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ABSTRACT The prognosis of cardiovascular and cerebrovascular events for patients suffering from
hypertension is considered of a high importance in preventing any further development of cardiac diseases.
Despite of the ability of current gold standard techniques in predicting vascular events risks, they still lack
the required clinical efficiency. In this vein, the study proposed herein provides an investigation on the
feasibility of using heart rate variability (HRV) utilized through a machine learning approach to predict
hypertensive patients at higher risk of developing vascular events. Initially, HRV features were extracted
from all patient’s data using time-domain, frequency-domain, non-linear, and fragmentation metrics. The
extraction of features was based on a 24-hour cycle analysis segmented into four time periods; namely
late-night, early-morning, afternoon, and evening. Analysis of all features was performed using a one-way
analysis of variance (ANOVA) test on period by period basis. Furthermore, the selection of best features was
performed following a Chi-squared test for demographic and HRV features. Then, a model based on decision
trees and random under-sampling boosting (RUSBOOST) was trained using demographic features, HRV
features, and a combination of both features. The performance of the trained model achieved a maximum
accuracy of 97.08% using the combined set of features during the afternoon time period. In addition, the
precision and F1-score in predicting high risk patients reached 81.25% and 86.67%, respectively. The overall
area under the curve for themodel was at 0.98, suggesting a high performance in the sensitivity and specificity
measures. This study paves the way towards utilizing machine learning models and heart rate variability for
the prognosis of vascular events in hypertensive patient. Furthermore, it assists clinicians in decision making
by providing a simple, yet effective, and continuous prediction approach when compared to other available
techniques.

INDEX TERMS Hypertension, cardiovascular events, cerebrovascular events, heart rate variability, ANOVA,
machine learning, feature selection, RUSBOOST.

I. INTRODUCTION
Hypertension is a major risk factor for many cardiac diseases
such as heart failure (HF), coronary artery disease (CAD),
and stroke. It is defined as an increase in the blood pressure
to above 140 mmHg systolic and 90 mmHg diastolic, causing
arteries to become thicker and narrower. When combined
with other arteries defects including high cholesterol depo-
sition, the demanded blood pumping force required by the
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heart is increased, thus, not enough oxygen-rich blood is
pumped to the rest of the body [1], [2]. There are many
reasons for hypertension including smoking, less physical
activity, stress, and family history [3]. According to the recent
world health organization (WHO) report [4], it is estimated
that hypertension in 2015 was affecting more than 1.3 billion
people worldwide. In addition, 1 in 4 men and 1 in 5 women
suffer from increased blood pressure.

Despite of receiving proper treatment, only 25% of
patients maintain their blood pressure under control [5].
Many cardiovascular and cerebrovascular events may arise,
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i.e., myocardial infarction (MI) and stroke, even after receiv-
ing adequate medications. Therefore, the diagnosis and prog-
nosis of cardiac events is of a high importance to reduce
the risk of premature death and disability. Prognosis of
vascular events is usually done by arterial intima media
thickness (IMT) assessment using carotid ultrasound [6],
left ventricular mass calculations using echocardiography
[7], and blood pressure measurements, which is the gold
standards in hypertension analysis, using mercury sphygmo-
manometer [8]. Although the efficiency of these techniques
is high, they require further improvements in their positive
predictive value to ensure accurate levels of quality in clinical
settings [9].

A promising alternative to the aforementioned tech-
niques in vascular events risk prediction is electrocardio-
graphy (ECG) and its corresponding heart rate variability
(HRV). HRV is defined as the change in the distances between
R-peaks in an ECG signal with respect to time [10]. It has
been a standard method to study heart functionality through
statistical, geometrical, spectral, and non-linear analysis. Pre-
vious studies have shown a strong clinical relation between
HRV and the control mechanism of the autonomic nervous
system (ANS) [11], [12]. For example, a reduced variability
in the R-R distances suggests ANS dysfunction [13]. Fur-
thermore, low HRV levels have been found to increase death
rates caused by coronary artery disease [11]. In addition to
heart functionality analysis, cardiac events risk prediction
and hypertension detection using HRV have been of a high
interest in literature. Recently, the emergence of computer-
ized and artificial intelligence (AI) algorithms allowed for a
better prognostic techniques to assist clinical practitioners in
decision making.

Several studies suggested support vector machine (SVM)
models for the quantification of cardiac death risk in patients
after myocardial infarction [14] as well as the detection of
patients more prone to sudden death [15]. In addition, the
detection of hypertensive patients aside from other cardiac
diseases was performed in [9] and [16] with machine/deep
learning models (highest performance of 96.67%) includ-
ing k-nearest neighbor (k-NN), decision trees (DT), and
convolutional neural networks (CNs). A study done by
Rajput et al. [17] developed a hypertension diagnosis index
using a wavelet filter bank to discriminate patients with
high risk hypertension (HRHT) from low risk hyperten-
sion (LRHT). Furthermore, a classification tree model was
designed to predict 90 days mortality in non-ST elevation
acute coronary syndrome patients [18]. Despite achieving
high levels of performance in vascular event prognostics
caused by hypertension in these studies, there have been no
24-hour studies investigating the direct relation betweenHRV
features and hypertension for cardiovascular risk analysis
on hourly basis throughout the day/night periods. Further-
more, the analysis of the relationship between HRV fea-
tures and vascular events still requires more investigations in
literature.

A. OUR CONTRIBUTION
In this work, a study is conducted to investigate the ability
of HRV in predicting patients at higher risk of developing
cardiovascular and cerebrovascular events using a machine
learning approach. It is considered of a high importance to be
able of providing continuous analysis of the cardiac system
to prevent the development of further diseases or even death
in severe cases. Unlike the current risk prediction techniques,
the novelty of the proposed work lies in designing a general
computerized model that is simple, cost effective, and can
be used frequently. In addition, it is able of handling data
imbalance often found when analyzing medical data.

Furthermore, the current study provides deeper analysis
on the 24-hour circadian cardiac functionality as reflected by
the HRV. This allows to overcome limitations often found in
previous studies where only short segments (5 minutes long)
from the HRV were taken into consideration. Instead, HRV
analysis is performed herein over the four time periods in
the day/night cycle (length of 6 hours) with the knowledge
that the heart exhibits different characteristics during the late-
night, early-morning, afternoon and evening times [19], [20].
Therefore, certain features at a certain time period throughout
the 24-hour time interval would be able of highly predicting
the possible development of vascular events in future. Thus,
being able to prevent it from happening by taking the required
medication at the right time. In addition, a 5-minutes segment
taken at random would be a very small portion of the HRV to
represent any cardiac abnormalities. This has been tackled in
the proposed approach by taking a wider range of HRV at
known time periods throughout the 24-hour cardiac cycle.

It is worth noting that aside from conventional HRV met-
rics commonly used in previous studies, the proposed work
analyzes HRV using a new fragmentation metric, which to
the best of our knowledge has not been investigated in lit-
erature. In addition, the proposed study further elucidates
on the impact of demographic information on the overall
performance of the model. It suggests taking into consid-
eration certain patient-specific information, close to those
normally obtained by gold standard techniques, along with
HRV features to maximize the diagnosis efficiency.

Finally, this study provides a comparison between the pro-
posedmodel and several machine learning models commonly
found in literature.

The main contributions of this study can be summed up
into several points as follows,
• Implementing a simple, yet effective, machine learn-
ing model that handles data imbalance and performs
efficiently in predicting vascular events in hypertensive
patients.

• Providing deeper analysis on HRV features in a 24-hour
circadian rhythm manner by covering the late-night,
early-morning, afternoon, and evening time periods.

• Investigating the impact of the new HRV fragmentation
features in cardiac functionality analysis besides the
conventional metrics commonly used in literature.
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FIGURE 1. A graphical abstract of the complete procedure followed in the proposed study.

• Elucidating further on the impact of utilizing demo-
graphic information, close to those normally used in
gold standard approaches, within the trained model on
the overall performance.

• Providing a comparison between the proposed approach
and several machine learning models commonly used in
literature.

The complete procedure followed in this study is illustrated
in Fig. 1.

B. PAPER ORGANIZATION
The paper is organized as follows. Section II provides a brief
description of the procedure followed in this study. It starts
with information about the data-set used followed by the
extraction methodology of HRV features. Furthermore, the
analysis of these feature on four time periods throughout the
24-hour day/night cycle is discussed along with the whole
machine learning training and classification process. The
section ends by a detailed information about the metrics
used to evaluate the performance. Section III represents the
observations from the HRV analysis as well as the results of
the machine learning model. Section IV provides a detailed
discussion over the observations found in this study from
machine learning and clinical perspectives. Finally, the paper
is concluded and summarized briefly with additional future
works in Section V.

II. MATERIALS AND METHODS
A. DATA-SET
The selected data-set was obtained from the PhysioNet
SHAREE database [21] that includes a total of 139 hyper-
tensive patients’ data of 24-hour ECG Holter recordings.
All patients were recruited at the center of hypertension of
the University Hospital of Naples Federico II, Naples, Italy.
Patients included in the study were 90 males and 49 females
in the age range of >55 years (average 72±7 years). The
collection of ECG recordings was done after a one-month
anti-hypertensive therapy wash-out. In addition, all patients
were followed up for the first 12 months after getting their
ECG recordings to observe any cardiovascular or cerebrovas-
cular events such as myocardial infarction, syncope, coro-
nary revascularization, fatal or non-fatal stroke, and transient
ischemic attack. All events were adjudicated based on patient
history, event/arrhythmia record, and contact with the gen-
eral practitioner by the committee for event adjudication in
the center. In addition, all patients had cardiac and carotid
ultrasonography to determine their left ventricular mass as
per the American society of echocardiography (ASE) recom-
mendations. Among the patients, only 17 of them had events
including 11 with myocardial infarctions, 3 with strokes,
and 3 with syncopal events.

Each ECG recording had a 24-hour length sampled with
a sampling frequency of 128 Hz. QRS complexes and
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TABLE 1. The complete demographic information (Mean ± STD) of patients covered in the database.

R-peaks were automatically annotated using length trans-
form and onset detection algorithms [22]. It is worth noting
that no manual corrections were performed on the acquired
annotations. All demographic and clinical information were
recorded and provided for every patient. More details on the
database can be found on [9] and the complete demographic
information of patients is provided in Table 1.

B. HRV FEATURES EXTRACTION
HRV is a series of heart rate values denoting the intervals
between heart beats (R-R intervals). The database provides
annotation files that contain the location of each R-peak.
Therefore, using the location of each R-peak, the distance
between peaks (HRV) is calculated and stored for every
patient. It is worth noting that not all patients completed a
full 24-hour Holter recording, therefore, missing hours were
padded with empty values.

The annotation file comes with the knowledge about the
initial starting time of each recording. Thus, all recordings
were segmented into per-hour segments and re-arranged to
start from hour 00:00 (12AM). Then, four periods of 6-hours,
corresponding to late-night (00:00-06:00), early-morning
(06:00-12:00), afternoon (12:00-18:00), and evening (18:00-
00:00), were segmented from the re-arranged data. Any fur-
ther HRV analysis was applied on each of these 6-hours time
periods. In case of missing ECG recordings, few patients
may have empty time periods with missing HRV data. These
patients at these time periods were not included in the training
and testing of the proposed model.

Then, HRV features were extracted from time-domain,
frequency-domain, non-linear, and fragmentation analysis
using PhysioNet toolbox [23] and MATLAB R2020a. Fea-
tures were extracted per patient for each one of the four
6-hours time periods mentioned earlier.

In time-domain, features were extracted based on the
task force of the European society of cardiology [24]
and included: average of all normal-to-normal (NN) inter-
vals (AVNN (ms)), standard deviation of all NN intervals
(SDNN (ms)), square root of the mean of the sum of

squares of differences between adjacent N-to-N intervals
(RMSSD (ms)), percentage of NN intervals greater than
50 ms (pNN50 (%)), and standard error of the average NN
intervals (SEM (ms))

In frequency domain, features were extracted based on the
power spectral density (PSD) analysis and included: slope of
the linear interpolation of the spectrum for frequencies less
than very-low frequency (VLF) band upper bound (BETA),
normalized high frequency (HF) power (HF Norm (%)), peak
frequency in the HF band (HF Peak (Hz)), power in the
HF band (HF Power (ms2)), normalized low frequency (LF)
power (LF Norm (%)), peak frequency in the LF band (LF
Peak (Hz)), power in the LF band (LF Power (ms2)), ratio
of the LF power to the HF power (LF/HF), total power in
both frequency bands (Total Power (ms2)), normalized VLF
power (VLF Norm (%)), and power in the VLF band (VLF
Power (ms2)).

Furthermore, non-linear HRV features were extracted from
the Poincare plot, de-trended fluctuation analysis (DFA), and
multi-scale entropy (MSE) [25], [26] including SD1, SD2,
alpha2, alpha2, and sample entropy (SampEn). In addition.
fragmentation features were extracted using according to the
newly introduced methods of [27] including percentage of
inflection points in the N-to-N interval (PIP (%)), acceler-
ation/deceleration segments inverse average length (IALS),
percentage of short segments (PSS (%)), and percentage of
alternation segments (PAS (%)).

C. STATISTICAL ANALYSIS OF FEATURES
It is of a high importance to analyze HRV features across
the four time periods using statistical measures. Each fea-
ture exhibits information about the cardiac activity of each
patients’ heart lying in the two groups; patients that did not
develop vascular events and patients with vascular events.
To statistically analyze these features, a one-way analy-
sis of variance (ANOVA) test was performed. In this test,
a comparison between the average value of multiple groups
can be performed to obtain statistical evidences that these
groups are of a significant difference (p < 0.05) [28].
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A significant difference represents the strong ability for the
selected feature in discriminating between the two groups,
therefore, suggesting it as a significantly important feature.
In addition, it suggests which period throughout the 24-hour
cycle is critical to identify such differences.

D. TRAINING AND CLASSIFICATION
Utilizing machine learning for the purpose of identifying
patients with higher risk of developing vascular events from
patients with normal cardiac conditions was implemented in
this study. Initially, a feature selecting approach based on
chi-square (χ2) test was performed to pick features with high
importance prior to any training/classification procedures.
These features were based on demographic information men-
tioned in Table 1, HRV features, and a combination of both.
Then, the selected model was based on the the random
under-sampling boosting (RUSBOOST) method. The com-
plete procedure followed is briefly discussed in the following
subsections.

1) FEATURE SELECTION
The selection of best features was performed based on a
chi-square (χ2) test. In this test, a statistical hypothesis
test is performed to compare the observed data to expecta-
tions. In other words, it determines the significant differences
between the observed and expected frequencies of samples
within the data [29]. The decision on using this test besides
the aforementioned ANOVA test was to analyze the features
not only with respect to their average and variance mea-
sures, but also with with respect to each individual feature
per-patient as a Chi-squared distribution.

In the problem presented in this study, the test ranks each
demographic and HRV feature from being highly important
to low based on the observed p-value after applying the test
on each one. In general, the lower the p-value, the higher
the importance of the selected feature. The selection of best
features (≥1 scoring value) set was performed for every time
period using MATLAB R2020a and function fscchi2().

2) MACHINE LEARNING MODEL
Decision trees are a set of tree-like attribute nodes connected
to sub-trees of decision nodes. Each decision node is labeled
with a class referring to the predicted class. The predictions
are based on the model decisions and the corresponding
consequences including the resource cost, outcomes chances,
and utility. To give a prediction, the process starts by giving
an instance to the root node of the tree. Then, the outcomes
for this instance are measured for the following sub-nodes.
Whenever a leaf is encountered, the process ends and the label
is given as the prediction of this instance. More information
about this technique is provided in depth in [30]. One form of
decision trees are random forest (RF) or CART models [31],
[32]. In CART, when the variables are discrete values, the
model is training based on a classification bag of trees. On the
other hand, a regression model is trained if the variables are
continues.

Despite achieving high levels of performance in decision
trees models, they may lack the required accuracy when
classifying un-balanced data-sets. Therefore, data sampling
and boosting algorithms based on the original decision trees
model can handle skewness in the data. The combination of
both approaches forms a hybrid ensemble algorithm named as
random under-sampling boosting (RUSBOOST) [33], [34].
In this algorithm, the data is balanced by randomly removing
samples from the majority class. In addition, the boosting
allows of iteratively build weak learners using different linear
combinations.

RUSBOOST algorithm functions in three major steps;
namely setting initial weights, iterating over the weak learn-
ers and removing majority class samples, and returning the
final weights of the weak learners. In step 1, the weights of
each class, Dt , are defined as 1/m, where t is the iteration
number and m is the total number of samples per-class. This
steps allows the algorithm to identify which learners are
weaker than the others as well as identifying the class with
the majority number of samples. Step 2 starts by applying
RUS to decrease the number of the majority class samples.
For example, if the desired ratio between two classes is
50:50, then samples are randomly removed until the minor
classes are equal to the majority classes in the temporary
training data-set. S ′t . This steps will change the initial weights
distribution (D′t ) identified in step 1. Furthermore, S ′t and D

′
t

are then utilized within the base learner to create the weak
hypothesis, ht . Using this learned hypothesis, the weights
(Dt ) are updated as follows,

αt =
εt

1− εt
(1)

Dt+1 =
Dtα

1
2 (1+ht (xi,yi)−ht (xi,y:y6=yi))
t

Zt
(2)

where αt is the weight update parameter, xi is a point in the
feature space, yi is a class label, and Zt is the summation of
all weights.

After several iterations, the final hypothesis (H (x)) is cal-
culated as follows,

H (x) = argmax
y∈Y

T∑
t=1

ht (x, y) log
1
α

(3)

where Y is the set of class labels, and T is the maximum num-
ber of iterations. More details on this algorithm are briefly
provided in [33].

In this study, a RUSBOOST algorithm was implemented
as the training model to handle data imbalance. The total
number of splits (weak learners) was 139 corresponding to the
maximum number of possible labels. The minimum leaf size
and the minimum parent size were set to 1 and 2, respectively.
In addition, the learning rate (shrinkage) was set to 0.1. This
rate was selected based on [35], [36], where a rate ≤0.1 is
usually suggested. In literature, it was shown that the lower
the learning rate, the better the convergence and performance
of boosting models. Thus, after several fine tuning tests,
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0.1 was selected as the optimum rate. Furthermore, the
weights were adjusted based on the amount of each class
relative to the smallest class number. It is worth noting that the
training/classification process was performed following three
scenarios; using demographic features alone, HRV features
alone, and combination of both features. The training was
selected to follow a leave-one-out scheme due to the low
number of samples in the data-set. In addition, it was selected
to ensure the maximum possible sample within the trained
model and to provide a prediction for every single patient.

Furthermore, the performance of several classifiers includ-
ing RF, SVM and 1D convolutional neural networks (CNNs)
was also tested, evaluated, and compared with the pro-
posed RUSBOOST model. The settings of the RF algorithm
included the use of 300 bagged trees with 5 randomly chosen
feature at each split. In SVM, the model followed a radial
basis function (RBF) kernel function with a 1.4 kernel scal-
ing (gamma). For the 1D CNN network, the architecture
included 1 single convolutional layer of kernel size [1,1]
and a total number of filter of 16. The layer was followed
by additional batch normalization (BN) and rectified linear
unit (ReLU) layers. The optimizer was based on the adaptive
moment estimation (ADAM) solver. The decision of picking
optimum parameters for the models was based on previous
findings from literature [9], as well as several tuning tests to
maximize the performance.

3) PERFORMANCE EVALUATION
The performance of the algorithm in classifying patients was
observed based on the confusion matrix of the predictions.
Several evaluation metrics were measured including accu-
racy, sensitivity, specificity, precision, and F1-score. Each
metric is given as follows,

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(4)

Sensitivity =
TP

TP+ FN
(5)

Specificity =
TN

TN + FP
(6)

Precision =
TP

TP+ FP
(7)

F1− score =
2TP

2TP+ FP+ FN
(8)

where TP, TN, FP, and FN corresponds to the true positives,
true negative, false positives, and false negatives, respectively.
In addition, the receiver operating characteristic (ROC) was
obtained along with the area under the curve (AUC).

III. RESULTS
A. STATISTICALLY SIGNIFICANT FEATURES
The results of the one-way ANOVA test are shown in
Table 2. Each feature was selected for the comparison
at each time period across the two groups. Significant
differences were obtained for LF Peak at the afternoon
(p = 0.041), LF Power at the evening (p = 0.015),

TABLE 2. Statistical one-way ANOVA results showing HRV features
p-value for the four time periods between patients with no vascular
events and patients who developed vascular events.

Total Power at the evening (p = 0.031), and VLF Power at
the evening (p = 0.026). This test did not identify any time-
domain, non-linear, or fragmentation features as significant.
However, few features were close to significant results such
as SEM, HF Power, and LF Norm with p-values of 0.073,
0.063, and 0.07, respectively.

B. TRAINING/CLASSIFICATION PERFORMANCE
Initially, the Chi-squared feature selection approach (Fig. 2)
suggested the following features as significant features prior
to the training of the RUSBOOST model:
• Demographic features: BMI, SPB, DPB, and EF.
• HRV features: RMSSD, SEM, HF Power, LF Norm,
LF Peak, LF Power, Total Power, VLF Norm, PIP, and
IALS.

For demographic features, SBP had the highest importance
score (>2). In addition, EF, BMI, and DBP values were
significant with scores higher than 1. The least important
features were found to be the LVMI, age, and smoking
with scores less than 0.5. On the other hand, HRV features
(Fig. 2 (b)) are shown for the time period that gave the highest
levels of performance (afternoon period). The most important
features were based on the frequency-domain analysis of the
HRV with scores higher than 2 except for the LF Peak (>1).
Furthermore, important features from the fragmentation met-
rics (PIP and IALS) were obtained after the frequency-based
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FIGURE 2. Features importance as observed from the Chi-square (χ2) test at the best performing time period (afternoon) for:
(a) demographic features, (b) HRV features. The red circles denote the significant features selected for model training (≥ 1 scoring
value).

features. Two additional time-domain features (SEM and
RMSSD) were considered important with importance scores
higher than 1. No non-linear features were found significant
during this time period.

When compared to ANOVA significant features, LF Peak
feature was observed in both tests. However, Chi-squared test
identified several additional features that were able of maxi-
mizing the performance even further. Two of these additional
features (LF Power and Total Power) were already identified
as significant features in the evening time period using the
ANOVA test. In addition, the VLF Power was replaced by
the normalized VLF power (VLF Norm) feature. It is worth
noting that ANOVA test identified features only from the fre-
quency domain metrics. On the other hand, Chi-squared sug-
gested RMSSD and SEM from the time-domain, HF Power,
LF Norm, LF Peak, LF Power, Total Power and VLF Norm
from the frequency domain, and PIP and IALS from the
fragmentation metrics. Both tests did not identify non-linear
features as significant features during this time period.

The confusionmatrices of the prediction process are shown
in Fig. 3 for (a) using demographic features, (b) HRV

features, and (c) combined demographic and HRV features.
The HRV confusion matrices were observed during the
highest performing time period (afternoon). Using demo-
graphic features, the accuracy reached 88.49% on aver-
age. However, the precision of predicting vascular events
was the lowest with 29.41%. Furthermore, HRV features
increased the identification performance of vascular events.
The precision reached 68.75%, with 11 correctly predicted
patients (out of 16). The combination of both features
gave the maximum performance with an average accu-
racy of 97.08%. The total number of correctly predicted
high-risk patients was 13 out of 16 patients (precision of
81.25%). As previously discussed in Section II-B, the total
number of samples during the afternoon was 137 patients
out of 139 due to having 2 patients with empty ECG
recordings at this time period, thus, having missing HRV
values.

Tables 3, 4, and 5 show the performance metrics for the
classification process using demographic, HRV, and com-
bined features, respectively. Using demographic features,
the classification sensitivity and specificity were at 90.77%
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FIGURE 3. confusion matrix and the corresponding true positive (TP) percentage of each class using: (a) demographic features, (b) HRV features
(Afternoon), (c) combined features (Afternoon).

FIGURE 4. Receiver operating characteristic (ROC) and area under curve (AUC) for the four time periods using: (a) demographic
features, (b) HRV features, (c) combined features.

TABLE 3. The performance of the RUSBOOST algorithm in classifying
normal and high-risk vascular events patients using demographic
features.

and 55.56%. The precision and F1-score were higher on
the normal patients predictions with 96.72% and 93.65%,
respectively. On the other hand, the prediction performance
of vascular events had a precision of 29.41% and F1-score
of 38.46%. Furthermore, HRV features improved the over-
all performance in predicting vascular events during the

afternoon (12:00-16:00) time period with sensitivity, speci-
ficity, precision, and F1-score of 78.57%, 95.93%, 68.75%,
and 73.33% respectively. Combining both features had the
best precision and F1-score of 81.25% and 86.67%, as well
as the best sensitivity and specificity of 92.86% and 97.56%.
Table 7 shows a summary for all three methods in perfor-
mance at the best performing time period (afternoon).

Furthermore, the ROC curves as well as the AUC val-
ues following each scenario are shown in Fig. 4. Using
demographic features, the AUC was 0.55. However, this was
improved by using HRV features during early-morning, after-
noon, and evening time periods with 0.69, 0.84, and 0.49,
respectively. The combination of both features maximized
the performance with a 0.98 AUC during the afternoon time
period.

To compare the performance of the proposed model
(RUSBOOST) during the afternoon as the best performing
time period, Table 7 shows the AUC, accuracy, sensitivity,
specificity, precision, and F1-score values obtained by other
machine learning classifiers. Using SVM, the model had
an overall accuracy of 86.13% with an AUC of 0.80. The
model was high in sensitivity for normal patients (97.22%)
and low for vascular events patients (44.84%). However, the
use of RF enhanced the performance of predicting vascu-
lar events slightly with an AUC, accuracy, sensitivity, and
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TABLE 4. The performance of the RUSBOOST algorithm in classifying normal and high-risk vascular events patients throughout the four time periods
using HRV features.

TABLE 5. The performance of the RUSBOOST algorithm in classifying normal and high-risk vascular events patients throughout the four time periods
using combined features.

TABLE 6. Performance summary at the most important time period (afternoon) using demographic, HRV, and combined sets of features.

specificity of 0.81, 93.43%, 73.33%, and 95.90%. The 1D
CNN had an overall AUC of 0.88 with an accuracy of
94.89%. In addition, the prediction of vascular events had a
sensitivity of 76.47%. a specificity of 97.50%, precision of

81.25%, and F1-score of 78.79%. Despite being high in per-
formance, the RUSBOOST algorithm performed the highest
with an AUC of 0.98 and performancemetrics high than other
classifiers.
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TABLE 7. Performance comparison between the proposed RUSBOOST model and various models such as SVM, RF, and 1D CNN at the most important
time period (afternoon).

IV. DISCUSSION
This study investigated the ability of HRV features in dis-
criminating between patients that are with high or low risk of
developing vascular events. With the utilization of a machine
learning approach, the proposed model reached higher lev-
els of performance (97.08%) when predicting each patients
expected cardiac condition.

A. ANOVA TEST OBSERVATIONS
The statistical analysis have shown significant differences
during the afternoon and evening time periods, which could
be correlated to the high activation of the autonomic nervous
system unlike the late-night or early morning time periods.
It has been also shown by Melillo et al. [9] that LF and VLF
features are highly important in risk prediction analysis using
a random forest algorithm, which is similar to the findings
of this work. The ANOVA test have identified LF Peak as
significant feature during the afternoon, where this feature
is usually considered as an accurate reflection of the activity
of the sympathetic nervous system [37], [38]. Furthermore,
the afternoon time-period is known in literature for a slight
increase in the overall blood pressure [39]. On the other
hand, during the evening, features such as LF Power and VLF
Powerwere identified significant. These features play amajor
role in the cardiac autonomic outflows controlled by barore-
flexes [40]. In addition, Total Power HRV feature increases
when there is a sympathetic activation and decreases during
vagal activation [41]. The observations obtained during the
evening time period is matching the literature findings found
in [42], where the evening is usually considered as a suitable
time period for observing information about the risk of vas-
cular events. Non-linear and fragmentation features had no
significant effects on the analysis throughout the four time
periods.

It is worth noting that the ANOVA test is usually per-
formed on the average value of the feature across the groups
in comparison. In other words, it represents the feature by
its average values across the whole samples in the group.
Therefore, a deeper look into patient-by-patient HRV features
was followed.

B. MACHINE LEARNING PERFORMANCE
The model was trained based on a leave-one-out scheme to
allow for the maximum number of samples to be included
within the training model as well as to provide a pre-
diction for each patient separately. The prediction of high
risk patients was performed initially based on demographic
features of patients alone. The feature selection approach
resulted in showing the blood pressure measurements as
significant features along with the BMI and EF, which
matches the findings of studies performed on a wider range
of population [43]–[45]. However, the risk prediction of vas-
cular events was not of a high efficiency despite the high
performance in predicting normal patients. Only 5 patients
were correctly predicted to be in higher risk out of the over-
all 17 patients, which could be due to having close to normal
demographic information in some patients and severely dif-
ferent information on others. Therefore, an extended set of
features was required to observe the variations between such
patients that did not arise using demographic features alone.

The use of HRV features allowed for an improved per-
formance in identifying patients at high risk of developing
vascular events. LF Norm HRV feature was identified as
significant feature in both the ANOVA and chi squared tests
during the afternoon. However, Chi-squared test allowed for
the inclusion of more features within the model to maximize
its performance. The training and classification process was
performed using both features sets; namely ANOVA and
Chi-square features, however, Chi-squared features helped
in achieving higher levels in the overall performance which
could be due the inclusion of more features that better rep-
resent the cardiac functionality. It is interesting to see two
fragmentation features (PIP and IALS) to be of high impor-
tance in discriminating the two groups, while no features from
the non-linear metrics were important. Fragmentationmetrics
were suggested in this study and have not been investigated
previously in literature for hypertension risk prognosis.

A total of 11 patients were correctly identified as at high
risk with a precision of 68.75% during the afternoon time
period. There was no significant performance in the clas-
sification process in any other time period, which suggests
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the afternoon to be a critical hour to notice disturbances in
the cardiac condition. Combining both feature sets from the
demographic information andHRV allowed for themaximum
possible performance in the algorithm. Only 3 patients were
not classified correctly as high risk patients leading to an
overall AUC of 0.98. This high performance was achieved for
the afternoon time period. On the other hand, normal patients
were also identified even better with only a single patient
falling into the at-risk category. The ROC curves clearly show
the high sensitivity and specificity of the trainedmodel during
the afternoon (97.56% and 82.86%).

The usage of other classifiers provided acceptable perfor-
mance metrics, however, it was outperformed by the pro-
posed RUSBOOST model. This could be due to the internal
ability of the RUSBOOST model in balancing the data-set.
The huge unbalance between the samples requires prior data
im-balance handling techniques. Instead, the RUSBOOST
model does not require any prior interference with the data.
It is interesting to note that the 1D CNN performed better
than other conventional classifiers (SVM and RF). Further
investigations on the building of an advanced network may
enhance its performance even further.

C. CLINICAL RELEVANCE
The investigations were performed over the 24-hour cycle of
the cardiac system as seen by the ECG recordings. It is well
known that HRV is a result of heart rate changes caused by
the ANS fluctuations (sympathetic and parasympathetic out-
flow). Therefore, hypertensive patients that are more prone
to develop vascular events are usually suffering from a less
adaptive ANS [9]. Thus, having minor changes in the hemo-
dynamics of the ANS can be reflected by HRV features such
as the LF and HF frequency band features [6], [46]. Any
decrease in the HRV through the LF and HF Power features
are usually a reflection of an increased risk for cardiovascular
morbidity and mortality. On the other hand, patients with
high levels of HRV are at a lower risk of having cardiac
abnormalities following a hypertensive event [47].

In the study presented herein, most HRV features were
from the frequency-domain. In addition, the afternoon hour
was more significant in showing such differences between
patients, as usually the heart functionality is at its maximum
during the middle of the day. A decrease in HRV as seen
from the feature would have been observed at this time period
which allowed the trained model to discriminate between
themwith higher levels of performance. It is worth noting that
the fragmentation features (PIP and IALS) were useful in this
study. This could be correlated to the fact that has been found
in [48] that suggests that any decrease in the fluctuations of
these features are hardly to be detected in a recorded ECG
data. In addition, a paradoxical increase in these fluctuations
comes as a results of a reduced vagal tone that would suggest
the occurrence of heart diseases [49].

In terms of demographic information, it was expected to
have the systolic and diastolic blood pressure measurements
in the most significant features set. The current gold standard

method to diagnose and predict hypertension diseases devel-
opment are the mercury sphygmomanometer that provides
these measurements. Furthermore, the BMI was found in
literature to be strongly associated with increasing the risk
of hypertension [50]. Finally, the ejection fraction ratios was
also included as it represent the pumping efficiency of the
heart. Any diastolic dysfunctionality could lead to hyperten-
sion, which may develop even further for a heart failure or
death [51].

V. CONCLUSION
This study suggests HRV as a strong indicator of hyperten-
sive patients that more prone to develop cardiovascular and
cerebrovascular events. Unlike the gold standard techniques
used for the same purpose, the proposed machine learning
model is simple, efficient, cost-effective, and can be used for
continuous cardiac analysis. Future works include using a
bigger data-set as well as utilizing deep learning to compare
the performance relative to the proposed model.
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