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ABSTRACT Coronavirus disease (COVID-19) outbreak has affected billions of people, where millions of
them have been infected and thousands of them have lost their lives. In addition, to constraint the spread
of the virus, economies have been shut down, curfews and restrictions have interrupted the social lives.
Currently, the key question in minds is the future impacts of the virus on the people. It is a fact that
the parametric modelling and analyses of the pandemic viruses are able to provide crucial information
about the character and also future behaviour of the viruses. This paper initially reviews and analyses
the Susceptible-Infected-Recovered (SIR) model, which is extensively considered for the estimation of the
COVID-19 casualties. Then, this paper introduces a novel comprehensive higher-order, multi-dimensional,
strongly coupled, and parametric Suspicious-Infected-Death (SpID) model. The mathematical analysis
results performed by using the casualties in Turkey show that the COVID-19 dynamics are inside the
slightly oscillatory, stable (bounded) region, although some of the dynamics are close to the instability region
(unbounded). However, analysis with the data just after lifting the restrictions reveals that the dynamics of
the COVID-19 are moderately unstable, which would blow up if no actions are taken. The developed model
estimates that the number of the infected and death individuals will converge zero around 300 days whereas
the number of the suspicious individuals will require about a thousand days to be minimized under the current
conditions. Even though the developed model is used to estimate the casualties in Turkey, it can be easily
trained with the data from the other countries and used for the estimation of the corresponding COVID-19

casualties.

INDEX TERMS COVID-19 casualties, parametric model, prediction, SpID model, SIR model.

I. INTRODUCTION

Coronavirus disease (COVID-19) is described as a conta-
gious respiratory disease caused by Severe Acute Respira-
tory Syndrome Coronavirus 2 (SARS-CoV-2) [1]. It was
first noticed in Wuhan, China in December 2019, and then
spread rapidly to all over the world [2]. The World Health
Organization (WHO) declared the COVID-19 outbreak as
a pandemic on March 11, 2020 [3]. CoVs are classified as
alpha-, beta-, gamma- and delta- coronaviruses [4]. Bats lead
to alpha- and beta-type coronaviruses, while birds and pigs
cause gamma- and delta-type coronaviruses. Though alpha-
type coronaviruses have mild symptomatic effects, beta-type
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coronaviruses are more severe [5] since they result in serious
problems especially in respiratory systems [6], [7].

Seven human coronaviruses have been detected to date [8].
229E (1966) and NL63 (2004) have been alpha-type, while
0C43 (1967), HKU1 (2005), SARS-CoV (Severe Acute Res-
piratory Syndrome, 2002) and MERS-CoV (Middle East
Respiratory Syndrome, 2012) have been beta-type [9]. The
two zoonotic viruses, SARS and MERS, had led to serious
diseases which caused a large number of deaths and they
have had the most catastrophic impact among all the known
coronaviruses in the world [5]. SARS was first seen in south-
ern China and spread to 29 countries in less than a year.
There were more than 8000 people infected with the virus
and 774 deaths were reported between November 2002 and
July 2003 [10]. MERS was identified in 2012 in Saudi Arabia
with the death of a 60-year-old patient and affected around
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2500 people in 27 countries where 848 of them lost their
lives [11].

As in the case of SARS-CoV and MERS-CoV, the
COVID-19 is also thought to be transmitted from bats to
humans. The mortality rate of the COVID-19 virus outbreak
is larger than the SARS virus and its transmission rate is
also much more significant than them [12]. The COVID-19
is transmitted from human to human through droplets that
spread from the coughs or sneezes of people with the dis-
ease. The virus may have different effects on the infected
people where some people show mild symptoms and recover
without hospitalization. The most common symptoms of
the COVID-19 are fever, dry cough, and tiredness. Difficult
breathing, chest pain, and loss of speech are some of the
more severe symptoms as well. Since, there are no drugs or
vaccines that have been proven to protect people from the
COVID-19, it is still uncontrollable [13].

During the pandemic periods, international organizations
such as the WHO and the public authorities have required
comprehensive and accurate short-term and long-term esti-
mators to identify the most appropriate strategies and take the
necessary measures. These estimators, known as models, pro-
vide forecasting in the short and long term are of great impor-
tance. Therefore, modelling the pandemic plays a significant
role to overcome the detrimental effects of the pandemic
viruses in the presence of the uncertainties. It is possible
to use mathematical and statistical methods to model the
pandemic, analyse its characteristics and evaluate its control
mechanisms [14], [15]. Modelling the pandemic enables to
examine the dynamics of the infectious diseases in detail and
estimate the infection parameters. Additionally, it provides
insights about the effects of the interventions (closing the
schools, quarantine of infected people, social distancing etc.)
to control the outbreak.

Modelling approaches can be classified as parametric and
non-parametric. In terms of the non-parametric approaches,
machine learning methods such as Neural Networks (NN)
and Support Vector Machines (SVM) are considered without
specifying the parameters and the data spaces [16]. Thus,
it is not possible to know where to map the real data in the
imaginary solution space. In addition, the estimated solution
can correspond to a local region instead of the global where
the estimates are only valid in a small region. Since they
are generally iterative approaches, it is likely for them to
converge somewhere in the parameter space which might not
be the optimum, especially in the stochastic cases. Moreover,
even though the statistical analysis approaches are available
for the non-parametric modelling approaches, they are usu-
ally not rigorous as the exact model parameters are unavail-
able. Finally, the non-parametric models have a bias-variance
trade-off dilemma and they require testing and validation data
together with the training data [17].

With respect to the parametric modelling approaches,
they necessaire accurate insights about the real systems
(i.e. orders, zeros, coupling, and forcing terms) behind the
available data. Therefore, they require initial observations
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and analysis of the source data. However, when the model
structure is constructed, performing a parametric modelling
approach is straightforward. The linear and non-linear models
can be obtained easily and extensive analyses of them can be
achieved by using the well-known mathematical approaches
such as the roots, eigenvalues, and imaginary components.
Since the batch type optimization approaches together with
the iterative ones are available for the parametric modelling,
it is possible to reach the terminal parametric solution in
one step. More importantly, the detrimental impacts of the
stochasticity in the data can be eliminated as the batch type
optimizations can able to ignore the random variables. Lastly,
the parametric models can reveal key knowledge about the
strong and weak sides of the real systems such as failing
treatments, so that policies can be developed to control the
behaviour of them as desired under uncertainties [18].

Recently, a number of parametric models were pro-
posed for the estimation of the COVID-19 -casualties.
Peng et al. formulated a Suspected-Exposed-Infected-
Recovered (SEIR) model to analyse the casualties in five
regions of China [19]. Similarly, Massonis et al. used the
SEIR model to analyse the identifiability and observabil-
ity of the COVID-19 parameters [20]. Zhao and Chen
considered Susceptible-Unquarantined Infected-Quarantined
Infected-Confirmed Infected (SUQC) model to estimate
the casualties in China [21]. Maier and Brockmann used
Susceptible-Infected-Recovery (SIR) model to analyse the
COVID-19 casualties of Hubei province of China [22].
Giordano et al. proposed an extensive Susceptible-Infected-
Diagnosed-Ailing-Recognized.

Threatened-Healed-Extinct (SIDARTHE) model to anal-
yse the casualties in Italy [23]. Chang et al. focused on
the known pandemic dynamics to analyse the casualties in
Australia [24]. Even though these models provide some
insights about the COVID-19, since they are mostly based on
known parameters such as the infectious rate, cure rate, and
mortality rate, their parameters are not optimized. Thus, it is
not possible to know whether the individual parts of a multi-
dimensional model and its other parameters are covered and
constructed properly.

In addition, a number of non-parametric modelling
approaches have been available. Chinnazzi et al. consid-
ered a global metapopulation disease transmission model to
reveal the effects of the travel limitations enforced in Wuhan
city of China on the spread of the virus [25]. Lauer et al.
considered a non-parametric statistical approach to analyse
the median incubation and symptoms development periods
from 50 provinces outside Wuhan and Hubei provinces of
China [26]. However, all these models have used simple
statistical approaches or synchronized parameters which are
highly likely to fail when the internal dynamics of the virus
or external uncertainty vary.

Based on these corresponding gaps in the literature, the key
contributions of this paper can be summarized as;

1) This paper develops a Suspicious-Infected-Death

(SpID) model, which has utterly unknown dynamics.
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2) The developed SpID model is highly coupled since the
suspicious, infected, and death casualties are strongly
dependent on each other.

3) Each sub-model of the developed SpID has 2™ order
internal dynamics to represent the peaks and fluctuations
in the COVID-19 casualties.

4) To learn the unknown parameters of the SpID model,
the exact bases corresponding to the parameter space of
the model are constructed and the unknown parameters
are learnt by performing a batch type Least Squares (LS)
estimator.

5) The model with the determined parameters has been
extensively analysed by utilizing the mathematical tools.

6) Predicted future COVID-19 casualties for Turkey have
been provided by using the developed model.

In the rest of the paper, Section II reviews the SIR
model, Section III introduces the proposed SpID model,
Section IV formulates the LS based parameter learning
approach, Section V analysis the COVID-19 casualties in
Turkey, Section VI provides the key insights of the SpID
model, Section VII presents the predicted future casualties
for Turkey and finally, Section VIII summarizes the work.

Il. REVIEW OF THE SIR MODEL

This section reviews the SIR model adopted for the esti-
mation of the COVID-19 casualties. The gained insights
in this section greatly contribute to the construction of the
comprehensive new mathematical SpID model presented in
Section III.

A. THE SIR MODEL

The SIR model is expressed with unforced (homogeneous),
time-invariant, slightly coupled, three individual first-order
ordinary differential equations (ODE) as:

S@)=-BS@)I (1)
1) =BSMI{)—yR()
R(t) = yR(1) (1

where;

o S(t) represents the Susceptible (S) individuals who may
be infected and have a lack of immunity,

o I(t) represents the Infected (I) individuals who are
exposed and become infected after contracting the dis-
ease,

o R(t) represents the Recovered (R) individuals who have
gained immune to the disease and are not infectious,

« [ represents the transmission rate,

« y represents the infectious rate.
Next section discusses the properties of the SIR model in

terms of covering the dominant COVID-19 dynamics.

B. PROPERTIES OF THE SIR MODEL
We can summarize the key properties of the SIR model as

1) Its S(¢) and I(¢) sub-models are non-linear due to
S(¢)I(¢) multiplication,
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2) Each ODE (sub-model) is first order,

3) Its I(¢) sub-model has linear coupling with R(¢) through
the y parameter.

4) It is a continuous model due to time derivatives,

5) It is a deterministic model since it does not cover any

uncertainties
Next section constructs a new model called as SpID.

Ill. THE SpID MODEL

The SpID model does not contain the number of the recov-
ered people R as in the SIR model because the optimiza-
tion algorithms mainly focus on minimization such as the
number of the suspicious, infected, and death people, rather
than the number of the recovered people requiring maxi-
mization. In addition, the proposed SpID model does not
explicitly cover the parameters such as § and y, instead it
has unknown parameters where the optimization algorithms
determine them implicitly.

To provide consistency between the constructed model
and the real system, casualties in Turkey are referred. Even
though the magnitudes of the casualties in the worldwide
are different, the overall character of them such as peaks,
increments, and decays are similar. Thus, the proposed model
can be easily adopted for the other cases in different countries.

A. SUSPICIOUS MODEL
The proposed model considers the number of the suspicious
Sp(t) casualties rather than the number of the susceptible S(z)

casualties as in the SIR model. This is because
o The developed SpID model aims at modelling the num-

ber of the suspicious casualties Sp(#) which directly
feeds the number of the infected and death casualties.

o The number of the suspicious casualties Sp(¢) cover the
number of the people who have been tested and/or quar-
antined based on suspicion of being infected, in which
the corresponding data are revealed daily by the state

authorities.
To develop a model for the suspicious casualties Sp(t),

three steps are followed.

Step 1: Consider the internal dynamics of the number of
the suspicious people. As can be seen from Fig. 3, the num-
ber of the suspicious people has two moderate peaks (over-
shoots), which imply that the model is almost overdamped
(not exactly damped). Thus, the system can be represented as
a 2" order linear system as

Sp(t) = a1Sp (t) + aoSp (1) 2)

where a; and ag are the unknown parameters which will be
determined in Section I'V.

Step 2: It is the fact that the number of the infected people
I has an important role in the number of the suspicious people
since the infected people are infectious. So that they continue
spreading the virus until they are completely isolated. There-
fore, the suspicious model should be coupled with the number
of the infected people as

$p(t) = a1Sp (t) + aoSp (t) + b3l (1) A3)
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where b3 is the unknown parameter that scales up the impact
of the infected people on the number of the suspicious people.

Fitting the suspicious data of Turkey shows that the sus-
picious model (3) reflects the general character of the real
system.

x10*

| Lockdowns |

0 | | |
0 20 40 60 80 100 120

FIGURE 1. Real data of Turkey for the suspicious (red solid line) and the
model estimated with a simple parameter fitting (blue dotted line).

As can be seen from Fig. 1, except the awareness (transient
period) and the lockdowns, the constructed model (6) carries
general properties of the pandemic.

Step 3: It is important to note that the model estimation
has larger frequencies than the real one. This is because
that the real data is discrete (collected daily samples), but
the constructed model is continuous. Hence, the continuous
model (3) is converted in its discrete form as

Spik+2 = a1Spr+1 + aoSpk + b3lx 4

The parameters ag, ag and b3 are kept unchanged in con-
tinuous and discrete models as they are only unknown param-
eters, not specifically defined parameters.

B. INFECTED MODEL
To develop a model for the infected casualties, four steps are
followed.

Step 1: Consider the internal dynamics of the infected
number of the people shown by Fig. 3. It has a large peak
(overshoot); henceforth, it is underdamped. Therefore, it is at
least 2" order represented as

I(t) = bl (t) + bol (1) ®)

where by and by are the unknown parameters of the infected
model.

Step 2: The number of the suspicious people affects the
number of the infected people. Hence the model (5) becomes

I(t) = b1l (1) + bol (t) + a3Sp (1) (©6)

where a3 is the unknown parameter scaling up the impact of
the number of the suspicious people on the infected number
of people.

Step 3: The number of the deaths has a role on the number
of the infected people (i.e. increased number of deaths reduce
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the number of the infected people). Thus, the model (6)
becomes

1(t) = byl (t) + bol (1) + a3Sp (t) + d3D (1) (7

where d3 is the unknown parameter scaling up the impact of
the number of the deaths on the infected number of people.

Step 4: Similarly, the continuous time model (7) in discrete
form is

Ii42 = bilyy1 + boly + a3Spy + d3 Dy, )

The infected model (8) is 2" order and highly coupled.
Next section presents the model of the death.

C. DEATH MODEL
To develop a model for the death casualties, three steps are
followed.

Step 1: The number of deaths in Fig. 4 has a large peak
(overshoot), henceforth the system is slightly damped with at
least 2" order dynamics which can be represented as

D (1) =d\D (1) +doD (1) )

where d; and dy are the unknown parameters.

Step 2: Since the number of the infected people directly
affects the number of the deaths, the model (9) can be
improved as

D (1) = d\D (t) 4 doD (t) + b4l (1) (10)

where by is the scaling factor of the number of the infected
people on the number of the deaths.
Step 3: The continuous model (10) in its discrete form is

Dy4> = d1Di41 + doDy + baly (11

Next section presents the LS based optimization approach
to determine the unknown parameters of the proposed SpID
model.

IV. LS BASED PARAMETER LEARNING

This section formulates the bases and the unknown parameter
vectors of the SpID model together with the labelled output.
This section also provides the batch type LS based unknown
parameter estimation approach to learn the unknown param-
eters offline.

A. CONSTRUCTION OF THE BASES

To perform the LS based optimization, initially a basis should
be constructed for each part of the SpID model. For the
basis of the suspicious model, consider the right-hand side
of the discrete model (4) and formulate the corresponding
basis ¢g), as

¢Sp
= [Sp@2,....N—=1)Sp(1,.N=2I(,....,.N=2)]"
(12)
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where N is the length of the data. Similarly, to construct the

basis for the infected ¢;, consider the right-hand side of the

discrete model (8) which yields

or=[{Q2,.... N—-DI{A,...,N=2)Sp(l,...,N—=2)
DA,....N=2]1" 13)

Lastly, take into account the right-hand side of the discrete
model (11) to construct the basis for the deaths ¢p as

ép
=[DQ,....N-1)D({d,....N-2I(,....,N=2]"
(14)
These bases have information about the past casualties of the

COVID-19 and will be used for formulation of the estimated
and parametrized casualties.

B. ESTIMATED AND PARAMETRIZED CASUALTIES
The estimated model consists of the unknown parameter

vectors defined as
T
T
wy = [bl by a3 d3]
wp=[d do bs] (15)

wSp:[al ap b3]

where wgp, wy, wp are the unknown parameter vectors of
the suspicious, infected and deaths models respectively. The
estimated individual models are

sp = wi,bsp
51=w[
Sp = whop (16)
where Jsp, 31, yp are the estimated outputs or future casualties
for the suspicious, infected and death sub-models. To perform

the LS optimization, the next step is to label the real outputs
presented next.

C. THE REAL OUTPUTS

To construct the real outputs, consider the left-hand sides of
the discrete models (4), (8) and (11). The real outputs (non-
parametrized) are

ysp =Sp (3, ..., N)T
y=1@G,....,N)T
ywo=D@G,....,N)" (17)

where ys,, y7, yp are the real outputs. Finally, next section
formulates the LS.

D. LS FORMULATION

Consider the real outputs (17) and estimated outputs (16)
by reducing the indices of the parameters and variables. The
error between them provides a tool for the estimation of the
unknown parameter vector (15). The error vector e is

e=y—3 (18)
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T N A a oA qT
where y = [ysp yr yp| and § = [9sp 31 Ip | . To ensure
positive definiteness in the estimates, square the error e in (18)
and expand as

2= (r=279) (=70)
=y'y—woly—y'wlo+wp'wle (19

To determine the unknown parameters w which minimizes the
squared error (19), take the gradient of (19) as

9e?
ow

The unknown parameter vector w in (20) is obtained by
setting it zero as

= 20"y +2¢" pw (20)

w==(¢T¢)*]¢Ty @1)

This formulation of the unknown parameter vector (21) can
now be used to analyse the developed model in Section VI
and to predict the future casualties of the COVID-19 in
Section VII.

E. PSEUDO-CODE FOR THE SpID MODEL
In this sub-section, we provide a simple pseudo-code to apply
the SpID model for the casualties of the other countries.

Algorithm 1 Pseudo-Code of the SpID Model
Input: Reported suspicious (Sp), infected (/) and death D
casualties
Output: Estimated models ysp, y;, and yp

1. Construct the bases ¢g),, ¢y and ¢p given by equations
(12), (13) and (14).

2. Construct the output vectors ysp, y7, and yp given by
Equation (17).

3. Determine the unknown parameters of each sub-
model by using the LS optimizer in Equation (21).

4. Obtain the estimated outputs ysp,, J;, and Jp by using
Equation (16).

Next section presents the analysis of the COVID-19 data.

V. ANALYSIS OF THE DATA: COVID-19

CASUALTIES IN TURKEY

This part of the paper provides a brief presentation and
analysis of the COVID-19 casualties in Turkey. This data is
used for determining the unknown parameters of the model in
Section V and also is used for the analysis of the model and
predicted future casualties in Sections VI and VII.

A. SUSPICIOUS CASUALTIES

Fig. 2 shows the daily suspicious casualties (tested due to
appearance of the symptoms) reported by the Health Min-
istry of Turkey. As can be seen, initially no suspicious
casualties have been reported even though the deaths have
been reported. The number of the suspicious casualties has
increased quite sharply for about 40 days and then due to
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FIGURE 2. Daily suspicious casualties of Turkey.

mostly imposed curfews and lockdowns for about 30 days
duration, the number of the suspicious casualties has reduced
moderately. However, it continues climbing after lifting the
restrictions.

5000

4000

3000 -

2000 -

1000

0! \ . .
0 20 40 60 80 100 120

Daily Samples

FIGURE 3. Daily infected casualties of Turkey.

B. INFECTED CASUALTIES

Fig. 3 shows the daily infected casualties reported by the
Health Ministry of Turkey. It is clear that the number of the
infected people sharply reaches the peak after around 30 days
of 12 of March 2020. The number of the infected casualties
reduces from 5000 to under 1000 after imposing restrictions
and raising social awareness against the virus. Neverthe-
less, the number of the infected people slightly increases
after releasing the restrictions. However, it is noticeable that
despite the large increase in the number of the suspicious
people (Fig. 2), increase in the number of the infected people
is limited (Fig. 3). This is likely because the latest tests are
for protection purpose rather than the existence of the strong
evidences of the COVID-19 symptoms.

C. DEATH CASUALTIES

Fig. 4 shows the number of the deaths stemmed from the
COVID-19 virus in Turkey. It is clear that the character of
the deaths (Fig. 4) is strongly correlated with the number of
the infected people (Fig. 3), but not with the number of the
suspicious people (Fig. 2). It is clear that the number of the
deaths has reduced from 130s to 20s, but it has not minimized.

D. BOUNDEDNESS OF THE CASUALTIES
Previously it is shown that the infected and death casual-
ties are largely reduced, but they fluctuate around their new
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FIGURE 4. Daily death casualties of Turkey.
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FIGURE 5. Convergence regions of, a) Suspicious, b) Infected, c) Death.

equilibrium points after removing the curfews. As can be seen
from Fig. 5, all the elements of the SpID model converge
the bounded regions and these regions have a number of
periods where small variations yield different periods. While
the suspicious casualties have the largest region (Fig. 5a),
the death casualties have the smallest region (Fig. 5c).

VI. ANALYSIS OF THE SpID MODEL
This section provides the insightful analysis of the coupled
and higher order parametric SpID model.

A. COMMENTS ON THE SpID MODEL
The learned parameters of the SpID model with the LS
estimator (21) are

Spk+2 = 1.558pr+1 — 0.558pr + 0.101
I 4o = 1.80[k4+1 — 0.80I; + 0.00001Sp; — 0.16Dy
Di42 = 179Dy 41 — 0.83Dy + 0.0011 (22)

Insight 1: All the individual past casualties have strong
impact on the current casualties since the coefficients of the
past values are, for instance 1.555x4+1 — 0.55S; for Si42
in (22), and likewise for the others.

Insight 2: Infected number of the people slightly affects
the number of the suspicious people since 0.10[; in (22).

Insight 3: However, the role of the number of the suspi-
cious people on the number of the infected people is limited
(0.00001S8k) due to widely performed precautious tests for the
people who start their tasks (i.e. soldiers, workers).
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Insight 4: Also, the role of the infected number of the
people on the number of the deaths is limited since the
majority of the infected people have recovered after success-
ful treatments.

B. EIGENVALUE BASED ANALYSIS OF THE SpID MODEL
Eigenvalues of the coupled and 6™ order discrete model (22)
provides key information about the future behaviour
(decrease or increase unboundedly and the time to reach
a certain level). Therefore, the eigenvalues of the whole
data and the data after the restrictions (late data) have been
evaluated.

Since the model is discrete, any eigenvalue smaller than
1 yields stable response (convergent) whereas any eigen-
value larger than 1 leads to instability (unbounded or infinity

response). Based on this fact, the following insights can be
deduced.

Whole Data Late Data

0.6112 +0.22313!
: 'S
0.6112 -0.22317 |

0.5552 +0.00007

______________

0.8084 4 0.160871  0.8901 4 0.3048;!

! 1 I 1
I 2 1 4
0.16087 '  0.8901 -10.3948; !

1 1
1 1

Tl 1 -1 1
| Fl a4

0.8984
FIGURE 6. Eigenvalues of the whole and late data.

Insight 1: When the whole data is considered, the real
eigenvalues in rectangle 1 of Fig. 6 are close to 1. They
are in stable region, but they are also close to the instable
region. Therefore, any internal change or external effect can
easily drive these eigenvalues outside the stability region.
Henceforth, all the casualties can explode.

Insight 2: When the whole data is considered, there are
imaginary eigenvalues in rectangle 2 of Fig. 6. These imagi-
nary values imply fluctuations in the casualties, but they are
considerably small compare to the real part of the eigenval-
ues, which are less than 1. Thus, the casualties will slightly
fluctuate over a period of time.

Insight 3: The dominant eigenvalue of the whole data is
represented with 0.99 in rectangle 1 of Fig. 6. The other
eigenvalues of the whole data will disappear, but the dominant
eigenvalue will be insignificant around 900 days later if there
are no disturbances or changes in the conditions.

Insight 4: When the late data (after the lockdowns) is
considered, the two of the real eigenvalues in rectangle 3 of
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Fig. 6 are just larger than 1. Henceforth, the response is unsta-
ble and the casualties explode unboundedly if no action is
taken against them. However, since the unstable eigenvalues
are slightly larger than 1, the casualties will increase
sluggishly.

Insight 5: When the late data is considered, there are
imaginary values in rectangles 4 and 5 of Fig. 6, which are
quite large compare to their real values. Therefore, the future
casualties will be largely oscillatory.

Mean E, 5 10 Mean E,

80 1 4r

2 Mean E, !

1 2

FIGURE 7. Mean errors in estimates.

C. MEAN ERROR IN MODEL ESTIMATES
Since the bases of the parametric optimization algorithm
are small and exact, so that the corresponding parameter
space, errors in the estimates are expected. As can be seen
from Fig. 7 mean error in the estimation of the suspicious
casualties (Mean Egp) is around 100, mean error in the
estimation of the infected casualties (Mean Ej) is about
10 and mean error in the estimation of the death casual-
ties (Mean Ep) is significantly less than 1. These results
confirm that the developed model can quite accurately esti-
mate the infected and death casualties in the presence of the
unknown uncertainties. Even though the mean error for the
suspicious casualties (Mean Egp,) seems large, compare to an
average of 60000 daily suspicious casualties, it is acceptable
as well.

Next section now presents the future estimates of the
COVID-19 determined based on the model predictions.

4 a) b) )
6 X 10 30
1000
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4 1 20
600
S 1 D
2 | 400 | 10!
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Days Days Days

FIGURE 8. Future COVID-19 casualties for, a) Suspicious, b) Infected,
) Death.

VIi. PREDICTION OF THE FUTURE COVID-19
This section provides the predicted future casualties esti-
mated by the model (22) under the current conditions. Fig. 8a
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shows that the number of the suspicious casualties is mini-
mized around 1000 days whereas the number of the infected
and death people reach their minimum around 300 days.
There exists a peak in the results due to small imaginary parts
of the eigenvalues discussed in Section VI-B.

VIIl. LIMITATIONS OF THE STUDY

The proposed model is developed by taking into consider-
ation the suspicious, infected, and death casualties, but it
does not take into account the intensive care and intubation
casualties, non-pharmacological policies, pharmacological
policies, and unknown uncertainties. In the future, modified
versions of the model that include these issues can easily be
developed based on our current proposed approach. Later,
the developed model should be incorporated with artificial
intelligence approaches to create policies for future pandemic
casualties.

IX. CONCLUSION

The paper initially has reviewed the SIR model adopted for
the COVID-19 casualties’ estimation. Then, the novel com-
prehensive SpID model has been introduced, analysed and
justified. Later, the unknown parameters of the model have
been determined by using the LS based parametric optimiza-
tion approach for the COVID-19 casualties in Turkey. The
results show that the developed model can closely estimate
the casualties in Turkey. In addition, the model predicts that
the number of the infected and death people will be min-
imized in 300 days, whereas the number of the suspicious
casualties will reach their minimum around 1000 days. Even
though the model is trained and analysed by using COVID-19
casualties in Turkey, its unknown parameters can be adapted
for the casualties in other countries in the world.

Thus, the COVID-19 authorities of the countries can plan
new measures against the virus in the short-medium-long
terms, and accordingly, update their regulations in the fields
of economy, travel and health systems according to the
predictions of the model we propose.
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