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ABSTRACT With Android’s dominant position within the current smartphone OS, increasing number
of malware applications pose a great threat to user privacy and security. Classification algorithms that
use a single feature usually have weak detection performance. Although the use of multiple features can
improve the detection effect, increasing the number of features increases the requirements of the operating
environment and consumesmore time.We propose a fast Androidmalware detection framework based on the
combination of multiple features: FAMD (Fast Android Malware Detector). First, we extracted permissions
and Dalvik opcode sequences from samples to construct the original feature set. Second, the Dalvik opcodes
are preprocessed with the N-Gram technique, and the FCBF (Fast Correlation-Based Filter) algorithm
based on symmetrical uncertainty is employed to reduce feature dimensionality. Finally, the dimensionality-
reduced features are input into the CatBoost classifier for malware detection and family classification. The
dataset DS-1, which we collected, and the baseline dataset Drebin were used in the experiment. The results
show that the combined features can effectively improve the detection accuracy of malware that can reach
97.40% on Drebin dataset, and the malware family classification accuracy can achieve 97.38%. Compared
with other state-of-the-art works, our framework achieves higher accuracy and lower time consumption.

INDEX TERMS Android malware, CatBoost, Dalvik opcode, malware detection.

I. INTRODUCTION
In the past ten years, advancements in mobile internet tech-
nology have changed the lifestyles of countless users and
have also brought tremendous changes to the proceedures
used in various industries, such as governments and enter-
prises. However, a series of security risks have arisen in
mobile internet technology. Malware applications are hid-
den in smart terminals, such as information leaks, Trojan
horses, push advertising, and pose threats to user privacy.
International Data Company (IDC) [1], estimates, estimates
that Android’s smartphone market share will hover around
86% in 2020. In 2019, Kaspersky’s report [2] showed that

The associate editor coordinating the review of this manuscript and

approving it for publication was Roberto Pietrantuono .

3,503,952 malicious installation packages were found in its
mobile terminal products. The number of attacks on mobile
devices increased by 50% in 2019, from 40,386 in 2018 to
67,500 in 2019. In addition to spyware and Trojans in tradi-
tional network security, the usage of stalkerware on mobile
devices is growing. Due to the large number of Android
malware, the fast update speed and the constant emergence
of new types of malware, it is always challenging to study
how to effectively detect malware, reduce the detection time
and improve the detection efficiency.

Android malware detection research mainly includes two
aspects. The one is the detection features, which include
requested permissions, API calls, Dalvik opcodes, and inter-
component communication. Different features or combined
features are employed to detect malicious applications.
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The other is the detection methods, which use different
machine learning methods or combinations of methods as
classifiers, such as SVM (Support Vector Machine), KNN
(K-NearestNeighbor), RF (Random Forest), and deep learn-
ing methods, to identify the different behavior patterns, and
establish detection systems. The purpose of these studies is
to improve the accuracy of malware detection with the hope
that the methods are effective in practice.

In order to achieve the above purpose, we propose a fast
Android malware detection framework, FAMD, that com-
bines multiple features and uses a classification technique
to detect malware and classifiy malware families. It uses
permissions and Dalvik opcodes as classification features
and further uses the FCBF algorithm to process the fea-
tures to construct low-dimensional feature vectors. Finally,
the machine learning framework CatBoost based on the gra-
dient boosting decision tree is used as the classifier to perform
the classification of malware. The main contributions of this
paper are as follows.
• We propose a fast Android malware detection frame-
work, FAMD, which includes three parts: constructing a
malware detection feature set, preprocessing the features
for dimensionality reduction, and performing malware
detection and family classification on the processed fea-
tures. The purpose is to improve the accuracy ofmalware
detection while reducing the feature dimensions.

• In terms of feature preprocessing, because the sequences
of Dalvik opcode are segmented by the N-Grammethod,
the feature dimension is high. We use the FCBF algo-
rithm to reduce the dimension of the features from
2467 to 500.

• CatBoost is adopted as the classifier for the first time
in Android malware detection and family classification.
Compare with other GBDT-based methods, CatBoost
can solve the problems of gradient bias and prediction
shift, thus reducing the occurrence of over-fitting and
improving the classification accuracy and the general-
ization ability of the model.

The rest of the paper is organized as follows. Section II
introduces related research on Android malware detection.
Section III presents the framework FAMD, and gives the
implementation of each part of the framework. Then, section
IV provides more details of our framework implementation
and discusses FAMD’s evaluation results. Finally, section V
concludes the paper.

II. RELATED WORK
A. STATIC ANALYSIS AND DYNAMIC
ANALYSIS OF MALWARE
The current research on Android malware detection can be
divided into static analysis and dynamic analysis from the
perspective of feature extraction. Static analysis refers to the
analysis of the source code or the analysis of the features
extracted from the source code. This method can analyze
a program’s source code without the application being exe-
cuted. The static analysis includes decompilation, reverse

analysis, pattern matching, and static system call analysis.
The advantages of static analysis are low resource consump-
tion, fast detection, and low real-time requirements, and the
disadvantage is that the detection accuracy is relatively low.

The static analysis method is the most commonly used
method in current research. Enck et al. [3]designed a set of
security rules that use a signature-based approach to detect
the application being evaluated. Saracino et al. [4] proposed
a host-based malware detection system for Android devices
called MADAM, which simultaneously analyzes and corre-
lates features at the kernel level, application level, user level
and package level to detect and prevent malicious behav-
ior. Kim et al. [5] proposed framework usage permissions,
strings, API calls, and other features to reflect the various
characteristics of applications from various aspects. Their
feature vector generation method consists of an existence-
based method and a similarity-based method, and these are
very effective in distinguishing between malware and benign
applications, even though malware has many properties that
are similar to those of benign applications. In addition,
Zhang et al. [6] keep the abstracted API calls of function
methods to form a set of abstracted API calls transactions
and calculate the confidence of association rules between
the abstracted API calls. Combine machine learning to iden-
tify the different behavior patterns, and establish a detection
system. The framework of MaMaDroid [7] constructs the
sequence obtained in the API call graph as a Markov chain
to detect malware from the perspective of behavior.

Dynamic analysis covers a family of methods based on
analyzing the runtime behavior of an application. It is usually
necessary to run the application in a specific environment to
monitor the application’s access to the network, system calls,
files and memory, information access patterns, and process-
ing behaviors. Dynamic analysis judges the maliciousness
of an application by analyzing whether the abovementioned
behaviors are normal. The advantage of dynamic analysis is
that it is not affected by code obfuscation and encryption
and can analyze an application based on its malware-like
behavior. However, it consumes system more resources and
requires analysts with high technical capabilities, which is not
conducive to large-scale applications in testing.

In 2014, Enck et al. [8] proposed a dynamicmalware detec-
tion tool, TaintDroid, which labeled a variety of sensitive
data, and then monitored the flow path of these contami-
nated sensitive data in a sandbox environment in real-time to
determine whether the application had malicious behaviors
of privacy data leakage. RansomProber [9] can infer whether
the user initiated the file encryption operation by analyzing
the user interface widgets of related activities and the user’s
finger movement coordinates and has a good effect in detect-
ing encrypted ransomware. Cai et al. [10] used a variety of
dynamic features based on method calls and inter-component
communication (ICC) intents to achieve better robustness
than static analysis and dynamic analysis, which depends
on system calls. Yerima et al. [11] proposed and investigate
approaches based on stateful event generation and provided
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much better code coverage, which leads to more accurate
machine learning-based malware detection.

There are also some studies combine static and dynamic
features. Yuan et al. [12] used the requested permissions,
suspicious API calls, and dynamic behaviors with a total
of 202 features to build a complete deep learning model.
Tam et al. [13] proposed CopperDroid, which can capture
operations initiated in Java and the native code execution to
reconstruct the behavior of Android malware based on the
automatic dynamic analysis system in VMI (virtual machine
introspection).

B. FEATURES OF ANDROID MALWARE DETECTION
1) PERMISSION FEATURES
According to Android mechanism, every Android appli-
cation runs in a limited-access sandbox. If an applica-
tion needs to use resources or information outside of its
own sandbox, the application has to request the appropriate
permissions. Therefore, malware can be found by view-
ing the permissions declared in the AndroidManifest.XML
file. Permission features can be divided into two types:
official permissions and custom permissions. There are
166 official permissions defined by Android [14], such as
android.permission.INTERNET, which allows applications
to open network sockets. All developers can request these per-
missions. By defining custom permissions, an application can
share its resources and capabilities with other applications.
For example, if a developer wants to prevent certain users
from launching an activity in an application, the developer
can define custom permissions to achieve this. After the
permissions are defined, they can be referenced as part of the
component definition.

Android’s permission features can reflect the behavior of
the application in a certain sense. Sanz et al. [15]used the per-
missions as features and combined them with machine learn-
ing algorithms to detect Android malware. Wang et al. [16]
systematically analyzed the risk of each individual permis-
sion and the risk of a group of collaborative permissions
by employing machine learning techniques. Talha et al. [17]
implemented a permission-based Android malware detec-
tion system, APK Auditor, which can achieve 88% accuracy
and 92.5% specificity. Li et al. [18] proposed a multi-level
data pruning method, SIGPID, which includes negative-rate
permission sorting, association-rule permission mining, and
support-based permission sorting to extract significant per-
missions strategically. When using SVM as the classifier,they
can achieve over 90% of precision, recall, accuracy, and
F-measure.

2) DALVIK OPCODE FEATURES
Dalvik is a virtual machine that was used to run Android
applications in early Android systems. Every time it runs,
it dynamically interprets a part of Dalvik bytecode asmachine
code. After Android 5.0, the Dalvik virtual machine (DVM)
was replaced byAndroid Runtime (ART), but the compilation
method of the underlying opcode is still compatible. These

opcodes can reflect the behavior pattern of an application to
a certain extent by means of the underlying machine code,
so they are often used as static analysis features.

Jerome et al. [19] used N-Gram-based opcodes as fea-
tures to detect malware and classify malware families.
McLaughlin et al. [20] proposed using a deep convolutional
neural network to automatically learn from the original
opcode sequence, thereby eliminating the need for manu-
ally designed malware features. Zhang et al. [21] extracted
several global topology features from the Dalvik opcode
graph of each sample to represent malware. This method
achieves better detection efficiency and robustness. Pektaş
and Acarman [22] extracted the instruction call graph from
a malicious application and derived an instruction call
sequence to represent Android malware. The accuracy of the
proposed malware detection method reached 91.42%. The
model proposed by Egitmen et al. [23] extracts skip-gram-
based features from the instruction sequence of an appli-
cation, and a word embedded vector is generated for each
unique opcode to realize the high-level representation of the
opcode sequence, and it is used as the input feature of the
detection model.

3) OTHER FEATURES
In addition to permissions, Dalvik opcodes, Android malware
detection features also include API calls [24]–[26], control
flow graphs (CFGs) [27], component information, and hard-
ware information. For example, the API Getdeviceid() can be
used to access sensitive data and obtain the user’s device ID.
Therefore, it is also an effective method to detect the mali-
ciousness of the application by studying the application’s API
calls. Zhang et al. [28] represented opcodes with a bi-gram
model and represented API calls with a frequency vector.
Then, they used principal component analysis to optimize the
representations and to improve the convergence speed.

Since attacks may specifically evade detection by avoid
using certain permissions or API calls, employing a single
kind of feature in malware detection may affect the results.
Some works used combined features to detect malware.
Arp et al. [29] performed extensive static analysis and col-
lected as many application features as possible. These
features are embedded in a joint vector space, which can auto-
matically identify typical patterns that represent malware.
ICCDetector [30] uses captured interactions between compo-
nents within an application or across application boundaries
as features to detect malware. Alazab et al. [31] com-
bined request permissions and API calls. Compared with
benign applications, malicious applications call a different
set of API calls. Malware usually requests dangerous per-
missions to access sensitive data more frequently than benign
applications.

The purpose of adopting multiple types of features is
to improve the detection effect. However, the combination
of multiple features will increase the feature dimensions,
making the classifier consume much time in the operation
process and not detect efficiently. Therefore, reducing the
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FIGURE 1. Framework of FAMD.

time consumed in malware detection is also a focus of
research. Applying appropriate feature selection methods to
reduce the features’ dimensions is a solution to this problem.

III. DESIGN AND IMPLEMENTATION OF FAMD
A. THE FRAMEWORK OF FAMD
FAMD is a fast Android malware detection framework based
on multifeature combination. We combine the permission
features and Dalvik opcode features from different levels of
the operating system. To deal with the high dimensionality
problem emerged after feature combination, the feature selec-
tion method is used to reduce the dimensionality, thereby
reducing the classification consumption and achieving the
purpose of being fast. Specifically, the FAMD frameworkwill
be divided into four parts: Android application collection,
feature extraction and preprocessing, feature selection, mal-
ware detection and family classification, as shown in Fig. 1.

• Android application collection. The applications in
this work are collected from an open source dataset and
third-party markets. The collected samples are filtered
by antivirus engine to ensure the purity of the malicious-
ness and normality. The details will be introduced in the
experiment section.

• Feature extraction and preprocessing.We use decom-
pilation tools to extract permissions and original opcode
sequences from the AndroidManifest.XML file and the
classes.dex file. Based on the N-Gram method, the spe-
cific length of the opcode sequence is extracted from
the original opcode sequence, and the feature vector
of each sample is constructed in combination with the
permission features. Finally, we construct the feature
matrix with each application as a row, and each of the
extracted features as a column.

• Feature selection. Since the constructed feature vectors
have high dimensionality which will result in high com-
putational cost and overfitting, we employ the feature
selection techniques to reduce dimensionality. FCBF
algorithm is used to weight the features and construct
the feature subset. The parameters and subset feature
numbers will be decided by experiments.

• Malware detection and family classification. After
distinguishing the malicious samples from benign ones,
dividing malware into families is important to analyze
the behaviors of malware. We use a machine learning
algorithm based on the gradient boosted decision tree,
CatBoost, as the classifier to detect malicious sam-
ples and classify the malware families. The evalua-
tion metrics such as accuracy, precision, TPR, FPR are
used to verify the effectiveness and performance of the
framework.

B. FEATURE EXTRACTION AND PREPROCESSING
1) EXTRACTION OF PERMISSIONS
The purpose of setting permissions is to protect the privacy
of Android users. Android applications must apply for per-
mission to access sensitive user data (such as contacts and
text messages) and certain system functions (such as camera
and Internet). Depending on the function, the system may
automatically grant permissions, or the user may be prompted
to approve the request. Android divides permissions into four
protection levels [32], which affect whether runtime permis-
sion requests are required.
• Normal Permission. This category of permissions cov-
ers situations in which the application needs to access
data or resources outside its sandbox. These situations
pose little risk to a user’s privacy or the operation of other
applications.
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• Dangerous permission. Contrary to normal permis-
sions, if an application should acquire this type of per-
missions, the user’s private data will be exposed to the
risk of tampering.

• Signature permission. This type of permissions is only
open to applications with the same signature. Even if
other applications know this open data interface and they
also register permissions in the AndroidManifest.XML
file, they still cannot access the corresponding data due
to different application signatures.

• SignatureOrSystem permission. This permission cat-
egory is similar to signature permission, but it not only
requires the same signature but also requires similar
system-level applications. This type of permissions is
only used for prefabricated applications developed by
general mobile phone manufacturers.

2) PROCESSING OF DALVIK OPCODE
N-Gram [33] is a method based on statistical language mod-
els. It performs a sliding window operation of size N on the
content of the text, forming a sequence of byte fragments of
length N . Each byte segment is called Gram. The frequency
of occurrence of all Grams is counted and filtered according
to the preset threshold to form a key Gram list, which is the
feature vector space of this text, and each element in the Gram
list is a feature vector dimension.

The N-Gram model is based on the following hypothesis:
the N th word’s appearance is only related to the previous
N − 1 words and is not related to any other words. The prob-
ability of an entire sentence occurring is the product of the
probability of each word occurring. These probabilities can
be obtained by directly counting the number of simultaneous
occurrences of N words from the corpus.

In malware detection, the N-Gram method is often used
to process malicious codes. The N-Gram features are usually
extracted from the application opcode sequences.N is usually
valued at 2, 3, and 4.

The current Dalvik instruction [34] set contains 230
instructions, including the ‘‘Move’’ instruction, ‘‘Invoke’’
instruction, ‘‘Return’’ instruction and so on. Existing studies
have shown that methods based onN-Grams face the prospect
of exponential growth in the number of unique N-Grams as
the value of N increases. Therefore, in this paper, we sim-
plify the opcodes by remove the irrelevant instructions, retain
only the seven core instruction sets, and remove the operands.
The seven instruction sets, M, R, G, I, T, P, and V, represent
seven types of instructions, move, return, jump, judge, read
data, store data, and call methods, respectively. The instruc-
tions are classified and described in Table 1.

According to the above mapping, we use the N-Gram to
segment the opcode sequence extracted from the applica-
tions. The original opcode sequence: ‘‘move-object/from16,
iget-object, invoke-virtual, goto, move-object/from16’’ is
taken as an example. The ‘‘move-object/from16’’ sequence
corresponds to the ‘‘M’’ instruction, ‘‘iget-object’’ corre-
sponds to the ‘‘T’’ instruction, ‘‘invoke-virtual’’ corresponds

TABLE 1. Dalvik instruction mapping table.

to the ‘‘V’’ instruction, and ‘‘goto’’ corresponds to the
‘‘G’’ instruction. Therefore, the sequence is simplified as
‘‘MTVGM’’. Then the 3-Gram features of the sequence are
{MTV},{TVG},{VGM}, the 4-Gram features are {MTVG},
{TVGM}, and the 5-Gram feature is {MTVGM}.

3) CONSTRUCTION OF FEATURE VECTORS
Androguard [35] is a python-based Android analysis tool that
can analyze an Android file structure through decompila-
tion and extract static features. All permissions and opcode
sequences of each application can be extracted from the
AndroidManifest.XML file and the classes.dex file through
Androguard. In this work, in order to limit the dimensional-
ity of feature vectors and ensure the generality of extracted
features, only 166 official permissions are extracted without
considering custom permissions. For the extracted Dalvik
opcode sequence, according to the above mapping table,
an opcode sequence of a specific length is extracted. These
features constitute the initial feature set.

The feature set is numerically simulated in the following
way to construct feature vectors. Assuming an Android appli-
cation a, the feature set constructed from all applications
contains n features, and the feature set is represented by S;
then, the feature vector of application a is represented by
equation (1).

Va = {v1, v2, . . . , vn},

vi =

{
1, vi ∈ a and vi ∈ S, 1 ≤ i ≤ n;
0, otherwise

(1)

Therefore, the feature vector can be expressed as Va =
{0, 1, 0, 0, 1, 0, 1, . . . , 1}, where 1 indicates that the feature
is included in the application and 0 indicates that the feature
is not included. For sample labels, 1 represents malware, and
-1 represents benign.

C. FEATURE SELECTION BASED ON FCBF
Feature selection is the process of selecting a subset of M
features from N feature sets while meeting the condition
M ≤ N . The purpose of feature selection is to remove
the redundant or irrelevant features from a set of features to
reduce the dimensionality.

According to the execution process of the feature selection
algorithm, feature selection can be divided into 3 categories:
Filtermethods rely on the general characteristics of the train-
ing data to select features with independence of any classifier.
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Wrapper methods use the classifier as a black box and the
classifier performance as the objective function to evaluate
the variable subset. Embedded methods want to reduce the
computation time taken up for reclassifying different subsets
which is done in wrapper methods. The main approach is
to incorporate the feature selection as part of the training
process.

FCBF is a fast-correlation filter algorithm proposed by
Yu and Liu [36], Senliol et al. [37] in 2003. It has a wide range
of applications in speech recognition [38], network traffic
classification [39], and other fields because of its fast calcula-
tion. The FCBF algorithm employs symmetrical uncertainty
(SU ) to measure the correlation between two features. The
theoretical basis is that if the SU of feature X and target Y is
high, and the SU of other features and target Y is low, then
feature X is more important and has a higher weight. When
the value of SU between two features is 1, it means that X
and Y are completely correlated; in other words, if X → Y ,
then Y → X . When the value of SU is 0, it means that X and
Y are completely independent.
The SU uses entropy and conditional entropy to calculate

the correlation of features. The entropy of X is:

H (X ) = −
∑
i

P(xi)log2(P(xi)) (2)

and the entropy of X after observing values of another vari-
able Y is defined as:

H (X |Y ) = −
∑
j

P(yi)
∑
i

P(xi|yi)log2(P(xi, yi)) (3)

where P(xi) is the prior probabilities for all values of X , and
P(xi|yi) is the posterior probabilities of X given the values of
Y .IG(X ,Y ) represents the information gain:

IG(X |Y ) = H (X )− H (X |Y ) (4)

Then, SU (X ,Y ) between X and Y is:

SU (X |Y ) =
2IG(X ,Y )

H (X )+ H (Y )
(5)

An example illustrating the process of the FCBF algorithm
is described as the following 7 steps.

Step 1: Calculate symmetric uncertainty SUX i,Y between
feature Xi and target Y .

Step 2: Set threshold δ, if SUX i,Y > δ, add Xi to feature set
Slist and arrange the features in descending order according to
the (SUX i,Y ) values. Suppose that six features X1, . . . ,X6 are
obtained here, SUX 1,Y are the maximum values and SUX 6,Y
are the minimum values.

Step 3: Select feature X1 (the first feature in Slist ) with the
maximum value of SUX i,Y as the main feature Xm.

Step 4: Select featuresX2,X3,X4,X5,X6, whose symmetry
uncertainty (SUX i,Y ) is less than the main feature (SUXm,Y )
in the Slist . Calculate the symmetric uncertainty (SUX i,X m)
between the feature and Xm, and the symmetric uncertainty
(SUX i,Y ) between the feature and the category Y .

Step 5: If SUX i,X m > SUX i,Y , then this feature is proven
to be a redundant feature, and the feature is removed from
Slist . Here, we assume that features X2 and X4 are removed.

Step 6: Add X1 to the feature subset Ssub, choose X3 as the
main feature Xm among the remaining features in Slist .
Step 7: If Slist is not null, repeat the process of Step 5,

suppose that we remove X6 and add X5 to the feature subset
Ssub. If Slist is null, Ssub is the terminal Subset, the selection
is stop.

After the above process, we get the final feature subset
Ssub. Compared with other algorithms, one of the advantages
of the FCBF algorithm is the ability to remove redundant
features. For two featuresX1 andX2, withmutual redundancy,
suppose that X1 has a higher correlation with target Y . After
calculation, feature X1 with the higher correlation with cat-
egory Y is retained, and X2 with the lower correlation will
be removed. At the same time, the more relevant X1 can be
used to filter other features. For a dataset with N features
and M instances, the time complexity is O(MNlogN ), so it
is a fast filtering feature selection algorithm. For the features
generated by the FCBF algorithm, we sort it in descending
order and then select a certain number of features to form the
subset of required features.

D. MALWARE DETECTION AND FAMILY CLASSIFICATION
After using the FCBF algorithm for feature selection, the con-
structed feature subset will be processed by the classifica-
tion algorithm, and the maliciousness of the sample will be
detected. CatBoost [40], [41] is a machine learning library
open-sourced by Yandex in 2017. This algorithm is similar
to XGBoost [42] and LightGBM [43] and is an improved
algorithm based on the framework of the gradient boosting
decision tree (GBDT) algorithm. CatBoost is based on the
oblivious trees algorithm with few parameters, supporting
categorical variables and high accuracy. Compared with other
GBDT-based algorithms, it can process categorical features
efficiently and reasonably. In addition, it can also handle gra-
dient bias and prediction shift problems and improve the algo-
rithm’s accuracy and generalization ability. The CatBoost
algorithm mainly proposes key methods from two aspects,
dealing with category features and ordered boosting.

We usually need to process categorical features before
building a model. Suppose we have a dataset D = (Xi,Yi),
i = 1, 2, . . . , n. Xi = (xi,1 , . . . , xi,m ) is a vector with m fea-
tures, including numerical features and categorical features,
and Yi ∈ R is the label. The most common way to deal with
categorical features in GBDT is to replace them with the
average values of the tags corresponding to the categorical
features. In the decision tree, the label average value will be
used as the criterion for node splitting. This method is called
greedy target-based statistics, and it is expressed by the for-
mula below, where [·] denotes Iverson brackets, i.e., [xj,k =
xi,k ] equals 1 if xj,k = xi,k and 0 otherwise. This procedure
obviously leads to overfitting.∑n

j=1[x j,k = x i,k ] · Y j∑n
j=1[x j,k = x i,k ]

(6)
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CatBoost uses a more efficient strategy that reduces
overfitting and uses the whole dataset for training. Let
σ = (σ 1, . . . , σ n) as the permutation, xσp ,k is substituted
with (7). ∑p−1

j=1 [xσj ,k = xσp ,k ]Y j + a · P∑p−1
j=1 [xσj ,k = xσp ,k ]+ a

(7)

We also add a prior valueP and a parameter a > 0, which is
the weight of the prior. Adding a prior is a common practice
and helps to reduce the noise obtained from low-frequency
categories.

Prediction shift is often a problem that plagues modeling.
In each iteration of GDBT, the loss function uses the same
dataset to obtain the gradient of the current model and then
trains to obtain the base classifier. However, it will lead to
gradient bias and overfitting. CatBoost replaces the gradi-
ent estimation method in traditional algorithms with ordered
boosting, reducing the deviation of gradient estimation and
improving the model’s generalization ability. The principle of
ranking improvement is as follows. Suppose that Xi is sorted
by a random arrangement σ . To obtain an unbiased gradient
estimation, CatBoost will train a separate model Mifor each
sample Xi, and model Mi is obtained by training using a
training set that does not contain sample Xi. Then, model Mi
is used to estimate the gradient of the sample, and finally, this
gradient training base learner is used to learn the final model.

IV. EXPERIMENTS AND EVALUATIONS
In this section, we discuss the parameter settings and classifi-
cation results of the presented FAMD framework from 6 dif-
ferent parts of experiments. The parameter settings include
N-Gram selection and FCBF algorithm parameter selection.
In the classification, we compare the malware detection
results with other classifiers, and the key feature distributions
are also discussed in this part. The proposed method are com-
pared with other state-of-the-art works, and we also evaluated
the family classification results.

A. DATASETS AND EXPERIMENTAL ENVIRONMENT
The experiment uses two datasets: (1) The Drebin dataset,
which contains 5,560 malicious samples and 5,666 benign
samples. It is widely used as a benchmark dataset and is
used to compare FAMD with other similar works. (2) The
DS-1 dataset. It is collected by this work and contains a total
of 25,737 applications, of which 12,989 are malicious sam-
ples and 12,748 are benign samples. The maximum size of a
benign sample is 1.16 GB, while its minimum size is 8 KB.
The maximum size of a malicious sample is 31.3 MB and its
minimum size is 11 KB. We collected all of the benign sam-
ples from the third-party markets and used VirusTotal [44] to
detect the maliciousness of each benign sample to construct
a training dataset as pure as possible.

The experiments use a Dell Power Edge 720 server with
Intel Xeon E5-2603 CPU and 64GB RAM. The Python

version is 3.7.6, and the main libraries used include Numpy,
Pandas, and Skfeature.

B. EVALUATION METRICS
The evaluation metrics are defined as follows. True positive
(TP): the number of samples that are actually positive and
predicted positive. False Positive (FP): the number of samples
that are actually negative but predicted positive. False Nega-
tive (FN): the number of samples that are actually positive
but predicted negative. True Negative (TN): the number of
samples that are actually negative and predicted negative.

1) TPR
The percentage of samples correctly identified as positive out
of the total positive samples.

TPR =
TP

TP+ FN
(8)

2) FPR
The percentage of samples wrongly identified as positive out
of the total negatives samples.

FPR =
FP

FP+ TN
(9)

3) ACCURACY
The percentage of correctly classified samples out of the total
number of samples.

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(10)

4) PRECISION
The percentage of correctly predicted positive samples out of
the total predicted positive samples.

Precision =
TP

TP+ FP
(11)

5) F1-SOCRE
The combination of precision and recall metrics that serves as
a comprise. The best F1-score equals 1, while the worst score
is 0.

F1− Socre = 2×
Precision× Recall
Precision+ Recall

(12)

6) ROC CURVE
The ROC curve is created by plotting the true positive rate
(TPR) against the false positive rate (FPR) at various values
and threshold settings. It illustrates the diagnostic ability of
a binary classifier system as its discrimination threshold is
varied.

7) AUC
The area under the ROC curve is AUC, and its value can be
used to intuitively evaluate the quality of the classifier. The
closer the AUC is to 1.0, the better the detection method will
be. When it is equal to 0.5, it has no application value.
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TABLE 2. The number of sample failures while extracting different
features.

C. EXPERIMENTAL RESULTS
1) N-GRAM SETTING
For Dalvik opcodes based on the N-Gram, the value of
N affects two aspects: classification accuracy and feature
numbers. We use the DS-1 dataset to set the segmentation
length of the Dalvik opcode. When the length is set to N =
[2, 3, 4, 5], the corresponding length of the N-Gram opcode
sequence is extracted. The extracted features are input into the
CatBoost classifier, and 10-fold cross-validation is selected to
find the most appropriate length of N .

Due to the diverse designs of Android applications, espe-
cially malware applications that deliberately evade certain
features. From some APK files cannot be extracted a single
kind of features such as permissions. This results in many
samples being ignored in classification. We compare the
number of samples whose extraction failed when extracting
features individually and when extracting combined features
on the DS-1 dataset, as shown in Table 2.

It can be seen fromTable 2 that when extracting the permis-
sion features combined with N-Gram opcodes, the features
can be extracted from most of the samples, which is better
than extracting a single kind of feature. When extracting
permission features, benign samples are more difficult to
extract. Since we extracted and discussed official Android
permissions in this work, it may related to some samples that
employ more customer permissions. The feature extraction
of N-Gram opcodes is the opposite. There are more cases of
relatively failed extraction in malware, such as the sample
(SHA-1: 8d2795c2e790c54b401fd52eb56279f6af0a07fb),
which is small in size and performs malicious behaviors
through calling permissions.

We compare the accuracy and the number of constructed
features with different N-Gram length of Dalvik opcodes
in Table 3. It can be seen that as the value of N gradually
increases, the classification accuracy is better but the growth
trend is getting smaller. However, as N increases, the number
of features will also increase obviously, leading to increased
computational consumption.

We combine the extracted permission features with the
Dalvik opcode features and apply different values for N , and
the results are shown in Table 4.

The combination of two kinds of features achieves better
accuracy than any single feature kind. The best accuracy is

TABLE 3. Accuracy comparison of different N values.

TABLE 4. Accuracy comparison of different feature combinations.

FIGURE 2. The accuracy of the FCBF algorithm using different parameters.

96.21% when the features are ‘‘Permission with 5-Gram’’,
and the second-best result is 95.84% with ‘‘Permission with
4-Gram’’.

According to the results in Table 3 and Table 4, as well as
considering about the accuracy and feature dimensionality,
we set the value of N to 4, and employ ‘‘Permission with
4-Gram’’ as features in the following experiments.

2) FCBF ALGORITHM PARAMETER SETTING
Since the original feature set has high dimensionality, we use
FCBF algorithm to perform feature selection to construct
appropriate feature subset. We set the range of threshold δ
to [0.005, 0.03], with the interval of 0.005, and the feature
numbers are set in the range of 100 to 500. The result is shown
in Fig. 2.

From Fig. 2, as the number of features increases, the detec-
tion results are getting better. The best accuracy is achieved
when threshold δ is set to 0.005 and the number of features is
set to 500, and that will be the chosen parameters of FCBF in
this work.

3) COMPARE WITH OTHER CLASSIFIERS
The DS-1 dataset is used as experimental data, with 70% of
the data is used as the training set and the rest is the test
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TABLE 5. Experimental results of different classifiers.

FIGURE 3. ROC of different classifiers.

set. For all base classifiers, we use the grid search method
to find each classifier’s best parameters. The specific exper-
imental results are shown in Table 5. The value of the AUC
only counts the comparison when the number of features is
500, as shown in Fig. 3. It can be seen from Table 5 and
Fig. 3 that as the number of features increases, the various
experimental indicators of the Catboost classifier are better
than those other classifiers in most cases. When the number
of features reaches 500, CatBoost that we used can achieve
95.29% accuracy.

4) ANALYSIS OF THE KEY FEATURES
We count the importance of the top 10 features ranked by
FCBF and their distribution in malware and benign applica-
tions. The results are shown in Table 6. The top 10 features
include both permissions and opcodes, which proves that

these two kinds of features indeed have the classification
ability.

In addition, there are significant differences in the fea-
ture distribution of malicious software and benign applica-
tions. For example, the permission ‘‘RECEIVE_SMS’’ takes
38.51% of malware and only 4.24% of benign applications,
and the permission ‘‘READ_PHONE_STATE’’ takes 92.82%
of malware and 54.13% in benign applications. In another
words, compared with benign applications, malware take
more attempts to obtain the user’s SMS information and
device identification.

5) COMPARE WITH OTHER EXPERIMENTS
We compare the FAMDwith other state-of-the-art works with
Drebin dataset. Since the evaluation metrics in each paper are
different, we have collected as comprehensive information as
possible, as shown in Table 7.

It can be seen from Table 7 that FAMD can outper-
form most of other works in terms of accuracy. Moreover,
FAMD only needs an average of 0.28s to analyze an appli-
cation. Hence, FAMD achieves the purpose of establishing a
lightweight and efficient detection framework.

6) MALWARE FAMILY CLASSIFICATION
In addition to malware detection, malware family classifica-
tion is also concerned in this framework. We take the top
20 malware families in Drebin dataset and conducts the fam-
ily classification with the presented methods. The precision,
F1-score, and recall indexes are in Fig. 4 and the confusion
matrix is in Fig. 5 to provide a graphical overview.Most of the
samples are correctly classified into their respective families.
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TABLE 6. Distribution of the top-10 features in malware and benign application.

TABLE 7. Comparison with related work.

FIGURE 4. Classification results of top 20 malware families in Drebin
dataset.

FIGURE 5. Confusion matrix of the top 20 Drebin malware families.

The overall accuracy of malware family classification is
97.38%, which shows the effectiveness and feasibility of

the FAMD in family processing after malware detection.
However, the ExploitLinuxLotoor family has a lower pre-
cision. And for the Geinimi family, we only successfully
extracted the features of 17 samples, in other words, from
most of samples of this family cannot be extracted permis-
sions and opcode features. This shows that our framework
performs unsatisfied to detect malware that carries out certain
activities, which is what we need to improve in our future
work.

V. CONCLUSION
The number of applications that can be classified as malware
continues to increase, new types of malware and camouflage
techniques are constantly updating, effectively detecting mal-
ware in a relatively short time is of considerable significance
to the third-party application markets and users. How to
improve the detection accuracy and reduce the detection time
are still the problems to be solved.

We present a fast Android malware detection framework,
FAMD, which combines permission features and Dalvik
opcode features from different operation levels to construct
feature vectors. To reduce the feature dimensionality and time
complexity of the method, the FCBF algorithm is employed
for feature selection. As a classifier proposed in recent years,
CatBoost is employed in this work to conduct malware detec-
tion and family classification.

In the experiments, we segment the opcodes with 4-Gram
and vectorize the features combined with permissions. With
the CatBoost as the classifier, the result achieves an accu-
racy of 97.40% in malware detection, and 97.38% in
family classification. Compared with other state-of-the-art
works, FAMD performs better comprehensively in accuracy
and time consumption. It can be seen in the experiments
that there is a clear difference in the distribution of cer-
tain key features in malicious applications and benign
applications.
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Since CatBoost is a supervised learning framework, this
work is inadequate in detecting new emerging malicious
applications, which we aim to improve in further work.
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