
Received September 21, 2020, accepted October 15, 2020, date of publication October 22, 2020, date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033019

Refining Microservices Placement
Employing Workload Profiling Over
Multiple Kubernetes Clusters
JUNGSU HAN 1, YUJIN HONG 1, AND JONGWON KIM2, (Senior Member, IEEE)
1School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea
2AI Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, South Korea

Corresponding author: Jongwon Kim (jongwon@nm.gist.ac.kr)

This work was supported in part by the Vehicles AI Convergence Research and Development Program through the National IT Industry
Promotion Agency of Korea (NIPA) funded by the Ministry of Science and ICT (MSIT) under Grant S1605-20-1002, and in part by the
Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant funded by the Korean Government, MSIT,
Artificial Intelligence Graduate School Program (GIST), under Grant 2019-0-01842.

ABSTRACT As cloud-native computing is becoming the de-facto paradigm in the cloud field, Microservices
Architecture has attracted attention from industries and researchers for agility and efficiency. Moreover,
with the popularity of the IoT in the context of edge computing, cloud-native applications that utilize
geographically-distributed multiple resources are emerging. In line with this trend, there is an increasing
demand for microservices placement that selectively use optimal resources. However, optimal microservices
placement is a significant challenge because microservices are dynamic and complex, depending on diver-
sified workloads. Besides, generalizing workloads’ characteristics consisting of complex microservices is
realistically challenging. Thus, microservices deployment with mathematically structured algorithms based
on simulation is less practical. As an alternative, a microservices placement framework is required that can
reflect the characteristics of workloads derived from empirical profiling. Therefore, in this research work,
we propose a refinement framework for profiling-based microservices placement to identify and respond
to workload characteristics in a practical way. To achieve this goal, we perform profiling experiments with
selectedworkloads to derive delicate resource requirements. Then, we performmicroservices placement with
a greedy-based heuristic algorithm that considers application performance by using resource requirements
derived from the profiled results. Finally, we verify the proposed concept by comparing the experimental
results that use our work and those that don’t.

INDEX TERMS Cloud-native computing, microservices placement, workload profiling, container orches-
tration, resource monitoring.

I. INTRODUCTION
Cloud computing has been unanimously accepted as the tech-
nological solution for different problems in various sectors
including businesses, healthcare, factory, farm [1]. With the
growth of cloud technologies, cloud-native computing is ris-
ing as the de-facto paradigmwith Microservices Architecture
(MSA)-based service composition for agility and effi-
ciency [2].Microservices are defined as small-sized functions
that may be deployed and scaled independently of each other,
and they may employ different middleware stacks for their
implementation [3]. In particular, legacy services based on

The associate editor coordinating the review of this manuscript and

approving it for publication was Chin-Feng Lai .

monolithic architecture are being migrated to MSA to adapt
to technological changes and reduce time-to-market. These
applications, also known as cloud-native applications still
harness the benefits of the cloud-native paradigm [4], [5]. For
cloud-native applications, the adoption of containerization is
gradually increasing since it has benefits in terms of flexi-
bility and performance rather than virtual machines [6], [7].
Containers that are inherently agile offer the most feasible
option to run microservices in cloud computing [8].

Early adopters mainly deployed cloud-native applications
in the form of containers on a single cloud architecture [9].
However, with the popularity of the IoT in the context
of edge computing, cloud-native applications that utilize
geographically-distributed multiple resources have recently

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 192543

https://orcid.org/0000-0003-1680-9771
https://orcid.org/0000-0002-7092-9259
https://orcid.org/0000-0001-7138-0272

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

emerged. Several container orchestration engines have been
released to take advantage of the resources of multiple clouds
and clusters. However, current container management tools
do not consider optimization policies, remaining room for
improvement [10]. In other words, there are many hidden
challenges in optimal microservices placement over multiple
resources.

Many studies have been devised to solve the optimal
resources management problem in cloud computing.
Resources management in cloud-native computing should
satisfy acquiring resource requirements in microservices to
ensure the seamless running of cloud-native applications.
Determining the right amount of resources to allocate to
incomingmicroservices is an intricate task that involvesmany
challenges [11]. However, most researchers deal with deriv-
ing a placement algorithm through mathematical modeling
based on simulations to tackle these challenges. These works
often overlook obtaining precise requirements for microser-
vice resources. We should come up with a component that
grasps the fine-grained resource requirements depending on
workloads by taking into account the intricate microservices.

Therefore, this research proposes a framework that
addresses microservices placement for considering applica-
tion performance based on empirical profiling in a practical
way. The specific contributions of this article are summarized
below.
• First, we devise a refinement framework that empiri-
cally refines microservices placement based on work-
load profiling. The framework provides a practical
lifecycle range from cloud-native workloads profiling
to microservices placement. For workload profiling,
we first design resource variation monitoring to acquire
microservices resource consumption. Based on themon-
itored data, the framework profiles cloud-native applica-
tions responding to workloads repeatedly. Subsequently,
profiled data is utilized to do the appropriate microser-
vices placement empirically.

• Second, to make concrete our proposed concept,
we implement a profiling system in accordance with
the framework. Then, we experiment with workload
profiling on three different types of cloud-native appli-
cations. Resource consumption is measured repeatedly
in three selected applications depending on the work-
load. The cycle of automatic deployment keeps track of
resource status changes by dividing the start and comple-
tion points according to the primary resource utilization
by paying attention to the resources used empirically
through testing deployment. After that, we analyze pro-
filed results to obtain fine-grained resource requirements
depending on workload characteristics.

• Third, we do microservices placement with the refine-
ment framework on multiple Kubernetes (K8s) clusters
by utilizing profiling results. We apply a greedy-based
heuristic algorithm that reacts to workload characteris-
tics observed in empirical profiling for themicroservices
placement. Also, we configure a testbed that consists

of three different Kubernetes clusters for the placement
experiments. We then verify the proposed concept by
deploying microservices on the testbed by following
the framework’s placement policies. The experiments
show that improve the quality of service compared to
not adopting our work.

The rest of this article is organized as follows. In Section 2,
we briefly summarize related work. We then explain the pro-
posed framework in Section 3. Section 4 discusses a profiling
system and the profiling results using the proposed frame-
work by deploying three cloud-native applications respond-
ing to the workload. In Section 5, we perform microservices
placement with the proposed framework based on the anal-
ysis of workloads profiling and discuss experiments results.
Finally, we conclude this article in Section 6.

II. RELATED WORK
Resource placement in cloud computing is one of the
most important research issues. These researches have
been studied in subdivisions according to the form of
resources, the optimization value, and the target environment.
In the early days of cloud computing growth, most of the
works focus on resource management for virtual machines.
Tordsson et al. [12] proposed a novel cloud brokering
approach that optimizes virtual machines’ placement across
multiple clouds for cost and performance using linear pro-
gramming. Li et al. [13] proposed a Layered Progressive
resource allocation algorithm for multi-tenant cloud data
centers based on the Multiple Knapsack Problem (LP-MKP).
Heilig et al. [14] address cloud resource management
in multiple clouds that is a recent optimization problem
aimed at reducing the monetary cost and the execution
time of consumer applications using a genetic algorithm.
Legillon et al. [15] proposed a new realistic model with
genetic algorithms to tackle the problem, placing services into
heterogeneous VMs from different IaaS providers.

Meanwhile, as cloud computing moves towards cloud-
native computingwithMSA technology adoption, researchers
have addressed resource management for containers
[16]–[18]. Guerrero et al. [19] proposed a genetic algo-
rithm for the allocation of containers running microser-
vices in multiple clouds. They considered the objectives of
cloud service cost, network latency, and service reliability.
Filip et al. [20] proposed a new model for scheduling
microservices placement across heterogeneous cloud-edge
environments. Wan et al. [21] proposed an efficient com-
munication framework and a suboptimal algorithm to deter-
mine the data center’s container. Wen et al. [22] proposed
a new dependable microservices orchestration framework
with GA-Par that adopts a genetic algorithm to perform
microservices composition whilst reducing the discrep-
ancy between user security requirements and actual ser-
vice provision. Buyya et al. proposed a framework for the
cost-efficient orchestration of containers in the Cloud envi-
ronment [23]. They also stressed the need for more research
work to optimize deployments at run time, especially through

192544 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

TABLE 1. Comparison of existing works on resource placement in cloud computing.

containers’ initial deployment and themigration, rebalancing,
or auto-scaling of clusters. Hoenisch et al. [24] addressed
four-fold auto-scaling by formulating the scaling decision
as a multi-object optimization problem. In this work, four
dimensions of scaling were considered: VMs and contain-
ers can be adjusted horizontally (changes in the number
of instances) and vertically (changes in the computational
resources available to instances). Nardelli et al. [25] provided
a general formulation of the elastic provisioning of containers
on virtual machines as an integer linear programming prob-
lem, which takes explicitly into account the heterogeneity
of container requirements and virtual machine resources.
Piraghaj et al. proposed a framework that consolidates con-
tainers on virtual machines to improve the energy efficiency
of servers [26]. Joseph et al. proposed a novel, robust heuristic
approach called IntMA to deploy the microservices in an
interaction-awaremanner with the aid of the interaction infor-
mation obtained from the interaction graph [27]. This work’s
remarkable thing is that the target environment was transited
from multiple clouds to the Kubernetes cluster. Kubernetes,
which is used as a de-facto standard in cloud-native com-
puting, can provide a consistent resource pool over multiple
clouds [2]. Therefore, developers entirely focus on deploying
their applications without worrying about underlay clouds.

The aforementioned researches address container place-
ment in more complex situations than virtual machine place-
ment to deal with resource management in cloud-native
computing. However, these studies often overlook a precise
understanding of resource requirements in a practical way.
As a result, optimization placement with the only well-
modeled algorithm has difficulty applying them to real prob-
lems. Some researchers try to use a profiling method to
apply their resource management system in real-world sce-
narios. Basit Qureshi proposed a power-aware framework
for efficient placement of application workloads in the data
center based on profiling [28]. Ye et al. [29] proposed
a novel profiling-based consolidation of multi-tier interac-
tive workloads from a new perspective of user-perceived
tail latency. This work is the most similar to our approach
but with significant differences. Kejiang focused on virtual
machine placement on physical servers. On the other hand,

our approach considers microservices placement rather than
virtual machines to copewith the cloud-native paradigm shift.
Also, we decide to select the target environment of deploy-
ment to a more flexible Kubernetes cluster instead of multiple
clouds.We provide a summary of the comparison between the
relevant research works and our study in Table 1.

III. REFINEMENT FRAMEWORK FOR PROFILING-BASED
MICROSERVICES PLACEMENT
This section first introduces requirements to satisfy microser-
vices placement that reflects the workloads derived from
empirical profiling. Then, we present a refinement framework
based on empirical profiling and describe the framework’s
overall workflows.

A. REQUIREMENTS
The following requirements are discussed to satisfy the
cloud-native application deployment for effectively guaran-
teeing performance on cloud-native infrastructure.
• R1. Microservices Monitoring: Cloud-native comput-
ing has changed the way we deploy our applications
into the containers complying with microservices archi-
tecture since containerization enables developers to
make lightweight isolation that can easily and quickly
deploy their codes to realize services [2]. Basically, most
monitoring solutions perform resource-layer visibility,
mainly focused on physical/virtual machines. However,
resource-layer visibility that covers containers is becom-
ing more important since cloud-native applications are
carried out in the form of containers. In particular,
cloud-native applications consist of multiple microser-
vices that interact with each other, so it should compre-
hensively monitor and understand not only computing
resources but also network and storage.

• R2. Empirical Workload Profiling: Cloud-native
applications based on MSA are quite challenging to
simplify resource requirements because many microser-
vices interact with each other dynamically. Therefore,
it is essential to accurately analyze cloud-native applica-
tions’ resources requirements based on empirical profil-
ing depending on diversified workloads of cloud-native

VOLUME 8, 2020 192545

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 1. Overall design of the refinement framework.

applications. Thus, for workload profiling, analysis
results based on various workload parameters should
be presented repeatedly in conjunction with microser-
vices monitoring for specific cloud-native applications.
In addition, this process has to help you understand
delicate resource requirements based on the workloads
through statistical data generated from profiling.

• R3. Workload-adaptive Microservices Placement:
Research in resource placement to maximize cloud-
native applications’ performance is challenging because
microservices are dynamic and complex with diversified
workloads. A heuristic algorithm derived in assuming
resource requirements depending on workload’s char-
acteristics in advance tends to be challenging to apply
in the practice area. Thus, Workload-adaptive microser-
vices placement techniques are required that can be
reacted according to dynamic resource requirements
in conjunction with empirical workload profiling. The
microservices placement should be adaptive in a manner
that is not fixed to a particular situation in running
applications and is dynamically responded by various
workloads.

B. PROPOSED REFINEMENT FRAMEWORK
Based on the above requirements, we suggest a refinement
framework for profiling-based microservices placement,
as depicted in Figure 1. The proposed framework consists
of four main components: i) Cloud-native workload mon-
itoring, ii) Empirical workload profiling, iii) Workload-
adaptive microservices placement, iv) Kubernetes cluster
management. The framework performs user requirements

that include their cloud-native application with workload
parameters through inter-communication between main com-
ponents for efficient microservices placement in multiple
Kubernetes clusters.

To satisfy the R1, we carefully design the cloud-native
workload monitoring component. The component’s key fea-
ture is to provide container-based resource variation moni-
toring corresponding to workloads’ dynamic characteristics.
Most of the resource monitoring tools are focus on main
resources metrics such as CPU, memory, disk, network, and
so on. However, we design workload monitoring based on
resources that we have identified comprehensively by sepa-
rating the physical and container resources.

To handle the R2, we suggest empirical workload profiling
based on workload monitoring. The workload profiling pro-
vides statistical results based on the resources metrics that are
repeatedly placed in accordance with the user’s application
responding to workload.

For the R3, we design workload-adaptive microservices
placement. We use a greedy-based heuristic algorithm
for microservices placement based on workload profiling.
We also devise Kubernetes cluster management to identify
the cluster’s current residual resource capacities and manage
labeling information belonging to the cluster to help with
actual microservices placement.

The main components of the framework are described in
detail below.

i) Cloud-native workload monitoring: It is a monitor-
ing component focusing on microservices deployed in the
container. It comprehensively collects and visualizes com-
puting resources such as CPU, memory, and storage and
network metrics by the microservices unit. Physical resource

192546 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 2. Overall workflow of the propose framework.

monitoring and container monitoring are combined with
being designed to perform resource variation monitoring for
microservices for the component. Data collected from the
monitoring is stored in a K8s persistent volume to be utilized
in the profiling component.

ii) Empirical workload profiling: It consists of functionali-
ties that perform profiling repeatedly, depending on the user’s
description that contains a cloud-native application with
workload parameters. After repeatedly deploying microser-
vices in response to workload parameters, the workload mon-
itoring data is collected. It stores profiling information for
the workload on the profiling datastore. We can analyzes
resource consumption characteristics since the collected pro-
filing results are statistically visible to the user.

iii) Workload-adaptive microservices placement: It is
microservices deployment over multiple Kubernetes clusters
depending on the workload profiling by using our proposed
algorithm. We use the Greedy method, one of the heuristic
algorithms, to respond to workloads profiling. Note that our
framework is designed to apply various heuristic algorithms.
When the user submits a Kubernetes description for the
desired cloud-native application, it performs the heuristic
algorithm based on the profiling results. After that, it deploys
to the Kubernetes clusters via location-labeled modified
Kubernetes description to prevent applying the Kubernetes’
default placement policy. Note that this work deals with the
problem of selecting a single cluster in the multiple Kuber-
netes clusters and placing microservices into it. We do not
address cloud-native application deployment beyondmultiple
Kubernetes clusters since it requires advanced techniques
such as service mesh and cluster federations.

iv) Kubernetes cluster management: It consists of two
modules to support microservices deployment in Kubernetes
clusters. The resource management module checks the cur-
rent idle resources for our Kubernetes clusters. It uses the
cloud-native workload monitoring components to identify
resource situations and provide resource information with
the workload-adaptive microservices placement component
at the deployment stage. The policy management labels all
of the nodes that make up the Kubernetes clusters in policies.
These labels help the workload-adaptive microservices place-
ment component deploymicroservices to desired nodes in the
Kubernetes clusters.

C. OPERATION WORKFLOW OF THE PROPOSED
FRAMEWORK
The proposed framework works with the operation work-
flow, as shown in Fig. 2. Initially, cloud-native workload
monitoring is configured on multiple Kubernetes clusters.
It regularly collects and records resource status for nodes
and containers that belong to the Kubernetes clusters. Once
initialization is done, users can send their requests to the
proposed framework. It contains a cloud-native application
description in YAML with workload parameters.

When a user’s requests are received, the framework’s
first stage is to perform workload profiling. The frame-
work deploys the target application into the Kubernetes
clusters. Simultaneously, the workload profiling compo-
nent works together with the monitoring components to
measure and store the resource usages in microservices
units. The framework automatically performs the microser-
vices deployment/de-allocation at a certain number of times.

VOLUME 8, 2020 192547

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

The profiled data generated by repeated microservices
deployment are visible in graph form for workload analysis.

The second stage in the framework is microservices place-
ment in Kubernetes clusters. The placement stage used in the
framework requires the following conditions: i) the results of
workload profiling, ii) The Kubernetes cluster information
with node labeling policies. The first stage’s profiling data
quantifies the microservice’s resource requirements accord-
ing to the workload characteristics. For acquiring resource
status in the Kubernetes cluster, the microservices placement
component requests the current resource situation per node to
themonitoring component. Node labeling is obtained through
the Kubernetes cluster management. After preparing all con-
ditions, it performs algorithms within the framework to deter-
mine the microservices placement. Finally, the framework
deploys microservices with a modified cloud-native appli-
cation description following the algorithm’s result. Detailed
experiments of profiling and placement with the proposed
framework are covered in the next sections.

IV. EMPIRICAL WORKLOAD PROFILING EXPERIMENTS
In this section, we prepare three types of cloud-native appli-
cations to perform workload profiling. Then, we configure an
experimental environment and finally analyze experimental
results based on the profiling data.

A. CLOUD-NATIVE APPLICATIONS RESPONDING TO
WORKLOAD
The number of cloud-native applications is explosively
emerging with the growth of cloud, IoT, and AI. Building
infrastructure management that handles cloud-native appli-
cations by categorizing them is an excellent way to cover
various cloud-native computing applications. However,
the typification of cloud-native applications is difficult due
to the diversity and complexity of the applications. Instead,
we prepare the following three types of cloud-native appli-
cations by paying attention to the infrastructure across
IoT-Edge/Core clouds, as depicted in Fig. 3.

FIGURE 3. Three types of cloud-native applications.

i) Smart energy application: Smart energy service uses
Raspberry Pi 2 to collect temperature, humidity, and power
consumption of the server room and the server’s system

temperature. The data coming from IoT is processed with
Edge Foundry open-source framework for data standardiza-
tion. The Kafka messaging system transmits standardized
data to persistent storage. It also has visualization and moni-
toring on a dashboard via a web browser [31]. All of the func-
tions are developed in the form of a Docker container. The
detailed implementation is written in our previous work [30].
Basically, the smart energy application consists mainly of
data transmitted from IoT. Instead of using real IoT devices,
we make a workload with mockup data in RESTful requests
that send sensing data to the application.

ii) WordPress application: It is a famous application exam-
ple with a Web-App-DB 3-tier structure. The application
consists of Web/App functions and database function with a
persistent volume. For the persistent volume in Kubernetes,
we additionally configure Ceph storage to use RBD provi-
sioner [32]. We use a RESTful HTTP load test tool called
locust to make workload [33].

iii) Sock shop application: Sock shop is a reference
cloud-native application developed by Weaveworks from
the start with current microservice and cloud-native best
practices in mind. It is a mock on-line shopping website
for purchasing socks. The application consists of multiple
microservices written in Go, Java, and Node.js, which also
make use of supporting functions such as RabbitMQ,Mongo,
andNginx [34]. Themicroservices communicate using REST
over HTTP. We also use the locust to create workload into the
applications.

B. EXPERIMENTAL ENVIRONMENT
For the workload profiling experiments, we first con-
figure cloud-native workload monitoring on multiple
Kubernetes clusters, as depicted in Fig. 4. We have built
three different Kubernetes clusters to realize diversified
cloud-native applications with various scenario cases. The
first cluster has one master node and four worker nodes. Each
node utilizes the Intel Xeon E5-2650v3 CPU with 20 cores.
The memory of each node utilizes Samsung DDR4 256GB
RAM. In addition, the GPU is mounted with four NVIDIA
Titan volta, one for each node. Finally, the Disk is equipped
with an Intel P4600 2TB NVMe SSD and 120G SATA
SSD. The second cluster consists of one master node and
one worker node. The CPU utilizes the Intel Xeon Scalable
5118 model, with 24 cores. For memory, Samsung DDR4
256GB RAM is used. It also comes with two Intel 512G
SATA SSDs. The GPU mounts three NVIDIA Titan volta
on one node. The third cluster also consists of one master
node and one worker node. The CPU utilizes the Intel Xeon
Scalable 5118 model with 24 cores. The memory utilized the
same Samsung DDR4 256GB RAM as the other clusters.
Four Samsung 1.6 TB NVMe SSD and two Intel 512G
SATA SSD is installed on the worker node. The worker node
has six NVIDIA Tesla T4 GPU computing. We separate
the hardware wiring to physically isolate the data plane for
the high-performance networking on all of the nodes. The
data plane is connected via Mellanox 100G smart NIC with

192548 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 4. Experimental testbed on multiple Kubernetes clusters.

RoCE functionality. For the RBD-based persistent volume
in Kubernetes clusters, we have built more than 300 TByte
Samsung NVME SSD with Ceph storage [35].

We use the Prometheus open-source monitoring system
thatmonitorsmultipleKubernetes clusters for figuring out the
resource condition. It is an excellent tool for understanding
resource status for cloud-native computing. We also leverage
Thanos for integrated monitoring management from multiple
Prometheus tools. On each node of the clusters, node and
Nvidia-SMI exporters are installed to collect basic monitor-
ing metrics through Prometheus.

Based on the experimental testbed with the cloud-native
workload monitoring, we implement the workload profiling
to cover three types of cloud-native applications, as shown
in Fig. 5.

FIGURE 5. The implemented empirical workload profiling software.

We design input parameters as application type, the
number of iteration for deployment, and duration time for
application deployment. When the input parameter comes
in the profiling software, it deploys the target application
into Kubernetes cluster #1. Note that we limit the profiling

environment to the single Kubernetes cluster because we do
not focus on the availability of resources in the clusters but
workload resources variation. After the application deploy-
ment, the software checks the health status of Kubernetes
pods to determine whether the application is performing nor-
mally. And then, the software injects workloads depending
on the application type. We develop three types of workloads
in a shell script, leveraging benchmarking tools. Once the
workload is injected, it collects the resource status of all
microservices that constitute the application. It also stores the
monitored data separately in the profiling datastore.

Although the monitoring component collects various
resource metrics, we only focus on CPU, Memory, Network,
and Disk IO metrics in the profiling stage. In the case of the
GPUmetric, the vanilla Kubernetes environment doesn’t sup-
port GPU virtualization. Thus, we do not focus on the GPU
metric since considering the GPU metrics as a deployment
factor makes microservices placement too simplistic.

If the elapsed time of application deployment equals the
duration parameter, it destroys the application. The above
processes are repeated automatically until satisfying the num-
ber of the iteration parameter. At the end of the profiling
process, it visualizes stored profiling data as a graph in the
form of a scatter plot.

C. EMPIRICAL PROFILING EXPERIMENTS
Before starting workload profiling, we configure a workload
using the Locust tool for three types of cloud-native applica-
tions. We implement python scripts that send 1,000 RESTful
HTTP requests per second for 450 seconds. In the smart
energy application, we send RESTful post requests with
mock-up style sensor data for temperature. For other

VOLUME 8, 2020 192549

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 6. Empirical workload profiling for wordpress application.

FIGURE 7. Empirical workload profiling for a part of smart energy application.

applications, we send RESTful get requests to front-end web-
sites. The profiling is executed by setting the number of
iterations 1, 5, 10, and 20, respectively.

Fig. 6, 7, and 8 show the scatter plot visualization regarding
the profiling results with twenty iterations in functions of a
part of three type applications with CPU, memory, network,
and disk IO metrics.

In the WordPress application case, CPU and memory
metrics of all functions are converging at some values a
certain period of time.We also see that the number of sending/
receiving networks is continually increasing because it is
asked for network requests by theworkload. Fig. 6(a) and 6(b)
show that disk io is consistent because the workload does not
send data into the application.

Fig. 7(a) and 7(b) show workload profiling results
regarding some functions that make up the smart energy
application. In the CPU metric case, the edgex-mongo
microservice is converging at some values for a certain period
of time. On the other hand, the kafka-broker-1 microservice
goes back to stable values after CPU usage soared at a certain
time. We observed that it is stable after some computing
has been performed. In the case of the memory metric,
two microservices seem to be converging on certain values
except for a few unstable values. The network also metric
increases steadily, similar to the previous application exam-
ple, except for a few unstable values. For the disk IO, only
the edgex-mong microservice continually increases because
the workload continually sends data to the application.

192550 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 8. Empirical workload profiling for a part of sock shop application.

FIGURE 9. The comparison of results according to the number of profiling iterations for WordPress application.

Fig. 8(a) and 8(b), which are part of the sock shop
application, also show the graph is similar to the above
examples. The CPU and memory utilization in two microser-
vices are converging to the constant value after a certain
period. The amount of sending/receiving networking is also
steadily increasing, excluding some unstable values. Disk IO
remains at the constant value because the workload does not
send/writing data to the application.

After we analyze profiling results for three types of
application, we decide to exclude the disk IO metric as the

placement consideration because it’s hard to find noticeable
disk IO features in most of the microservices. In addition,
for the issues regarding data processing that the cloud-native
environment deals with storage and computing separately,
in our example, improving performance in Ceph storage
itself seems much better. Therefore we decide to select CPU,
memory, and network having apparent profiling features as
microservices placement considerations.

Fig. 9 shows the comparison of results according to the
number of profiling iterations for the WordPress application.

VOLUME 8, 2020 192551

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

For measuring similarity, many measurements in the same
time period are calculated with the mean values. Even if
profiling is performed for one time, we can effectively iden-
tify the applications’ resource requirements depending on
the workload, as shown in both Fig. 9(a) and Fig. 9(b).
The resource requirements derived from performing profiling
with five iterations seem to be more than 95% consistent
with the profiling results of performing profiling with twenty
iterations. Therefore, performing profiling once can also be
effective, but we recommend doing workload profiling with
five or more iterations to ensure a high-reliability level.

Table 2 presents the resource requirements of three types of
applications derived from empirical workload profiling with
twenty iterations. The CPU and memory metrics reflect the
converging values of the profiling results. However, in the
case of the network metric, it is not suitable as a resource
requirement because it shows the total amount of send/receive
transmission in the network. Thus, the network values are
converted to network transmission per second. These results
described in Table 2 are used in the microservices placement
stage.

TABLE 2. Resource requirements in three types of applications derived
from empirical profiling.

V. MICROSERVICES PLACEMENT ENHANCEMENT WITH
THE FRAMEWORK
In this section, we apply a heuristic algorithm for microser-
vices placement to validate our proposed framework. We first
design an optimization model for our environment and intro-
duce a greedy-based heuristic algorithm. Then we do exper-
imental evaluation using the placement algorithm based on
empirical profiling data. We finally discuss our research idea.

A. GREEDY-BASED HEURISTIC ALGORITHM FOR
MICROSERVICES PLACEMENT
To validate our proposed framework design, we need exper-
iments for microservices placement by applying a suitable
algorithm. Many kinds of research have proposed great algo-
rithms for microservices placement considering application
performance. Since our work’s key idea is not a placement
algorithm but a profiling-based framework for microservices
deployment, any algorithms can be adapted to our framework.
Thus, we introduce simple heuristic algorithms using the
greedy method for the verification of our work.

Before applying the heuristic algorithm within the
framework, we describe a system model as follows.
We consider multiple K8s clusters C with identification n,
C ={c1, c2, .., cn}. Our model assumes that all nodes in
the same K8s cluster have the same computing processing
power. To distinguish CPU performance per the K8s cluster,
let ccpu_pern denote the value of CPU performance per core on
nth K8s cluster.

All of the K8s clusters have their physical/virtual hosts.
Let Hn denote a collection of all physical hosts in the K8s
cluster n. Let hz,n denote an individual host in Kubernetes
cluster n. Each host is characterized by the tuple <cpu, mem>
denoting the number of processing cores and memory units
on the physical host, respectively. Every host is capable of
running microservices in the form of containers. For the
placement process, only the remaining resource capacity
should be considered. We calculate the residual resource
capacities denoted as hcpu_resz,n and hmem_resz,n , respectively on
each node using Eq. (1).

hu_resz,n = huz,n(1− h
u_util
z,n); u ∈ {cpu,mem} (1)

Cloud-native applications consist of multiple microser-
vices. The microservices are run on containers hosted in the
nodes. Let M be a set of microservices in the cloud-native
application. Let mi be ith microservice in M . Each microser-
vice requires resources with CPU and memory denoted
as mcpu_reqi mmem_reqi , respectively. We also denote minti as
interactions rate by the ith microservice. Table 3 presents
described notations in our system model.

Our problem space can be formulated as a (0/1) Quadratic
Programming Problem with linear constraints. The binary
decision variables are defined in Eq. (2), (3).

xcn =

{
1, if cn is selected as cluster for placement
0, otherwise

(2)

ymihz,n =

{
1, if mi is allocated on node hz,n
0, otherwise

(3)

MSA-based cloud applications are network sensitive
because different functions interact with each other. The sim-
plest optimal microservices placement is that microservices
having frequent interactions are placed on the same node or
next to each other as much as possible [36], [37]. To apply this
methodology, we also define a parameter, node interaction

192552 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

TABLE 3. Notations used in the microservices placement model.

denoted as hintz,n in Eq. (4).

hintz,n = (
|M |∑
i=1

minti ∗ ymihz,n)/
|M |∑
i=1

ymihz,n (4)

The objective of the problem is to minimize node interac-
tions as follows.

Minimize
|Hn|∑
z=1

|C|∑
n=1

|M |∑
i=1

hintz,n ∗ xcn ∗ ymihz,n

subject to the following constraints:

∀hz,n ∈ Hn,
|M |∑
i=1

mcpu_reqi ∗ ymihz,n ≤ hcpu_resz,n (5)

∀hz,n ∈ Hn,
|M |∑
i=1

mmem_reqi ∗ ymihz,n ≤ hmem_resz,n (6)

∀mi ∈ M ,

|C|∑
n=1

|Hn|∑
z=1

ymihz,n = 1 (7)

∀cn ∈ C,

|C|∑
n=1

xcn = 1 (8)

The Eqs. (5) and (6) are the constraints for the processing
and memory requirements. The total amount of resources
requested by all microservices placed on the host must not
exceed the host’s residual resource capacities. The Eq. (7)
ensures that each microservice is placed on one specific host.
The Eq. (8) also ensures that only one K8s cluster is selected
for microservices placement.
The described system model can be calculated in the case

of small problem sizes. However, with an increase in problem
size, the calculation time grows exponentially, making it
infeasible to correctly derive the solution. Thus, we consider a
greedy-based heuristic algorithm to be more computationally

feasible for large problem spaces than classical optimization
techniques. The detailed procedure of the proposed greedy
algorithm is given as Algorithm 1.

Algorithm 1 Greedy-Based Heuristic Algorithm
Input: C , Hn, M
Output: Allocated list, ck
1: Initialize k, x, y as 1 // Set index
2: Sort C in non-increasing order of ccpu_pern
3: Create a list, Allocated with size as |M| and initialize with

zeros
4: while cluster has not been selected do
5: if k > |C| then
6: Microservices placement failed, exit
7: else if (The total of resource requirements of CPU,

Mem inM) < (The total of residual resources of CPU,
Mem in all hosts on ck cluster) then

8: select K8s cluster k
9: else

10: k = k + 1
11: end if
12: end while
13: Sort M in non-increasing order of minti
14: SortHk in non-increasing order of h

cpu_res
y,k //cpu-intensive

15: while all microservices have not been placed do
16: while microservice x have not been placed do
17: if y > |Hk | then
18: Allocated = [0] //list initialization again
19: x = 1, y = 1 //index initialization again
20: placement failed, goto Line 4
21: else if mcpu_reqx < hcpu_resy,k and mmem_reqx < hmem_resy,k

then
22: Assign Allocated[mx] = y
23: x = x + 1
24: else
25: y = y+ 1
26: end if
27: end while
28: end while

In the proposed algorithm’s initial step, we set three vari-
ables to track the index in clusters, nodes, and microser-
vices. The elements in the K8s clusters are then sorted in
non-increasing order of CPU performance. A list, Allocated ,
is initialized with zeros. Allocated plays a role in keeping
track of the node allocated for each microservice.

Lines 4-12 select one of the clusters available in the set
of K8s clusters. Since all microservices should be placed
on the same cluster in our case, we first select one cluster.
This process roughly selects clusters in CPU performance
order that can handle the total amount of resource capaci-
ties in all microservices. Note that this process may do not
guarantee the deployment of all microservices in the selected
cluster.

VOLUME 8, 2020 192553

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

Once the cluster is selected, the set of microservices in
M are sorted in non-increasing order with minti . The hosts in
the K8s cluster k are also sorted in non-increasing order of
hcpu_resz,k . Lines to 15-28 place microservices on the available
node in order of high interaction value in the microservice.
The algorithm attempts to place as many microservices as
possible on the same node as long as the node’s resource
capacity is allowed. If even one microservice fails to be
placed on the node during the above process, it goes to line 4
for the available cluster selection.

On completion of the algorithm, the microservices alloca-
tion can be obtained from the Allocated list. The index of the
list denotes the microservice identifier. The value of the list
is the identifier of the node in the K8s cluster cn.

B. EXPERIMENTAL EVALUATION FOR MICROSERVICES
PLACEMENT
Based on the profiling data in three application types with
twenty iterations described as Table 2, we apply the proposed
algorithm to decide microservices placement. We deploy
microservices by changing the YAML description to match
the Allocated list resulting from the algorithm. We also inject
the same workload that sends 1,000 RESTful HTTP requests
per second for measurement of transaction rate. However,
in the case of measuring the response time in the application,
we inject a workload that sends 200 requests per second
because response time would increase exponentially when
numerous requests come in.

Fig. 10 shows the performance comparison graph regard-
ing the average transaction rate and response time. Since
default K8s has no option to select an appropriate cluster
during multiple K8s clusters, we deploy the applications
with the workload on each cluster, respectively, and mea-
sure the performance values for comparison to our proposed
placement strategy.

Both Fig. 10(a) and Fig. 10(b) show the performance
results that apply our deployment strategy are mostly similar
to those placed in the K8s cluster #2. Because the algorithm
gets results in the simple deployment strategy in selecting the
node of K8s cluster #2 since the CPU performance of the
K8s cluster #2 is most powerful, and the cluster only consists
of a single worker node. In the case of the K8s cluster #3,
CPU performance is the same as the K8s cluster #2, but
performance results seem to be less due to many tasks loaded
on the K8s cluster #3. To clearly compare our proposed
methods in more complex situations, we experiment again
limited to K8s cluster #1 that has multiple worker nodes.

Fig. 11 shows the experimental results on the performance
comparison between our work and the default K8s placement
policy on K8s cluster #1. Fig. 11(a) and Fig. 11(b) show the
performance that applies our proposed work results in a little
better than the default policy in K8s. These results seem to
come out because our placement strategy tries to increase
network performance by placing as many microservices with
a high interaction value on the same node.

FIGURE 10. Performance comparison across defaults (K8 cluster #1, #2,
and #3, respectively) and our work.

C. DISCUSSION
The resource requirements of the cloud-native application
vary widely depending on the workload. So, we experi-
ment with profiling regarding three types of cloud-native
applications by selecting the workload. Based on the pro-
filing results, we deploy the target applications by applying
the proposed greedy-based algorithm. As we can see from
the performance results, microservices placement based on
empirical workload profiling is effective in the real environ-
ment. Profiling for one time is still effective, but performing
profiling with many time iterations is easy to derive accurate
resource requirements based on the workload, as depicted
in Fig. 9. We have tentatively defined the recommended
number of profiling iterations as five times in the previous
section. However, we need to carefully examine those points
by doing experiments that deploy the cloud-native application
with various workloads.

The proposed framework focuses on the performance
aspects of cloud-native applications. However, the monitor-
ing component in the framework collects various resources
metrics, so we can easily extend the metrics that can be
considered in the algorithm to consider other aspects of the
applications. Besides, cost-efficiency can be considered by
adding the nodes’ cost metrics that make up the K8s clusters.

192554 VOLUME 8, 2020

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

FIGURE 11. Performance comparison between default and our work on
K8s cluster #1.

In the case of GPU matrices, we exclude it from our work
scope. However, if the GPU virtualization can be applied
in the K8s clusters, it may be possible to expand the GPU
metrics’ placement strategy.

Our work’s main contribution lies in the framework that
addresses microservices placement based on empirical work-
load profiling. Many kinds of researches on microservices
placement are good for placement optimization regarding a
particular aspect but omit the process of carefully deriving
resource requirements based on workloads. Thus, if we lever-
age such a great algorithm in our framework, we can perform
microservices deployment in more practical situations.

VI. CONCLUSION
In this article, we propose a refinement framework for
microservices placement based on empirical workload profil-
ing. To verify the proposed concept, we design the framework
based on requirements. We perform profiling experiments
with the proposed framework by selecting three types of
applications with the workload. We also deploy the three
types of applications on the experimental testbed by applying
the greedy-based placement algorithm based on the profiling
results. We verify that the application performance using our
framework is much better than the results without our work.

Although we verify the proposed framework on our
on-premise K8s clusters, this research has the potential to be
leveraged for various public clouds such asAmazonAWS and
Google GCP. In the future, we plan to expand and verify our
proposed framework to the public clouds by considering both
application performance and cost-efficiency.

REFERENCES
[1] B. Shojaiemehr, A.M. Rahmani, and N. N. Qader, ‘‘Automated negotiation

for ensuring composite service requirements in cloud computing,’’ J. Syst.
Archit., vol. 99, Oct. 2019, Art. no. 101632.

[2] J. Han, S. Park, and J. Kim, ‘‘Dynamic OverCloud: Realizing
microservices-based IoT-cloud service composition over multiple
clouds,’’ Electronics, vol. 9, no. 6, p. 969, Jun. 2020.

[3] W. Hasselbring, ‘‘Microservices for scalability: Keynote talk abstract,’’ in
Proc. 7th ACM/SPEC Int. Conf. Perform. Eng., Delft, The Netherlands,
Mar. 2016, pp. 133–134.

[4] A. Balalaie, A. Heydarnoori, and P. Jamshidi, ‘‘Migrating to cloud-
native architectures using microservices: An experience report,’’ in Proc.
Eur. Conf. Service-Oriented Cloud Comput., Taormina, Italy, Sep. 2015,
pp. 201–215.

[5] D. Gannon, R. Barga, and N. Sundaresan, ‘‘Cloud-native applications,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 16–21, Sep. 2017.

[6] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
‘‘Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors,’’ in Proc. 2nd ACM
SIGOPSEuroSys Eur. Conf. Comput. Syst., 2007, pp. 275–287.

[7] J. P. Martin, A. Kandasamy, and K. Chandrasekaran, ‘‘Exploring the sup-
port for high performance applications in the container runtime environ-
ment,’’ Hum.-Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1–15, Dec. 2018.

[8] D. Bernstein, ‘‘Containers and cloud: From LXC to docker to kubernetes,’’
IEEE Cloud Comput., vol. 1, no. 3, pp. 81–84, Sep. 2014.

[9] H. Kang,M. Le, and S. Tao, ‘‘Container andmicroservice driven design for
cloud infrastructure DevOps,’’ in Proc. IEEE Int. Conf. Cloud Eng. (ICE),
Apr. 2016, pp. 202–211.

[10] E. Casalicchio, ‘‘Autonomic orchestration of containers: Problem defini-
tion and research challenges,’’ in Proc. 10th EAI Int. Conf. Perform. Eval.
Methodol. Tools, 2017, pp. 1–14.

[11] M. Fazio, A. Celesti, R. Ranjan, C. Liu, L. Chen, and M. Villari, ‘‘Open
issues in scheduling microservices in the cloud,’’ IEEE Cloud Comput.,
vol. 3, no. 5, pp. 81–88, Sep. 2016.

[12] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente,
‘‘Cloud brokering mechanisms for optimized placement of virtual
machines across multiple providers,’’ Future Gener. Comput. Syst., vol. 28,
no. 2, pp. 358–367, Feb. 2012.

[13] J. Li, D. Li, Y. Ye, and X. Lu, ‘‘Efficient multi-tenant virtual machine
allocation in cloud data centers,’’ Tsinghua Sci. Technol., vol. 20, no. 1,
pp. 81–89, Feb. 2015.

[14] L. Heilig, E. Lalla-Ruiz, and S. Voß, ‘‘A cloud brokerage approach for
solving the resource management problem in multi-cloud environments,’’
Comput. Ind. Eng., vol. 95, pp. 16–26, May 2016.

[15] F. Legillon, N. Melab, D. Renard, and E.-G. Talbi, ‘‘Cost minimization of
service deployment in a multi-cloud environment,’’ in Proc. IEEE Congr.
Evol. Comput., Jun. 2013, pp. 2580–2587.

[16] T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner,
‘‘Container-based architecture for flexible industrial control applications,’’
J. Syst. Archit., vol. 84, pp. 28–36, Mar. 2018.

[17] P. D. Francesco, I. Malavolta, and P. Lago, ‘‘Research on architecting
microservices: Trends, focus, and potential for industrial adoption,’’ in
Proc. IEEE Int. Conf. Softw. Archit. (ICSA), Apr. 2017, pp. 21–30.

[18] N. Alshuqayran, N. Ali, and R. Evans, ‘‘A systematic mapping study in
microservice architecture,’’ in Proc. IEEE 9th Int. Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2016, pp. 44–51.

[19] C. Guerrero, I. Lera, and C. Juiz, ‘‘Resource optimization of container
orchestration: A case study in multi-cloud microservices-based applica-
tions,’’ J. Supercomput., vol. 74, no. 7, pp. 2956–2983, Jul. 2018.

[20] I.-D. Filip, F. Pop, C. Serbanescu, and C. Choi, ‘‘Microservices scheduling
model over heterogeneous cloud-edge environments as support for IoT
applications,’’ IEEE Internet Things J., vol. 5, no. 4, pp. 2672–2681,
Aug. 2018.

VOLUME 8, 2020 192555

J. Han et al.: Refining Microservices Placement Employing Workload Profiling Over Multiple Kubernetes Clusters

[21] X. Wan, X. Guan, T. Wang, G. Bai, and B.-Y. Choi, ‘‘Application deploy-
ment using microservice and docker containers: Framework and optimiza-
tion,’’ J. Netw. Comput. Appl., vol. 119, pp. 97–109, Oct. 2018.

[22] Z. Wen, T. Lin, R. Yang, S. Ji, R. Ranjan, A. Romanovsky, C. Lin, and
J. Xu, ‘‘GA-par: Dependable microservice orchestration framework for
geo-distributed clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 1,
pp. 129–143, Jan. 2020.

[23] R. Buyya, M. A. Rodriguez, A. N. Toosi, and J. Park, ‘‘Cost-efficient
orchestration of containers in clouds: A vision, architectural elements,
and future directions,’’ 2018, arXiv:1807.03578. [Online]. Available:
http://arxiv.org/abs/1807.03578

[24] P. Hoenisch, I. Weber, S. Schulte, L. Zhu, and A. Fekete, ‘‘Four-fold auto-
scaling on a contemporary deployment platform using docker containers,’’
in Proc. Int. Conf. Service-Oriented Comput., Berlin, Germany, 2015,
pp. 316–323.

[25] M. Nardelli, C. Hochreiner, and S. Schulte, ‘‘Elastic provisioning of virtual
machines for container deployment,’’ in Proc. 8th ACM/SPEC Int. Conf.
Perform. Eng. Companion (ICPE Companion), 2017, pp. 5–10.

[26] S. F. Piraghaj, A. V. Dastjerdi, R. N. Calheiros, and R. Buyya, ‘‘A frame-
work and algorithm for energy efficient container consolidation in cloud
data centers,’’ in Proc. IEEE Int. Conf. Data Sci. Data Intensive Syst.,
Dec. 2015, pp. 368–375.

[27] C. T. Joseph and K. Chandrasekaran, ‘‘IntMA: Dynamic interaction-
aware resource allocation for containerized microservices in cloud envi-
ronments,’’ J. Syst. Archit., vol. 111, Dec. 2020, Art. no. 101785.

[28] B. Qureshi, ‘‘Profile-based power-aware workflow scheduling framework
for energy-efficient data centers,’’ Future Gener. Comput. Syst., vol. 94,
pp. 453–467, May 2019.

[29] K. Ye, H. Shen, Y. Wang, and C. Xu, ‘‘Multi-tier workload consolidations
in the cloud: Profiling, modeling and optimization,’’ IEEE Trans. Cloud
Comput., early access, Feb. 24, 2020, doi: 10.1109/TCC.2020.2975788.

[30] S. Lee, J. Han, J. Kwon, and J. Kim, ‘‘Relocatable service composition
based on microservice architecture for cloud-native IoT-cloud services,’’
in Proc. Asia–Pacific Adv. Netw., 2019, pp. 23–27.

[31] S. Kim and J. Kim, ‘‘Designing smart energy IoT-cloud services for mini-
scale data centers,’’ in Proc. KICS Winter Conf., Jeongseon, South Korea,
Jan. 2017, pp. 18–21.

[32] J. Kwon, N. L. Kim, and J. Kim, ‘‘Design and evaluation of cloud-native-
based SmartX AI computing cluster supporting AI-enabled services,’’
KIISE Trans. Comput. Practices, vol. 25, no. 12, pp. 571–584, Dec. 2019.

[33] Locust. Accessed: Sep. 14, 2020. [Online]. Available: https://locust.io/
[34] Sock Shop. Accessed: Sep. 14, 2020. [Online]. Available: https://github.

com/microservices-demo/microservices-demo/
[35] J. Han, J. S. Shin, J. Kwon, and J. Kim, ‘‘Cloud-native SmartX intelli-

gence cluster for AI-inspired HPC/HPDAworkloads,’’ inProc. ACM/IEEE
Supercomput. Conf., 2019, pp. 1–9.

[36] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, ‘‘Geo-distributed
efficient deployment of containers with kubernetes,’’ Comput. Commun.,
vol. 159, pp. 161–174, Jun. 2020.

[37] Y. Hu, C. de Laat, and Z. Zhao, ‘‘Optimizing service placement for
microservice architecture in clouds,’’ Appl. Sci., vol. 9, no. 21, p. 4663,
Nov. 2019.

JUNGSU HAN received the B.S. degree in
computer science engineering from Inha Uni-
versity, Incheon, South Korea, in 2014, and the
M.S. degree from the School of Information and
Communication, Gwangju Institute of Science
and Technology (GIST), Gwangju, South Korea,
in 2016. He is currently pursuing the Ph.D. degree
with the School of Electrical Engineering and
Computing Science, GIST. His research interest
includes cloud-native infrastructure orchestration
with multitenants/clusters/sites operation.

YUJIN HONG graduated from the Chungbuk Sci-
ence High School, in 2016, and a Backend Engi-
neer Intern at Naver Webtoon, in 2020. She is
currently pursuing the B.S. degree with the School
of Electrical Engineering and Computing Science,
Gwangju Institute of Science and Technology
(GIST), Gwangju, South Korea. Her research
interest includes cloud-native infrastructure with
high availability and fault tolerance.

JONGWON KIM (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in con-
trol and instrumentation engineering from Seoul
National University, Seoul, South Korea, in 1987,
1989, and 1994, respectively.

From 1994 to 2001, he was a Faculty Member
with Kongju National University, Gongju, South
Korea, and the University of Southern California,
Los Angeles, CA, USA. In 2001, he joined
the Gwangju Institute of Science and Tech-

nology (GIST), Gwangju, South Korea, where he is currently a Full
Professor. Since 2008, he has been leading the GIST Super Comput-
ing and Collaboration Environment Technology Center as the Director.
He is also leading the Networked Computing Systems Laboratory,
where he is involved in dynamic and resource-aware composition of
media-centric service employing programmable/virtualized computing/
networking resources. Since 2020, he has been the Dean of the GIST AI
Graduate School and the Chief Director of the GIST Institute for Artificial
Intelligence. His recent research interest includes agile and visible p+v+c
function-leveraged composition of the SmartX IoT-cloud services employing
programmable/sliced/hyper-converged
(computing/storage/networking) resources.

192556 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCC.2020.2975788

