapayi et al. use the K-means method for segmentation,
which is an algorithm for non-hierarchical cluster analysis
[20]. Azzopardi et al. proposed a combination of shifted
COSFIRE filter responses for subsequent detection of vas-
cular structures [87]. Table 12 below provides a complete
overview of segmentation methods in the field of unsuper-
vised machine learning for retinal blood vessel extraction.

Based on the conditions specified in Section IV, the best
segmentation method for the DRIVE and STARE databases
appears to be the method proposed by Gu et al [92], which is
based on an iterative classification tree.

Due to the consistency of the tables, the table below does
not contain these parameters ROC in articles Roy and Sheet
[86], Maji et al. [90], AUC in articles Azzopardi et al. [87],
Roychowdhury et al. [88], Wang et al. [95], Lam et al. [97],
PPV in article Gu et al. [92] and without specified parameter
in article Xie et al. [41]. It contains only Acc, Se and Sp. ““Not
specified” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

H. SUPERVISED LEARNING ALGORITHMS AND DEEP
LEARNING

Segmentation methods based on supervised learning are
robust and effective when applied to image data with different
image properties, even if the neural network is trained on a
single database. The supervised machine learning method
requires the availability of gold standards that function as a
training set on which the neural network learns. The train-
ing set contains manually processed and segmented images,
marked by an ophthalmologist as the gold standard. The clas-
sification criteria of images are determined by the properties
of the training set.

The supervised methods were divided into two tables.
Table 13 contains articles which using Convolutional neural
network (CNN) algorithms and Table 14 contains articles
which using supervised method as Complex-Valued Artificial
Neural Network (CVANN), Pulse-coupled neural network
(PCNN) AdaBoost etc. see below.

Another important group is deep learning, which is a very
young field in artificial intelligence, and a subset of machine
learning. It is based on multilayer neural network structures
[118], [119]. The most widely used neural network for blood
vessel segmentation from retinal data, which is CNN or the
convolutional neural network, can be included here [98],
[101], [103], [105], [111], [121], [123].
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TABLE 12. Overview of the use of unsupervised machine learning

algorithms.
Measurement
Authors Year D ataset Method of algorithm
(size) effectivity
Kubicek etal. 2019 RetCam3 Fuzzy Sobel ~ Not specified
[36] Edge detection
Asad etal. [84] 2017 DRIVE Ant Colony Se =0.75
(20) system
DRIVE Coarse. Se=0.78
segmentation Sp =0.96
Neto etal [85] 2017 refined through
STARE curvature Se - 0.83
analysis and Sp=0.94
morphological
reconstruction
Denoised
DRIVE
Royetal [86] 2016 20) stacked auto-  Not specified
encoder ANN
. Acc=0.96
Mapayietal 2016 DRIVE K — means CC=
[20] Se =0.76
STARE Acc =0.95
Se=0.77
DRIVE Acc =0.94
Se=0.77
Sp =0.97
Combination of
H STARE Acc=0.95
Azzopardietal 2015 Shifted Filter S(;C= 097
[87] Responses Sp= 0:97
CHASE D Acc=0.94
Bl Se=0.76
Sp =0.96
DRIVE Acc=10.95
Adaptive Se=0.74
thresholding Sp=10.98
Roychowdhury 2015  STARE with global Acc =0.96
et al [88] threshold with Se =0.73
Region Grown Sp=0.98
CHASE D Acc=0.95
Bl Se=0.76
Sp =0.96
DRIVE Fuzzy C-means  Acc=0.93
Mapayi et al 2015 (20) and grey level
[89] co-occurrence B
SF{;)l?E matrix sum Acc=0.94
entropy
.. DRIVE Hybrid _
Majietal [90] 2015 20) architecture of ~ Acc=0.93
deep ANN
Sreejini et al 2015 DRIVE Parti_clej swarm Acc=0.96
[39] (20) optimisation Se=0.71
with Gaussian Sp=0.99
STARE ~ matched filter  5¢c = .95
(20) Se=0.72
Sp=0.97
DRIVE Fuzzy Logic B
Sharma et al 2015 ) Ensemble Acc=0.95
91 (20- 30)
[91] Learning
DRIVE =
Iterative Latent ~ Acc=0.97
Guet al[92] 2015 classification
STARE e Acc=0.98
Acc=0.73
DRIVE . Se = 0.97
Vessel tracking €=
Akhavanetal 2014 + Fuzzy c- Sp=0.95
[93] STARE means Acc=0.78
Se=10.97
Sp=0.95

Other networks used are CVANN (Complex-Valued Artifi-
cial Neural Network) [137]. and PCNN (Pulse-coupled neural
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TABLE 12. (Continued.) Overview of the use of unsupervised machine
learning algorithms.

Possibilistic Acc=0.94
DRIVE version of fuzzy Se = gg?é
c-means =0.
Emaryetal [94] 2014 (40) o G
STARE Cuckoo search ASCC=7OO‘5994
20) algorithm e
Sp=10.99
Zhangetal [3] 2015 DRIVE SOM (self- Acc=0.94
STARE  organising map)
Nguyen et al 2013 DRIVE Basic line Acc =0.94
[52] STARE detector Acc=0.93
Genetic
Xieetal [41] 2013  DRIVE Algorithm +  Not specified
(40) Fuzzy c-means
DRIVE Multiwavelet Acc=0.95
kernels and
Wang et al [95] 2013 STARE multiscale Acc=0.95
hierarchical
decomposition
Acc=0.93
DRIVE
_ Probabilistic ~ 5¢ =065
Yinetal [96] 2013 tracking method Sp=0.97
Acc=0.94
STARE Se=0.73
Sp=10.97
DRIVE Line-shape Acc=0.95
Lametal [97] 2010 concavity _
[97] STARE modelling Acc = 0.96

network) [113]. CNN uses information from shallow to deep
layers to determine the fine details and overall structure of
retinal vessels [98], [101], [130]. An example of CNN net-
work design might be an input convolution layer containing
1 x 28 x 28 patches. The first and second layers contain 32 fil-
ters in each layer, the third and fourth contain 64 filters in
each layer. The sixth layer is ascending to increase the spatial
dimension of structured output. The seventh and eighth layers
again contain 32 filters in each layer [103].

A deep neural network has the ability to learn a hierar-
chical representation of the properties of raw pixels without
knowledge of the domain. It is appropriate to use 4™ degree
Complex Wavelet Transform for blood vessel segmentation,
which shows better results in combination with CVANN
[137]. These complex values are inputs for CVANN; inverse
CWT are implemented as outputs in this neural network for
resizing and comparison with the resulting image [137].

The PCNN method is based on the fact that the pixels of
blood vessels have the same intensity. The threshold value
is dynamic for each pixel value. The advantage of PCNN is
that postprocessing is not required, as the output is noise-free
[113].

A frequently used method is AdaBoost (adaptive boost-
ing), often in combination with random forests. This method
is a learning algorithm that linearly combines classifiers dur-
ing classification and thus achieves better results than the
use of classifiers alone. This method is usually combined
with the random forests method or is used by the authors
independently. In combination with another method, it is
more general and more accurate for individual models.
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The random forest method is an extension of the decision
trees used for classification and regression, removing insta-
bility from decision trees. The principle of this method is the
random selection of indices to construct a group of trees with
controlled variation [131], [141]. The AdaBoost method is
also combined with an adaptive filter [112].

Zhang et al. use random forest classification their applica-
tion for retinal images. This is a method that creates multiple
decision trees during the learning process and then deter-
mines the mode of classes that are returned from individual
trees [104].

Fu et al. used a combination of the CNN network to
generate a probabilistic model of retinal vessels. In this way,
the pixels are divided into parts that belong to the background
of the image and those that are part of retinal blood vessels.
This method is subsequently combined with CRF (condi-
tional random fields), thus interacting with distant points
[114]. The combination of the CNN network and CRF is also
used by Luo et al. [115].

It is also possible to use a deep neural network trained in
up to 400,000 samples as a classifier with pixel resolution
for blood vessel segmentation [116]. Deep neural networks
are also used in the literature [117]. Table 13 below provides
a complete overview of segmentation methods using super-
vised learning for retinal blood vessel extraction.

Based on the conditions specified in Section IV, the best
segmentation method for the DRIVE database appears to be
the method proposed by Ceylan and Yacar [137], which is
based on complex wavelet transform in combination with
CVANN.

Liskowski and Krawiec [116] is the best choice for images
from the STARE database, whose method is based on deep
neural network learning. Although the segmentation method
proposed by Li et al. [117] also achieves good results,
based on the comparison of available objective parameters,
a more suitable method is the method proposed by Mo et al.
[105] or alternatively Guo et al. [101] based on the convolu-
tional neural network. Based on objectivization parameters,
these methods are on the same level as the method based on
deep learning according to Liskowski and Krawiec [116].

Due to the consistency of the tables, the Table 13 below
does not contain these parameters AUC in articles
Soomro et al. [98], Hajabdollahi er al. [99], Chudzik et al.
[100], Guo et al. [101], Sengiir ez al. [107], Feng et al. [109],
Soomro et al. [111] and AU ROC parameter in articles Mo
and Zhang [105], Lahiri et al. [106], Wang et al. [129],
Wu et al. [122] and PPV in article Feng et al. [109] and visual
comparison in article Gu et al. [130]. It contains only Acc, Se
and Sp. “Not specified” was written in methods, where it was
not specified parameter or authors used different evaluation
parameter than Acc, Se, Sp.

Due to the consistency of the tables, the Table 14 below
does not contain these parameters PPV in articles Orlando
et al. [102], Zhang et al. [139], Marin et al. [140] and MCC
in article Orlando et al [102], Vega et al. [2] and FPR in
articles Francis et al. [113], Zhang et al. [139] and AUC in
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TABLE 13. Overview of the use of supervised algorithms by cnn.

Dataset Method Measure-
ment of
Authors Year  (size) algorithm
effectivity
Acc=0.95
DRIVE CNN Se = 0.74
Soomroetal 2018 g\?on"l"lutloml Sp=0.96
cura. —
981 STARE Network) gg c: O(;;) >
Sp=0.96
. . Low Acc=0.96
Hajabdollahi 2018 STARE complexity Se=0.78
etal [99] CNN Sp=0.98
DRIVE Se=0.79
Chudziketal 2018 CNN Sp=097
[100] STARE SC =0.83
Sp=0.98
. Se=10.79
Guoetal[101] 2018 ¢ Multesce Sp =0.98
with CNN Se=0.82
STARE Sp=0.98
DRIVE Acc=0.95
(20) Se=0.78
Sp=0.98
Moetal [105] 2017 STARE  pyjy CNN Acc =097
(20) Se=0.81
Sp=0.98
CHASE Acc=0.96
(20) Se=0.77
Sp=0.98
[Llaégg‘ et al 2017 B}S)WE CNN Not
specified
[Sle(;‘;b’]“r etal 2017 DRIVE  CNN Acc=0.92
Acc=0.95
Songetal 2017 DRIVE ~ CNN Se=0.75
Acc=0.96
Feng et al 2017 DRIVE CNN Se=0.78
[109] Sp=0.98
Acc=0.93
Tanetal [110] 2017 DRIVE CNN Se=0.75
Sp=0.97
Acc=0.95
DRIVE Se=0.75
Soomro et al 2017 CNN Sp=0.92
[111] Acc =0.95
STARE Se =0.75
Sp=0.92
DRIVE Combination Acc =0.95
(20) CNN and Se=10.76
Fuetal [114] 2016 STARE Conditional Acc =0.96
(20) Random Field Se=0.74
CHASE Acc =0.95
(20) Se=0.71
Combination
i Acc=0.95
Luoetal [115] 2016 DZRIVE gﬁi‘t‘i’gﬁal Sev 0,75
20) Random Field
Acc=0.95
Khalaf et al 2016 DRIVE CNN Se =0.84
[121] Sp=10.96

articles Zhang et al. [104], Liskowski et al. [116], Strisciuglio
et al. [126], Roychowdhury et al. [128], Fraz et al. [138],
Maninis et al. [120] and AU ROC in articles Li et al. [117],
Ganin et al. [133], Lupascu et al. [141] and PPV in articles
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TABLE 13. (Continued.) Overview of the use of supervised algorithms by
cnn.

CNN with use
Wuetal[122] 2016 DRIVE of PCA Not
20 (Principal ified
(20) Component specthie
Analysis)
Acc=0.94
Yaoetal[123] 2016 DRIVE CNN pee %
Sp=0.96
Melinicak et~ 2015 DRIVE ~ Deep max- Ace=0.95
al [127] pooling (NN~ 5¢=073
Sp=0.98
DRIVE Acc =0.95
(20) CNN and Se=0.74
Wang et al 2015 Random Forest  Sp=0.98
[129] STARE Acc =0.95
20) Se=0.75
Sp=0.98
Guetal[130] 2015 DRIVE CNN Not ed
STARE specifie

Maninis et al. [120], Becker et al. [135], Marin et al. [140],
Zhang et al. [139] and ROC in article Noc et al. [124]
and F1 Score in article Vega et al. [2] and TPR in article
Zhang et al. [139]. It contains only Acc, Se and Sp. “Not
specified”” was written in methods, where it was not specified
parameter or authors used different evaluation parameter than
Acc, Se, Sp.

I. EVALUATION OF SEGMENTATION ALGORITHMS BASED
ON OBJECTIVE PARAMETERS

Objectification parameters are used to objectively evaluate
the quality of the algorithms. Parameters such as Acc, Se,
Sp, AUC etc. can be included here. More information about
all used parameters in selected articles are described in
Section V.

The effectivity or quality of the proposed segmentation
algorithm for retinal blood vessel extraction can be evaluated
based on objectification parameters. It is not possible to
unequivocally say which of the methods described in this
review is the best. This is because segmentation algorithms
were tested on different datasets (see Section I'V) with differ-
ent numbers of images or different objectivization parameters
were used to evaluate algorithms.

Nevertheless, the two tables below list the ten best rated
segmentation algorithms based on the Acc parameter (see
Table 15) and the AUC parameter (see Table 16). These
parameters were most widely used in objective evaluations
of the proposed algorithms.

Based on Table 15, it can be said that the best method
for blood vessel extraction is the method based on tracking
vessels using the shortest path. This method was applied to a
DRIVE dataset with 4 images with an Acc accuracy of 0.99
[70]. The segmentation algorithms in Table 15 come from dif-
ferent groups such as: supervised learning [105], [116], [137],
region-based deformable methods [7], unsupervised machine
learning [9], kernel-based algorithms [83], and multi-scale
segmentation [56].
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TABLE 14. Overview of the use of algorithms for supervised learning and TABLE 14. (Continued.) Overview of the use of algorithms for supervised
deep learning. learning and deep learning.
M DRIVE Random forest Acc=0.95
easurem- . ;
Dataset Method ent of Aslanietal 2016 CI?SS‘ﬁer tralnec.i
Authors Year  (size) etho algorithm [125] with 17-D hybrid
STARE Acc=0.96
effectivity feature vector Azz 05
DRIVE Se=0.79 DRIVE SVM classifier for g, 0.7.8
(20) Fully connected 5P~ 0.97 Strisciuglio et 2016 B-COSFIRE filters g, _ ) 97
STARE  ¢onditional random S¢=0.77 al [126] Acc =0.95
Orlando etal 2017  (20) field model Sp=0.97 STARE Se=0.81
[102] CHASED Se=10.73 Sp=0.97
B1 (20) Sp=097 Lattice Neural AI():C:O.96
HRF (20) Se=0.79 Vegaetal [2] 2015 DRIVE Network with See 084
Sp=0.96 (20) Dendriti R
Dasguptaetal 2017 DRIVE Convolutional Acc=0.95 Preor;eilsiig Sp=0.97
Acc=0.95 DRIVE s: ¢ 0.73
DRIVE Se=0.79 Sp = 0.98
Random Forest Sp=10.97 . . AI;C = 0 95
classifier with Acc = 0.95 Roychowd- 2015 STARE Gaussian mixture Se—0 7~7
Zhangetal 2017 STARE  wavelet Se=0.79 hury model Sp=097
[104] transformation Sp=0.97 ctal [128] Acc = 0 95
Acc =0.95 CHASE — 07
CHASE Se = 0.76 2; ~oon
Sp=0.97 Acc =095
Zhu et al 2015 DRIVE Adaboost classifier S: C: 0.83
DRIVE Acc =097 [131] '
. Matched filter and Sp=10.96
Memarietal 2017 gTARE  AdaBoost classifier Acc = 0.95 Ensemble classifier , _
[113] Frazetal 2014 CHASE_ ce=0.96
of bootstrapped _
CHASE_ Acc = 095 [132] DBI decision trees 26 = g-;‘é
DB p =0
Francis et al inetal 2014 DRIVE Neural network
[112] 2016 DRIVE PCNN Not . Gan11r313e a o nearest neighbour Not .
spec]ﬁed [ ] (20) spemﬁed
DRIVE Acc =095 Otandoctal 2014 DRIVE ~ [ullyConnected g0 _ 79
(20) Se=0.75 [134] (20) CRF Sp=10.97
Sp=0.98 Gradient Boosting
Liskowskiet 2016 STARE Deep ANNs ACC_: 0.97 framework for
al [116] (20) Se=0.82 Beckeretal 2013 DRIVE  learning Not
Sp=099 [135] (20) convolutional filter ~specified
CHASE Not Chakravarty 2013  RET- Quadratic Not
(28) specified etal [136] TORT polynomial specified
DRIVE Acc = 0.96 decomposition
(20) Deep ANN with Sse - 067968 %?;:115 }::mwaz‘éelet
. cross modalit p=0. Ceylan etal 2013 DRIVE Acc=0.99
Lietal[117] 2016 gpaRg y Se=0.77 [137] CVANN
(20) Sp=0.98 Acc=0.95
Acc = 0.96 CasE- Se=0.72
CHASE Acc=0.96 Sp=0.97
(28) Se=0.75 Frazetal 2012 Baggedand - 5¢c = 0,05
Sp=0.98 [138] DRIVE boosted decision Se=0.71
DRIVE o Acc=0.94 tree Sp=0.98
(20) Discriminative = g — 072 Acc = 0.95
” L8] 2016 dictionary learning Sp=0.97 STARE Se=0.76
Javidi et al [8] STARE Acc=0.95 Sp=0.98
(20) Se=0.78 DRIVE Dictionary
Pl e Sp =096 (20) Learning with
ully connecte _ Zhangetal 2012 Sparse Not
DRIVE conditional random Sci:) (;69 > [1 3g 9] STARE Ripresentation specified
fields and deep =0 (20) Classifier
Fuetal [118] 2016 learning
STARE Acc =0.96 DRIVE Nf:ural network Acc=0.94
Se = 0.74 (40) with 7-D vector Se=0.71
.. ’ Marinetal 2011 composed of grey- Sp =0.98
Lahirietal 5916 pRIVE Deep neural Acc=0.95 [140] level and moment ~ Acc = 0.95
[119] network STARE . . _
DRIVE Deep 20) invariants Se =0.69
Maninis etal 2016 Comvolutional Nt Sp=098
[120] STARE  ANNs specified Lupascuet 2010 DRIVE ~ 41-D feature vector sq0— g6
based on AdaBoost g, — () g7
Nocetal 2016 DRIVE  Ensembleof 12 al [141] (20) Classifi ‘
lutional Acc =095 assifier Sp=0.99
[124] (20) convolutiona!
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The datasets in which the highest Acc values were achieved
are also different. The best results for blood vessel segmen-
tation algorithms were obtained with the DRIVE [9], [56],
[70], [83], [137], VAMPIRE [7] and STARE [9], [56], [105],
[116] datasets. This is also due to the fact that the DRIVE and
STARE databases are the most widely used databases in the
field of retinal blood vessel segmentation (see Fig. 2).

It is also evident from the table that the method based
on unsupervised machine learning according to Gu et al [9]
produced good results for the STARE database with Acc =
0.9772 and for the DRIVE database with 0.9732. However,
on comparison, the method proposed by Liao ef al. [70] still
appears to be the best method with regard to the DRIVE
database based on the Acc value.

Table 16 shows the evaluation of algorithms for reti-
nal blood vessel segmentation based on the objective AUC
parameter. The table shows that based on the AUC parameter,
the best methods for blood vessel segmentation are those
based on supervised learning, which involves deep neural
network learning [116], convolutional neural networks [100],
[101], [105], [109], [117], [127] and classification based on
decision and random trees [104], [138].

The method based on unsupervised machine learning is in
ninth place [96]. Segmentation algorithms were rated best
for STARE, DRIVE and CHASEDBI1 datasets. This is also
due to the fact that the DRIVE and STARE databases are the
most widely used databases in the field of retinal blood vessel
segmentation (see Fig. 2).

The method proposed by Mo et al. based on the convolu-
tional network has good AUC results with values of 0.99 for
the STARE database and the method based on deep learning
proposed by Li et al. also has an AUC value of 0.99 for
the DRIVE database. Since the differences between the first
6 methods are in the order of thousandths, and even taking
into account that the method proposed by Mo et al. [105]
and Li et al. [117] has a value of 0.99, it can be said that
when rounded off to hundredths, the methods in 1%t to 3%
place are at the same level, because they also have an AUC
value equal to 0.99. Therefore, it is necessary to compare
other objectivization parameters such as Se, Sp and Acc
in addition to this parameter to select the best algorithm.
However, as already mentioned, this parameter implies that
methods based on supervised learning are among the best
segmentation algorithms for retinal blood vessel extraction.

Table 17 provides an overview of the best selected methods
in each defined segmentation group in Section IV. Param-
eter values with the highest value are marked in green for
database STARE and DRIVE. The best methods for images
from the DRIVE database are the methods proposed by Liao
et al. [70] based on vessel tracking, Ceylan et al. [137]
based on CVANN and Villalobos-Castaldi et al. [83] based
on kernel algorithms. These methods are highlighted below
in yellow. The best methods for images from the STARE
database are the methods proposed by Mo et al. [105] based
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TABLE 15. Evaluation of segmentation methods for retinal blood vessel
extraction based on the ACC parameter.
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on a convolutional network and the method proposed by
Liskowski et al. [116]. The method proposed by Gu et al.
[93] based on unsupervised learning is also suitable for the
STARE database.

Table 18 shows overview of the best segmentation algo-
rithms from the mostly used databases DRIVE and STARE
for the purpose of retinal blood vessel extraction.

V. OBJECTIVIZATION PARAMETERS FOR EVALUATION OF
THE QUALITY OF SEGMENTATION ALGORITHMS
Objectification parameters are used for objectively determine
quality or effectivity of proposed algorithms. The most com-
mon parameters for evaluating the effectivity of segmentation
algorithms are sensitivity, specificity, accuracy, ROC curve,
AUC, MSE, MCC, DSC, PPV, F1 score, AMTR and FMTR.
Articles that use subjective evaluation of the quality of the
algorithm based on a visual comparison of the images were
also noted. The following text presents a general description
of the most frequently used metrics used for the objectiviza-
tion of the segmentation process.

It is not possible to unequivocally determine which type of
algorithm has the best results for blood vessel segmentation,
as the articles presented herein do not unequivocally agree
on the system for evaluating algorithms. Some authors use a
group of evaluation parameters, others only one parameter to
evaluate the quality of the algorithm.

A. ACCURACY (ACC), SENSITIVITY (SE), SPECIFICITY (SP),
PRECISION

Accuracy is a metric for measuring the performance of algo-
rithms. Accuracy is calculated based on the following for-
mula:

TP + TN

Acc = )
(TP + FN +FP+1N)

@

where TP represents the number of objects that were classi-
fied as true positive, TN as true negative, FP as false positive,
and FN as false negative [48], [105], [109].

Specificity is a metric that represents the algorithm’s ability
to detect background pixels, i.e., pixels other than a vessel
pixel. It represents the relative success of the classification of
negative TNR cases (true negative rate) [48]. It is calculated
using the following formulas:

o _ 1N -
P = IN + FP
Sp = 1 — FPR, @)

where FPR represents a false positive rate, which is given by

the following formula:

FP
FPR= — 5)
FP+TN

Sensitivity represents the relative success in correctly clas-
sifying objects as positive cases [48], [105], [109]. Algo-
rithm sensitivity represents the ability to detect blood vessel
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TABLE 16. Evaluation of segmentation algorithms for retinal blood vessel
extraction based on the AUC parameter.
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TABLE 16. (Continued.) Evaluation of segmentation algorithms for retinal
blood vessel extraction based on the AUC parameter.
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The higher the value of specificity or sensitivity, the better
the diagnosis can be classified. This is the most commonly
used metric for evaluating algorithms [48], [105], [109].

FP=1-Sp 7

Precision (PPV) is a metric that indicates how many
objects are actually correct with respect to the positive class
only. Precision is also called PPV (positive predictive value).
It is defined using the following formula [109]:

TP

PPV = —
TP + FP

®

B. RECEIVER OPERATING CHARACTERISTIC CURVE (ROC),
AUC (AREA UNDER CURVE)

This parameter represents a curve that is the nonlinear func-
tion between TPR and FPR. The optimal area under the curve
is 1.

The ROC curve shows the relationship between specificity
and sensitivity. The evaluation of ROC curves is performed
on the basis of the area under AUC curves (AU ROC), which
reflect their shape by their value. ROC curves show the ability
of algorithms to assign a property to specific objects with
respect to whether or not they have this property. The x-axis
shows FPR and the y-axis TPR values [75], [113].

C. MSE (MEAN SQUARED ERROR)

The mean square error represents a metric that compares two

images. Image x after the application of a new algorithm is

compared against image y defined as the gold standard. This

metric is used to determine the accuracy of segmentation.
The smaller the MSE value, the greater the agreement

between the images. For a two-dimensional image, MSE
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TABLE 17. Overview of best selected segmentation methods in individual
segmentation groups (chapters iv. A to G).
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from the drive and stare databases for the purpose of retinal blood vessel

TABLE 18. Overview of the best segmentation algorithms for images
extraction.
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in individual segmentation groups (chapters iv. A to G).

TABLE 17. (Continued.) Overview of best selected segmentation methods
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D. MATTHEWS CORRELATION COEFFICIENT (MCC)

The MCC metric is a correlation coefficient that is deter-
mined between the output image after segmentation and the
binary images defined as the gold standard. Values of the
correlation coefficient range between -1 and +1, where +1
indicates a perfect match between images and -1 a complete
mismatch between images. MCC is calculated from the fol-
lowing relationship [126]:

(TP % TN)—(FP % TN)

~ /(TP + FP) (TP + FN) (IN t FP) (IN £ FN))
(10)

Mcc

E. F; SCORE

This is a metric for measuring an accuracy test. It takes a value

from O to 1. Where 1 represents the best accuracy and 0 the

worst. It is calculated from the following relationship [104]:
PPV Sensitivity

PPV + Semsitivity)

F1Score = 2. ( (11
F. DSC (DICE SIMILIRATY COEFFICIENT)

The DSC (DC) coefficient is a metric for determining the sim-
ilarity of images. The DSC value ranges from O to 1, where
a value of O indicates there is no spatial overlap between
the two images after binary segmentation and a value of 1
represents a complete overlap of images. It is calculated using
the following formula [142]:

2TP

DSC = ——
2TP + FP + FN

(12)
G. AMTR AUTOMATIC/MANUALLY TRACKED RATIO

The AMTR metric expresses the ratio of the number of
tracked pixels to the number of pixels in the skeletonised

image after manual segmentation. It is expressed by the fol-
lowing formula [69]:

trackedpixels
AMTR = —— (13)
numberofpixels

H. FMTR FALSE/MANUALLY TRACKED RATIO
The FMTR metric represents the ratio of the number of
falsely tracked pixels to the number of pixels in a skeletonised
image after manual segmentation. The formula for calculat-
ing the FMTR is [69]:

falselytrackedpixels

FMTR = : (14)
numberofpixels

VIi. PARAMETERS FOR MEASURING TORTUOSITY

Tortuosity, or vessel curvature, is a type of vascular pathology.
This is one of the important parameters for determining the
presence and severity of various diseases [36]. It affects both
arteries and veins, with slight curvature of blood vessels with-
out clinical symptoms commonly observed in both humans
and animals [21]. It is also found, for example, in brain tissue,
carotid arteries, skeletal muscles and retinal vessels. Vascular
tortuosity is associated with atherosclerosis, retinopathy of

VOLUME 8, 2020

prematurity, diabetic retinopathy, but is also found in people
with high blood pressure, but also occurs naturally with age
[21].

The most common forms of tortuosity includes curva-
tures, twists, kinks, and loops. Tortuosity is assessed by
ophthalmologists manually using a contour gauge or visual
comparison of images. There is no standardised metric for
measuring the degree of curvature or tortuosity [21]. Scien-
tific publications dealing with the measurement of tortuosity
using metrics for the classification of blood vessel curvature
are analysed below. Metrics were applied with the aim of
measuring tortuosity automatically. However, metrics do not
always coincide with the clinical concept of tortuosity [4].
Tortuosity metrics were applied to binary segmented images.

Onkaew et al. [4] approached the calculation of curvature
based on the definition of the curve in Euclidean space, where
the curve is defined as y = f(x), while the curvature at each
point p(x, y) € R%. In this way, the segmented image of blood
vessels is divided into parts based on the aforementioned
chain code and the degree of curvature is calculated (see
Table 19).

An ophthalmologist determined whether or not there
was tortuosity and then the proposed algorithm calculated
the tortuosity and determined whether or not there was
tortuosity based on the threshold. There was agreement
between the prediction and gold standard in 8 training
images [4].

Another possible metric of tortuosity is the tortuosity
index, which is calculated by combining the length of the
chord, the length of the arc and the frequency of vascular
curvatures using stationary points. These points are deter-
mined using the gradient vector. The presence of curvature
is subsequently detected by comparing the curvature samples
to skeletonised blood vessels. The tortuosity index TI is then
calculated. The non-normalised metric Tlgeq2 has a stronger
correlation than Tlgreqr [20].

Tortuosity is a relative feature of the vascular segment and
depends on its width. For this reason, Bhuyian et al. also
took into account the width of the vascular segment when
calculating tortuosity, as tortuosity affects narrower vessels
more often than wider ones.

After blood vessel segmentation, the midpoint of the ves-
sel is determined and fragmented at the bifurcation and
branching points to form individual vascular segments. The
tortuosity of the vascular segment is calculated at its edge.
The result is the average twist angle of the vessel segment.
The accuracy of tortuosity measurements using this method
was 100%, which was determined qualitatively in relation to
images classified by ophthalmologists [152].

Dougherty et al. evaluated the proposed calculation
of tortuosity using Spearman’s rank correlation coeffi-
cient between calculated tortuosity and tortuosity evalu-
ated by experts. This coefficient had a value of 0.996 on
the 95% confidence interval for the M metric and
0.957 on the 95% confidence interval for the K metric
(see Table 19) [153].
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Makkpati et al. evaluated the proposed metric for determin-
ing tortuosity using the Spearman coefficient with a value of
0.8901 [143].

Continuous curves need to be discretised in order to deter-
mine the degree of tortuosity using SCC (Slope Chain Code).
The calculation of tortuosity is based on the definition of the
curve as the absolute value of the rate of change in the slope
with respect to the tangent and distance along the curve. The
convexity and concavity of curves is determined by the total
slope Acc and tortuosity t [147].

Oloumi et al. used the application of branch points on
binary blood vessels to evaluate tortuosity. Skeletonised
blood vessels are divided into segments and the AVI (Angle
Variation Index) is calculated in each segment, which is based
on the Gabor angle. The sum of the AVI values gives the
AVT tortuosity metric that takes a value from 0 to 1 in
each pixel. Retinal images are divided into normal, abnormal
and plus based on the AVT parameter. The results are also
distinguished by colour coding, red representing plus disease,
an abnormal tortuosity value insufficient to determine plus
disease in yellow, normal and low-level tortuosity in green
[18].

Turior et al. based their method on the calculation of
curvature using integration and difference. Tortuosity is then
automatically classified using the Naive Bayesian classi-
fier, the KNN classifier and the K-means clustering algo-
rithm [148].

The most common metric of the tortuosity index is the ratio
between the length of the vessel curve to the direct distance
between the two ends. This metric is only amended and
modified in order to more accurately measure the curvature
of blood vessels. Tortuosity can further be defined as the total
tortuosity or mean curvature, which is calculated as the sum
of the angles between vessel segments according to the length
of the vessel (see Table 19).

VII. DISCUSSION

Most articles deal with diabetic retinopathy, but only 3 arti-
cles dealt with retinopathy of prematurity [11], [18], [36].
An overview of the diseases found in retinal databases is
shown in Fig. 1 for illustration. There is wide scope for
research in the field of blood vessel segmentation from retinal
images. It is important to address this issue, as early detection
and treatment of retinopathy of prematurity allows prema-
ture infants to have physiologically healthy retinal vessels.
If neglected, the disease can lead to blindness.

An important indicator is tortuosity, which can help oph-
thalmologists classify the severity of ROP disease and its
early detection with an automatic algorithm. Testing the
effectivity of algorithms applied to RetCam images is not
possible, as there is no database with a gold standard for
objective evaluation.

Objective comparisons for methods that do not have a gold
standard is difficult to evaluate against other segmentation
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TABLE 19. Overview of the methods and calculations of vascular
tortuosity in retinal images.

Authors Year Dataset (size) Method or metric

Calculation of

Kubicek et 2019 curvature based on

RetCam database

al. [36] vessel gradient at
each point
. Arc-chord ratio and
Mapayietal 2016 DRIVE, STARE stationary points
[20]
. . Metrics based on
Makkapati et 2015 Private dataset Euclidean distance
al [143]
. Measurement based
Oloumi et al 2014 TROPIC Gabor angle in
(18] each segment of
curvature
. Curvature-integral
Lisowskaet 2014 RET-TORT

measures with
multiple window
Arc to chord ratio

al [144]

Khdhair etal 2013 Drawing lines

[145]
. o Arc-chord ratio
Mohseninet 2013 Retinal images
al [146] taken by Topcon
Absolute Direction
Chakravarty 2013 RET-TORT Angle Change
etal [136]
. . Measurement
Bribiesca et al. 2013 Not specified tortuosity based on
[147] Slope Chain Code
Numerical

Turioretal 2012 Private dataset
[148] 45 images taken
by RetCam 130

Integration for
determinate value

of curvature
Numerical
Differentiation
Method
L Ratio radians and
Zepeda- 2011 Retinal images pixel
Romero et al. taken by RetCam
[149] 1T
. Circular Hough
Ghadirietal. 2011 DRIVE Transform

[150]

Ratio of total

Tam et al 2011 squared curvature

[151] images

AOSLO retinal

and chord length
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procedures applied to data with a gold standard. In contrast
to images from a fundus camera used to capture the retina of
adults and older children, images from RetCam have lower
resolution, contrast and contain more artefacts due to the
insufficient development of the child’s choroid, the presence
of choroidal vessels and movement of the child’s eyes.

For this reason, it is not possible to apply existing one-
to-one segmentation algorithms that work on images from
fundus cameras. However, these must be modified for use
on retinal images from RetCam or they must be approached
innovatively, as there are no gold standards on which tech-
niques such as supervised learning can be trained.

In the contrast with many other reviews of retinal blood
vessels such is [157], [160], this review is aimed to pro-
vide an extensive view to present the retinal blood vessels
segmentation in a broader manner. Besides the segmenta-
tion algorithms, which are often a subject of other reviews,
we provide an extensive investigation of available retinal
databases, which are frequently used for the testing and
evaluation of segmentation methods. Also, we present the
methods for tortuosity extraction, which is the further step
after the image segmentation, which enables quantification
of the retinal blood vessels curving. Therefore, such methods
have a substantial importance for the clinical ophthalmologic
practice in diagnosis ROP.

VIil. CONCLUSION

This review presents an overview of segmentation techniques
used to extract blood vessels from retinal images over the last
10 years, i.e. from 2010 to the present. The review includes
an overview of 18 databases with retinal images, which are
both public and private.

These databases are used for the application of segmenta-
tion algorithms for the segmentation of retinal blood vessels.
The databases were created in collaboration with hospitals,
with retinal images of adults and older children taken with a
fundus camera and retinal images of young children and new-
borns taken with a RetCam fundus camera. The images in the
databases have different resolutions, as they were taken with
different types of cameras (see Table 3 and Table 4).

Diabetic retinopathy was the most frequently diagnosed
disease in the databases (Fig. 1). The most widely used
databases for segmentation algorithms were the open access
DRIVE and STARE databases (see Fig. 2). Images from these
databases have a resolution of 768 x 584 and 650 x 700
pixels and gold standards, thanks to which the effectivity of
the proposed algorithms can be compared [12], [23].

Prior to the application of segmentation procedures,
the authors first pre-processed retinal images in order to
highlight blood vessels and suppress unwanted noise and
objects. Segmentation methods for vessel extraction were
then applied to these modified images based on the principle
of segmentation, namely region-based deformable models,
multi-scale segmentation, tracking approaches, edge-based
deformable models, adaptive thresholding, supervised learn-
ing and unsupervised machine learning (Table 5). These areas
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represent larger groups into which segmentation methods
were divided on the principle by which they detected retinal
blood vessels.

Segmentation algorithms were evaluated objectively using
objectivization parameters. The selection of the best method
for the extraction of retinal blood vessels was hampered by
certain limitations, in particular the diversity of databases on
which the algorithms were tested and the variety of objec-
tive parameters used. The authors most often chose the fol-
lowing parameters for objective evaluation of the quality of
algorithms: specificity, sensitivity and accuracy or AUC. An
overview of the objectivization parameters used with their
description is given in Chapter V.

The values of all parameters are given in the tables for
segmentation algorithms (see Table 6 to Table 13). Another
limitation in determining the best method is that some authors
did not use objectivization parameters at all, because their
datasets did not have gold standards, so they could not evalu-
ate the proposed algorithm or did not specify them [11], [18],
[38], [57]. The quality of the algorithm is also influenced to
some extent by the size of the dataset and the composition of
this dataset, whether contrast images or images with artefacts
were used, etc.

The authors used different sizes of datasets with several to
dozens, but also hundreds of images. This depended on the
choice of sample and on the size of the source database used,
although some authors did not mention the size of the dataset
in the article [70], [133], [136]. The images in databases differ
in terms of the number of images, image quality, resolution,
contrast, brightness, and artefacts (see Table 3, Table 4).

The most effective segmentation approach for blood vessel
extraction was chosen for each defined group based on a com-
parison of the identified objectivization parameters. Quality
was determined on the basis of Acc, Sp and Se, or AUC as
these were the most frequently used parameters. Those meth-
ods that did not indicate an objectivization parameter, or this
differed, were not taken into account. For greater clarity in
determining quality algorithms, objectivization parameters
for the DRIVE and STARE databases were compared, as they
were the most widely used sources. In this way, the condi-
tions for determining the best segmentation approach were
set. Selected segmentation approaches were colour-coded
directly in the tables (see Table 6 to Table 14).

Table 15 and Table 16 were created for greater clar-
ity. Table 15 shows ratings based on the Acc parameter
and Table 16 based on the AUC parameter. Based on the
Acc parameter, the best method for blood vessel extraction
appears to be the method based on vessel tracking using
the shortest path. This method was applied to a DRIVE
dataset with 4 images with an Acc accuracy of 0.99 [70].
Table 17 also contains algorithms from different segmenta-
tion approaches.

The best methods for the segmentation of retinal blood
vessels based on the AUC parameter are supervised learning
methods, namely deep neural network learning [116], con-
volutional neural networks [100], [101], [105], [109], [117],
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[127] and classification based on decision and random trees
[104], [138]. The first 6 methods only differ in the order of
thousandths, and after rounding off to hundredths, all AUC
are equal to 0.99 (see Table 16).

Due to the small difference in AUC values, the parameters
Acc, Sp and Se must be taken into account in order to deter-
mine the best algorithm.

Table 17 provides an overview of the best selected meth-
ods for each segmentation group. This table shows that the
following methods are best for images from the DRIVE
database:

o Ceylan et al [137] — method based on complex wavelet
transform and CVANN

o Villabos-Castaldi et al [83] — method based on kernel
algorithms

o Liao et al [70] — method based on vessel tracking

The best methods for images from the STARE database were:

e Mo et al [105], Liskowski et al [116] — method based on
convolutional networks

e Gu et al [93] — method based on an iterative classifica-
tion tree

The metric for measuring tortuosity is most often based on
the ratio of the length of the arc (curve) to the length of the
cut, calculated using the Euclidean distance. Often this ratio
is only modified, when the total curvature of the vessel is cal-
culated in another way, e.g. using the union find table [145],
Chain code [4], [147], Hough transform [150] or gradients
[36], [20].
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