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ABSTRACT Given its ability to modulate neuronal excitability, low-intensity magnetic stimulation (LIMS)
has therapeutic potential in the treatment of neurological disorders. However, the underlying of LIMS
effects remain poorly understood because LIMS does not directly generate action potentials. We aimed
to elucidate these mechanisms by studying and systematically comparing the neurochemical changes
induced in vitro by LIMS. To this end, we developed a simple in vitro magnetic stimulation device that
allowed delivery of a range of stimulation parameters in order to generate sufficient field intensity for
the subthreshold. In characterizing our custom-built system, we conducted computational simulations to
determine the electromagnetic field exposure to a cell culture dish. Subsequently, using the custom-built
LIMS system, we applied three different stimulation protocols to differentiated neuroblastoma cells for
30 min and then assessed the resultant neurochemical changes. We found that high-frequency (HF: 10 Hz)
stimulation increased levels of the excitatory neurotransmitter, glutamate, while low-frequency (LF: 1 Hz)
stimulation increased levels of the inhibitory neurotransmitter, GABA. These results suggest that LIMS
effects are frequency-dependent: suppression of neuroexcitability occurs at LF and facilitation occurs at
HF. Furthermore, we observed pattern-dependent changes when comparing repetitive high-frequency (rHF)
and intermittent high-frequency (iHF) stimulations: iHF took more time to induce neurochemical change
than rHF. In addition, we found that calcium changes were closely associated with glutamate changes in
response to different stimulation parameters. Our experimental findings indicate that LIMS induces the
release of neurotransmitters and affects neuronal excitability at magnetic field intensities far lower than
suprathreshold, and that this in turn induces action potentials. Therefore, this study provides a cellular
framework for understanding how low-intensity magnetic stimulation could affect clinical outcomes.

INDEX TERMS Calcium, GABA, glutamate, neurotransmitter, subthreshold.

I. INTRODUCTION
Magnetic stimulation of body tissues and organs was first
described by Barker, 1985 [1]. The operating principle of
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magnetic stimulation is based on electromagnetic induction,
which is described on Faraday’s law: a time-varying mag-
netic field produces an electric field in conductive materials
such as human body. In recent years, magnetic stimulation
technique has shown significant experimental and therapeutic
potential in the treatment of neurological and psychiatric
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disorders by stimulating the central nervous system [2]–[4]
or pain relief and in bone generation [5] by stimulating the
peripheral nervous system [6]. Currently, the standard clinical
application of magnetic stimulation is primarily based on
suprathreshold stimulation, in which high-intensity fields (i.e.
magnetic field range: 1-2 T; electric field: >100 V/m) are
used to directly trigger action potentials and depolarize the
cell membrane. Despite its significant therapeutic potential,
the classical high-intensity magnetic stimulation system is
composed of a very large, heavy, and complex system struc-
ture: it requires a cooling system as well as thick coils to
withstand the heat generated by the strong electromagnetic
field.

As an effort to advancemagnetic stimulation, low-intensity
magnetic stimulation (LIMS; magnetic field range: µT-mT;
electric field: <1 V/m) and its therapeutic effects have been
studied in recent decades [7]–[12]. In comparison to the
classical high-intensity stimulation system, LIMS has the
advantage of scaled-down system size as well as simple
and cost-effective production [13]. In addition, LIMS is
a subthreshold stimulation technique because it does not
generate a sufficiently high electric field to directly evoke
an action potential and depolarize the neuron [14], [15],
but rather it modulates neuronal output [16], [17]. Previ-
ous experimental studies suggest that low-intensity mag-
netic exposure could indirectly affect almost all cerebral
functions including motor control [18], sensory percep-
tion [19], cognitive activities [20], and mood [10]. These
findings are supported by the results of neurophysiolog-
ical studies that have revealed measurable changes in
brain electrical activity following low-intensity magnetic
exposure [21]–[24].

There is evidence that LIMS can modulate brain func-
tion in humans [12] and in animal models [24]; however,
the cellular and molecular mechanisms underlying the ther-
apeutic effects of LIMS remain poorly understood. A few
in vitro and ex vivo studies have demonstrated that LIMS
alters gene expression [25], intracellular calcium con-
centrations in non-neuronal cells [26]–[28] and neuronal
cells [29], neurobiological changes [30], neuronal excitabil-
ity [31], and cellular metabolic and biochemical profiles [32].
However, it is still unknown whether LIMS provides facil-
itation or suppression effects depending on the stimulation
protocol. In clinical applications of high-intensity magnetic
stimulation (HIMS), the effects are critically dependent on
stimulation parameters, including frequency and intensity of
stimulation [2]–[4], [33], [34]. For instance, high-frequency
(HF: >5 Hz) stimulation results in facilitation of neuronal
activities, whereas low-frequency (LF: <1 Hz) stimula-
tion reduces neuronal activities [35], [36]. In a previous
study, Hong et al. [32] measured the depletion of metabo-
lites, which may involve an increase in GABA release, and
showed that stimulation at 1 Hz is stronger with respect
to these effects than 10-Hz stimulation, but did not iden-
tify the frequency-dependent effect correlated with neuronal
excitability. In addition, the low-intensity fields are too weak

to directly trigger action potential and the neurochemical
changes may thus not be immediate but rather cause an
increase in excitability by reducing action potential threshold
and increasing spike firing potential [31]. In a recent study,
Poh et al. [37] investigated changes in neurochemicals in
brain homogenates immediately after low-intensity (12 mT)
and high-intensity (1.2 T) repetitive magnetic stimulation at
10 Hz for 10min; however, they found statistically significant
changes in the levels of compounds following HIMS but not
after LIMS (relative to the sham control group). To better
understand the mechanisms underlying LIMS and increase
its utilization, it is necessary to conduct a parametric study in
a controlled environment and analyze the data quantitatively
not only immediately after stimulation for a longer time but
also for longer periods of time.

In the present study, we aimed to identify the neurochem-
ical changes over time after stimulation and to reveal the
protocol-dependent effect of LIMS. Specifically, we aimed
to examine the changes in the levels of excitatory and
inhibitory neurotransmitters, glutamate and γ -aminobutyric
acid (GABA), respectively, which are most likely to pro-
duce neuromodulation effects [38]. We expected that LF
stimulation would be associated with increased GABA
concentrations and HF stimulation would be associated
with increased glutamate concentrations, consistent with the
HIMS frequency-dependent effect. In order to conduct an
in vitro experiment, we designed and fabricated a simple
magnetic stimulation device. Our custom-built system can
be easily duplicated and adapted to specific culture condi-
tions for future research. Furthermore, the field levels created
by our system were fully characterized using a computa-
tional electromagnetic modeling technique. To thoroughly
investigate the neurochemical changes induced by LIMS,
we used three different stimulation LIMS protocols and
assessed the resultant metabolic changes that occurred with
each one.

II. MATERIALS AND METHODS
A. CELL CULTURE
A neuroblastoma cell line (SH-SY5Y; Korean Cell Line
Bank, 22266) was plated on 10 µg/ml laminin-coated 48-
well plates at a density of 5 × 104 cells per well. First, cells
were cultured in MEM medium (Gibco) supplemented with
10% fetal bovine serum (Sigma Aldrich), 25 mM HEPES
(Gibco), and 1% penicillin and streptomycin (Gibco) for
proliferation at 37◦Cwithin a CO2 incubator (5%CO2+ 95%
air). To differentiate cells into neuronal cells, we changed
the media to serum free MEM containing 50 nM IGF- 1 and
incubated the cells for at least 72 h [39]. Although primary
cultures of neurons from the cerebellum and cortex of rats
have previously been used to study the release of glutamate
and GABA, it is difficult to obtain a sufficient number of
cells and characterize protein-protein interactions of neuronal
type. Neuronal-like cell lines are also commonly employed
for various research purposes instead of primary neurons, and
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FIGURE 1. (a) A schematic diagram of the in vitro low-intensity magnetic stimulation system. (b) Side-view of the coils.
(c) Computationally modeled YZ plane (sagittal) of the magnetic field strength (mT; colors) and vector (arrow) from the coil.
(d) Computationally modeled XY plane (axial) of the electric field strength (V/m; colors) and vector (arrow). The cycliners indicate the
position of the 48-well cell culture plate and each cylinders is filled with a conductivity of 1.8 S/m. (e) The axial view of the electric
field distribution in 12 wells selected to seed cells (left) and example of a zoom-view of a cell-seeding well (right).

thus, we used SH-SY5Y cells, which express several neuronal
phenotypes [40] and possess a number of endogenous neu-
ronal receptors [42].

B. DEVELOPMENT OF THE MAGNETIC STIMULATION
SYSTEM
We developed an in vitro magnetic stimulation system that
could deliver constant current to the stimulation coil and
allow for the adjustment of parameters such as pulse width,
frequency, and amplitude (Fig. 1). Such parameters could

be easily adjusted using the integrated waveform generator
(33600A Series; Keysight). The circuit of the power amplifier
(EVAL127; PowerAmp Design), which was based on the
improved Howland current pump, converted the waveforms
into a constant current source to the coil. During stimulation,
the output waves to the coil were monitored using an oscillo-
scope (DPO 3032; Tektronix).

The coils were constructed with litz wire (USTC Wire,
0.12 mm/200) to improve coil efficiency [41]. As shown in
Fig. 1, there are four parallel coils in two pair configurations,
and each pair is organized similar to a Helmholtz coil for
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generating the required intensity of an electromagnetic field.
When active, the electric current flowed through each coil in
the same direction to form a strong magnetic field along the
z axis. A pair of outer coils was constructed to a size that fits
the cell culture plate’s width (outer diameter: 80 mm; inner
diameter: 40 mm; number of turns: 30) for covering most
wells of the plate. A pair of inner coils, which were smaller
than the outer coils (outer diameter: 60 mm; inner diameter:
20 mm; number of turns: 30), was inserted closer to the cell
culture plate to form a stronger field. The coil holder was
created by a 3D printer. The distance between Coil 1 and
Coil 2 was 15 mm, and that between cell culture plate and
Coil 2 was also 15 mm. The height, width, and length of the
total fixture were 91 mm, 130 mm, and 120 mm, respectively.

Using a computational electromagnetic simulation run
by the Magneto Quasi-static Solver of Sim4life software
(ver. 4.0), we confirmed that our fabricated coil could gen-
erate the required field intensity. Subthreshold studies were
conducted in the next field range: an electric field ≤ 1 V/m;
a magnetic field ≤10 mT. Additionally, we aimed to cre-
ate a magnetic field perpendicular to our culture cell; thus,
the electric field would be parallel to the cell. According
to previous studies, excitation is much more likely if the
electric field is in the direction of the primary axis of the
neuron [42], [43]. The cells were seeded into only 12 wells
of the 48-well plate (Fig. 1e) to ensure that the electric field
was as strong and uniform as possible (this was necessary
because neuron excitability is ultimately modulated by the
electric field induced by the magnetic field). The conductiv-
ity of cell culture medium was measured as 1.8 S/m using
a conductivity meter (CP-50N; Istek, Inc.), and this value
was used as a simulation parameter. In addition, we ensured
that coil temperature did not rise above 1◦C, ruling out the
confounding effect of temperature change using Sim4life,
a thermal solver.

C. EXPERIMENT PROTOCOL
The stimulation was applied with the coils and cells inside
a clean bench. The control group (unstimulated) was left on
a clean bench for 30 min without stimulation. Three stim-
ulation protocols were used: repetitive high-frequency stim-
ulation (10 Hz, 18,000 pulses), intermittent high-frequency
(10 Hz, 1800 pulses), and low-frequency (1 Hz, 1800 pulses),
as described in Table 1. The applied stimulation parame-
ters matched those routinely used in clinical high-intensity

TABLE 1. Parameters of three stimulation protocols (LF: low-frequency;
rHF: repetitive high-frequency; iHF: intermittent high-frequency).

FIGURE 2. Schematic diagram of the experimental protocol and
stimulation waveforms (LF: low-frequency; rHF: repetitive
high-frequency; iHF: intermittent high-frequency).

stimulations [34], [44]. In all protocols, the current applied
to the coils was 10 A, peak to peak.

We evaluated the expression of cells at a total of four time
points: baseline, right after stimulation, 1 h after, and 3 h after
(Fig. 2). As mentioned previously, we stimulated the 12 wells
at once (Fig. 1e). The medium was replaced at baseline point
for every well. We then collected the cell culture medium for
each four time points at randomly selected 3 wells of 12 sam-
ple wells described in Fig. 1e, respectively. We repeated this
experiment twice; therefore, the sample size is six for each
time points of stimulus condition or control. To stabilize
the cell conditions and assess changes over 1 h (similar to
the baseline measurement), the cells were left untouched
in the medium for 30 min before stimulation (pre-stimulus
after baseline in Fig. 2) and then the stimulus was applied
for the next 30 min (stimulus: Fig. 2). After removing the
medium from each well, the cells were immediately stained
with Trypan Blue for measuring the change in cell number.

D. NEUROCHEMICAL ASSESSMENT
The concentration of glutamate in the collected medium was
quantified by colorimetric assays (MAK004; SigmaAldrich).
The concentration of GABA in the collected medium was
evaluated by ELISA assay (OKEH02564; Aiva Systems
Biology). Data of glutamate and GABA were collected by
measuring the absorbance at 450 nm using a microplate
spectrophotometer (Multiskan GO; Thermo Scientific) and
analyzed using a standard curve. Similarly, the concentration
of calcium in the collected medium was evaluated by col-
orimetric assays (MAK022; Sigma Aldrich). However, data
were collected by measuring absorbance at 575 nm using a
microplate spectrophotometer. A blank sample was included,
and all samples and standards were duplicated.

E. QUANTIFICATION OF CELLS
Trypan Blue staining was performed to count live cells
following stimulation and at each time point after collecting
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FIGURE 3. Mean variations ± SD (n = 6) in glutamate concentrations. (a) Trends in glutamate levels following stimulation. Mann–Whitney tests were
performed to compare levels against the baseline for each group (LF: low-frequency; rHF: repetitive high-frequency; iHF: intermittent high-frequency;
∗p < 0.05, ∗∗p < 0.01). (b) Change rates of glutamate. Mann–Whitney tests were performed to compare the sham control against each stimulus group.

the medium. For staining, we detached the cells using tryp-
sine/EDTA (0.25%) just after collecting the medium for
other chemical assay assessments. Subsequently, we dyed the
cells with Trypan Blue and counted the live cells using a
hemocytometer.

F. STATISTICAL ANALYSIS
All data are given as the mean ± SD. The average of
pre-stimulus data was set to 100% as the baseline for each
group (i.e. control, LF, rHF, and iHF) per each experiment.
The statistical difference in results was confirmed using the
Mann–Whitney test. P values <0.05 were considered to be
significant.

III. RESULTS
A. CHANGE IN GLUTAMATE LEVEL
HF-LIMS induced significantly increased glutamate con-
centrations, whereas LF-LIMS induced decreased glutamate
concentrations (Fig. 3). Following LF stimulation, glutamate
decreased immediately after stimulation and recovered to
baseline over time. Following rHF stimulation, glutamate
concentration tended to increase steadily and significantly
in a continuous manner from immediately after to 3 h after
stimulation. Following iHF stimulation, the amount of glu-
tamate did not show any change, but it increased 3 h after
stimulation.

In order to exclude any effects of being outside the
incubator for 30 min, the change rates of the stimulation
groups were compared to that of the control group (Fig. 3b).
Following LF stimulation, glutamate concentration decreased
immediately after stimulation (20.9%± 10.9% decrease) and
then increased to levels that were not significantly different
from the control. After rHF stimulation, glutamate increased

by 19.1% ± 12.2% right after stimulation, 51.2% ± 18.0%
1 h after, and 74.9% ± 17.7% 3 h. Following iHF stimu-
lation, glutamate concentration first remained constant and
then increased rapidly 3 h after stimulation (63.0% ± 16.1%
increase).

B. CHANGE IN GABA LEVEL
Remarkably, GABA concentrations tended to increase after
LF stimulation, whereas they tended to decrease after HF
stimulation (Fig. 4). Following LF stimulation, GABA con-
centrations began to increase immediately after stimulation
and showed a significant change 1 h after and continued to
significantly increase thereafter compared to baseline. In con-
trast, GABA values decreased 1 h after rHF stimulation and
3 h after stimulation.

We also compared the change rate between the control
group and stimulated group (Fig. 4b). Specifically, after
LF stimulation, the change rate in GABA showed statisti-
cally significant increase of 1.6% ± 3.0% immediately after,
10.5% ± 8.5% 1 h after, and 15.9% ± 4.7% 3 h after
stimulation. However, there were no statistically significant
differences between the control and both HF groups, with
one exception: 1 h after rHF stimulation (15.6% ± 7.0%
decrease).

C. CHANGE IN CALCIUM LEVEL
The concentrations of Ca2+ decreased in the LF group and
increased in the HF groups compared to the control (Fig. 5).
With LF stimulation, Ca2+ levels gradually decreased and
reached levels that were statistically different to the con-
trol after 3 h. In the rHF group, Ca2+ levels significantly
increased immediately after stimulation; in the iHF group,
Ca2+ levels significantly increased after 1 h of stimulation.
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FIGURE 4. Mean variations ± SD (n = 6) in calcium concentrations. (a) Trends in calcium levels following stimulation. Mann–Whitney tests were
performed to compare levels against the baseline for each group (LF: low-frequency; rHF: repetitive high-frequency; iHF: intermittent high-frequency;
∗p < 0.05, ∗∗p < 0.01). (b) Change rates of calcium. Mann–Whitney tests were performed to compare the sham control against each stimulus group.

FIGURE 5. Mean variations ± SD (n = 6) in GABA concentrations. (a) Trends in GABA levels following stimulation. Mann–Whitney tests were performed
to compare levels against baseline for each group (LF: low-frequency; rHF: repetitive high-frequency; iHF: intermittent high-frequency; ∗p < 0.05,
∗∗p < 0.01). (b) Change rates of GABA. Mann–Whitney tests were performed to compare the sham control against each stimulus group.

Compared to the change rate of the control group,
Ca2+ concentrations decreased significantly 3 h after LF
stimulation (7.1% ± 4.6% decrease). However, with rHF
stimulation, the Ca2+ concentrations significantly increased
right after (6.3% ± 4.2%), 1 h after (7.7% ± 3.4%),
and 3 h after (7.9% ± 0.8%) stimulation relative to the
baseline. With iHF stimulation, the Ca2+ concentrations
showed a significant increase 1 h after (7.1% ± 3.5%)
and 3 h after (17.7% ± 8.1%) stimulation compared to the
baseline.

D. CHANGE IN THE NUMBER OF CELLS
There were no significant differences in the number of
cells counted pre-stimulation and post-stimulation (Fig. 6).
Therefore, the low-intensity electromagnetic field apparently
did not significantly induce cell death or proliferation during
our experiment.

IV. DISCUSSION
Magnetic stimulation has been rapidly accepted as a
non-invasive and easy-to-use therapeutic modality, but its
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FIGURE 6. Mean variations ± SD (n = 6) in number of cells at each time
point (baseline, right after, 1 h after, 3 h after). Mann–Whitney tests were
performed to compare between the pre-stimulus and post-stimulus data
for each group (LF: low-frequency; rHF: repetitive high-frequency; iHF:
intermittent high-frequency).

biological effects remain poorly characterized owing to most
studies of magnetic stimulation having been performed in
humans in which the cellular and molecular changes could
not be adequately measured. While LIMS has recently
received interest as a therapeutic method, the cellular and
neurochemical mechanisms underlying its therapeutic effects
are yet to be documented. Furthermore, the protocol of high-
intensity stimulation is restricted according to its purpose and
safety consideration. To our knowledge, this study is the first
to demonstrate the protocol specific neurochemical changes
of LIMS over time.

To conduct this study, we designed and constructed a
scaled-down stimulation system suitable for in vitro exper-
iments. This system can be tailored to meet the requirements
of subthreshold stimulation intensity and it enables easy
alteration of the important stimulation parameters. The main
advantage of our system is that it can be easily built in a lab
environment because of its simple structure. As previously
stated, it permits relatively easy and fast changes to stimula-
tion parameters, and, to achieve this, the basic design of the
electronic circuit does not need to be altered; thus, the system
has increased applicability to a range of experimental
requirements.

Our in vitro experiments with the custom-built LIMS sys-
tem confirmed that subthreshold magnetic stimulation could
induce changes in neurochemical metabolites, namely gluta-
mate, GABA, and Ca2+. In particular, glutamate and GABA
were the main excitatory and inhibitory neurotransmitters,
respectively. The alternation of neuronal excitability may be
influenced by changes in neurotransmitter turnover favor-
ing (1) an increase in release, (2) reduced efficiency of the
uptake system, or (3) both. As shown by previous studies
of TMS, which is a commonly used high-intensity stimula-
tion technique in clinics, LF stimulation induces inhibitory
effects, whereas HF stimulation is associated with excitatory
effects [34], [35]. The results of our study are in agreement
with the data from TMS studies in which neurochemical
change was measured.

Our results confirmed that LIMS also has a frequency-
dependent effect. We demonstrated that LF stimulation
induced the higher levels of the inhibitory neurotransmitter,
GABA, and lower levels of the excitatory neurotransmitter,
glutamate, detected compared to the control. Conversely,
HF stimulation increased the level of excitatory neurotrans-
mitter and decreased the level of inhibitory neurotransmitter.
The observed changes to Ca2+ concentration showed a sim-
ilar trend to that shown by glutamate and contrary to that
shown by GABA. The possibility that the effect of LIMS
is determined by the stimulation parameter, such as fre-
quency, rhythm, and number of pulses, was also discussed by
Zhang et al. [28], but they did not match the number of pulses
with those used in a different protocol. However, although
iHF (10 Hz; 18000 pulses) and LF (1 Hz; 18000 pulses) deliv-
ered the same number of pulses, we showed that the neuro-
chemical change in iHF showed a trend similar to that in rHF
(10Hz; 180000 pulses) and opposite to that in LF. Our results
showed that LF-LIMS has inhibitory effects and HF-LIMS
has excitatory effects, which is consistent with the study by
Tang et al. [31], who found that 1 Hz has a stronger effect in
neuronal cells with an inhibitory phenotype than 10 Hz.

We also found that the response time to stimulation
depended on the stimulation pattern at the same frequency.
Overall, the neurochemical profile changes observed for iHF
took longer than those of rHF. LIMS induces subthreshold
changes in membrane potential and thereby influences the
level of excitability instead of eliciting an action poten-
tial [30]. Therefore, one possible explanation is that the
changes induced by iHF are slower than those induced by
other stimulus groups that involve continuous stimulation
because the membrane potential is likely to slightly recover
during the intertrain interval of iHF. This delay due to inter-
train agreed with the results of Vlachos et al. [45] although
they used a much higher intensity, a significant increase in
miniature excitatory postsynaptic potential amplitude was
detected after 2 h of stimulation and the amplitude returned
to baseline after 6 h of stimulation when a stimulation pro-
tocol with 30 s intertrain was used. On the other hand,
it may have a faster response because rHF delivers more
pulses per hour. Zhang et al. [28] also suggested that the
rhythm with which the pulses are delivered is fundamental to
LIMS effect. In summary, our study confirms the hypothesis
that LIMS has various effects depending on the parame-
ters. Therefore, it means that appropriately designed LIMS
protocols may generate highly adaptable therapies to treat
a wide range of neurological conditions by modulating the
levels of biochemical substances that play a role in neuronal
processes [46], [47].

One limitation of this study is that we focused only on
extracellular neurochemical concentrations in the cell culture
medium. That being so, it remains unclear whether the neuro-
chemical changes we reported arose as a direct consequence
of the release of the substances or as secondary effect related
to re-uptake or both.We can speculate that our results, i.e., the
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chemical changes in intracellular stores rather than an influx
from the extracellular medium, are based on the assumption
that Ca2+ and other chemicals behave similarly [28]. Another
limitation is that our experiment did not assess changes that
occurred >3 h after stimulation; thus, we cannot confirm
how long the neurochemical changes last. Vlachos et al. [45]
showed that the repetitive magnetic stimulation-induced
increase in excitatory synaptic strength of CA1 pyramidal
neurons returns back to baseline levels around 6-8 h after
stimulation. Additionally, experimental evidence indicates
that repetitive TMS can change the excitability of the human
cortex for hours after the stimulation period [48]. Therefore,
and extended investigation, in which neurochemical changes
are measured until their levels return to the baseline value,
is warranted.

Despite these limitations, our study provides valuable
insights into the functional aspects of neurochemical change
following LIMS. Our finding of the protocol-dependent
effects of LIMS, suppression, or facilitation in neuronal
excitability suggest the possibility of it clinical use because
the frequency of stimulation has always been considered as
the main determinant of the direction of excitability modu-
lation. This study may provide a guide for choosing LIMS
protocol including frequency, pattern, duration, and num-
ber of pulses. We also confirm that LIMS can alter lev-
els of neurochemicals that function in neuronal processes
immediately after stimulation although they have an inten-
sity lower than the threshold that causes the action poten-
tial. Moreover, this modulation of neurochemicals provides
a potential trigger for a wide range of changes in neuronal
biochemistry, which suggests that LIMS may have more as
yet undefined clinical applications. Especially, because the
two neurotransmitter, glutamate and GABA, systems have
been regarded as an important target for many central ner-
vous system diseases [49], [50], LIMS may be responsible
for a potential therapeutic use in a variety of psychiatric
diseases.

V. CONCLUSION
Here, we constructed a novel in vitro LIMS system that
could be applied in a variety of future lab-based experiments
because of its size, ease-of-use, and adaptability. Using this
system, we assessed the changes to glutamate, GABA and
calcium concentrations from cell culture media at three dif-
ferent time points after a single 30-min stimulation session
and at pre-stimulation. Our results showed that LIMS induces
a protocol-dependent effect in that HF stimulation facilitates
neuroexcitability while LF stimulation suppresses neuroex-
citability. Our findings provide useful insights that improve
our understanding of the cellular mechanisms underlying the
therapeutic effects of LIMS
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