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ABSTRACT Distributed Bayesian estimation over multi-agent networks has received much attention due to
its broad applications, where each agent has its private data that is unavailable to other agents. For efficient
inference over multi-agent networks, we develop a distributed boosting variational inference (DBVI)
algorithmwith limited communication.We first decompose the global cost function into a sum-of-costs form,
where each local cost only relates to its own dataset. Then, the global posterior distribution is approximated
by a gradient decent at each boosting step, followed by a consensus protocol for cooperation with the
neighbors. Moreover, we derive DBVI with Gaussian mixture model (DBVI-GMM) in detail. Finally,
simulations on the synthetic and real datasets illustrate the effectiveness of the proposed algorithm.

INDEX TERMS Multi-agent networks, distributed machine learning, posterior probability approximation,
boosting variational inference.

I. INTRODUCTION
Multi-agent networks have been applied in many fields, such
as traffic, communication and military, due to robustness and
low cost [1]–[4]. Considering the communication cost and
privacy, networks are well-suited to perform distributed data
processing and decisions [3]. Distributed algorithms exhibit
flexibility and provide robustness to node or link failures in
networks [4], [5]. Many distributed algorithms over networks
for data analysis and inference have been proposed, such as
distributed estimation [5], [6] and inference [7], [8].

In Bayesian framework, statistical inference is used to
compute the posterior probability distributions [9], [10].
Variational inference (VI) is a popular method to esti-
mate an intractable posterior distribution by minimizing the
Kullback-Leibler (KL) divergence between the tractable dis-
tribution and intractable distribution [11], [12]. Mean-field
variational inference (MFVI), a widely used variant of VI,
assumes that the tractable distribution factorizes across the
parameters of the model and obeys the certain family, such
as the exponential distribution family [13]. This assump-
tion leads to a convenient and an efficient coordinate-ascent
algorithm [12]. In contrast to its computational advantage,
MFVI fails to approximate complicated distribution such as
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multi-modality and heavy-tails [12], [14]–[16]. In practical
application, the posterior is usually a non-unimodal distribu-
tion. Therefore, it is necessary to study the variational method
to approximate the complicated posterior.

An alternative and flexible category for variational approx-
imations is to use mixture of simple model to approximate the
multi-modality posterior, such as nonparametric variational
inference (NPV) [17]. NPV needs to train more parameters
than MFVI method, especially when the number of mixture
components is large. Since the loss of NPV is non-convex,
a joint optimization of mixture model will be extremely slow.
It may need to rerun NPVwith different initializations, which
have limited the application of NPV. In order to overcome
this issue, boosting variational inference (BVI) is proposed to
train the mixture components one-at-a-time. BVI starts with
the traditional VI and keeps improving the approximation
by adding new component. However, in distributed setting,
agent cannot access the entire dataset such that BVI cannot
be directly applied in networks.

Some distributed variational inference (DVI) algorithms
have been proposed to estimate the posterior over networks
[18]–[20]. DVI with Gaussian mixture model (DVI-GMM)
[18], [20] is proposed to approximate the multi-modality
posterior by distributed optimization methods. Although
DVI-GMM can successfully capture the multi-modality pos-
terior over networks, it still faces some challenges from both
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the computational complexity and theory. First, the cost of
DVI-GMM is non-convex so that it needs to rerun the algo-
rithmwith different initializations and choices for the number
of components. Second, there is no theoretical guarantee that
the approximation error vanishes with an increasing number
of mixture components. It is urgent to develop a distributed
variational inference with higher efficiency and guaranteed
convergence over networks.

In this paper, we consider the posterior approximation
problem over networks, where each agent cannot access the
global dataset. Our goal is to design a distributed boosting
variational inference algorithm that can perform almost as
well as the centralized BVI and ameliorate the computational
complexity of DVI-GMM. By decomposing the centralized
cost into a sum of local ones, the posterior approximation
over multi-agent networks is formulated as a distributed
parameters optimization problem.With the help of distributed
optimization methods [20]–[23], each agent obtains the cen-
tralized solution based on its local dataset and some infor-
mation from neighbors. The only transmitted message is the
parameters information, which can efficiently reduce com-
munication cost. The main contributions of this paper are
summarized as follows.
• We propose a distributed boosting variational infer-
ence (DBVI) algorithm over networks. By exchanging
parameters between neighbors, each agent can effec-
tively obtain the centralized solution. Comparedwith the
BVI algorithms [24]–[26], DBVI can solve the posterior
approximation problem caused by distributed data.

• We decompose the centralized cost into a sum of local
ones, which only relates to its local dataset. The posterior
probability approximation over networks is converted
into a distributed optimization problem. With the help
of distributed stochastic gradient descent method, local
solution can effectively converge to the centralized one.

• We derive DBVI with Gaussian mixture model
(DBVI-GMM) algorithm in detail. Compared with
DVI-GMM [18], DBVI-GMM can effectively deal with
the difficulties caused by the sensitive initialization
and uncertain number of mixture components, where
DBVI-GMM trains the mixture components one-at-
a-time. DBVI-GMM starts with the traditional DVI
algorithm and improves the approximation by adding
new component until the maximum number of mixture
components is reached.

The rest of this paper is organized as follows. Section II
states problem formulation. Section III provides distributed
boosting variational inference framework. Section IV derives
DBVIwithGaussianmixturemodel. SectionV presents some
numerical simulations to test the performance. Finally, con-
clusions are drawn in Section VI.

II. PROBLEM FORMULATION
We consider a network with N agents. The communication
between agents can be described by a connected graph G =
(V, E), consisting of a set of nodes V = {1, 2, · · · ,N }, a set

of edges E and an adjacent weighted matrix A. For each agent
i ∈ V , denote Ei = {j|(i, j) ∈ E} as a set of neighbors of agent i
(including anget i itself). The adjacent matrix A is defined as
follows,
• ai,j > 0 for any (i, j) ∈ Ei and ai,i > 0 if j = i;
• ai,j = 0 for any agent j that is not the neighbor of agent i;
• A is a doubly-stochastic matrix, that is

∑N
j=1 ai,j = 1 and∑N

i=1 ai,j = 1.
Denote the global dataset as X = {Xi}Ni=1, and agent i
has its local dataset Xi = {xij}

Ni
j=1. We consider the prob-

lem of estimating the posterior of hidden variables θ given
observed data X . By Bayesian formula, the posterior distri-
bution p(θ |X ) can be given by

p(θ |X ) =
p(X |θ )p(θ )

p(X )
, (1)

where p(θ ) is the prior and p(X |θ ) is the likelihood. In most
cases, the normalizing constant p(X ) is an intractable integral,
so an approximation is needed for the normalized posterior
distribution p(θ |X ).
VI is used to approximate the posterior of unobserved

variables by a tractable distribution q, which can be found by
minimizing the Kullback-Leibler (KL) divergence between p
and q. Specifically,

q = argmin
q
DKL(q||p) = argmin

q

∫
q log

q
p
, (2)

Under mean-field assumption, q(θ) = q(θ1)q(θ2) · · · q(θd ),
where d is the dimension of θ .

Traditional VI is difficult to capture the complicated
distribution such as multi-modality and heavy-tails [26].
An applicable way is to employ the mixture model to approx-
imate the complicated posterior, such as NPV [17] and
BVI [24]–[26]. Specifically, let q =

∑M
C=1 αChC , where

αC ∈ (0, 1],
∑M

C=1 αC = 1, M is the number of mix-
ture components and hC belongs to some basic family of
known distribution with parameters λC , denoted as hC (·; λC ),
such as Gaussian distribution. A direct optimization on
{(αC , hC )}MC=1 is hard [26]. By introducing gradient boosting,
{(αC , hC )}MC=1 can be optimized one by one from C = 1 to
M in BVI [24]–[26]. In the C th iteration, the corresponding
mixture model is described as

qC = (1− αC )qC−1 + αChC . (3)

where qC−1 is the current existing approximation.
Combine (3) and (2), problem now becomes

{αC , hC } = arg min
αC ,hC

DKL(((1− αC )qC−1 + αChC )||p). (4)

A greedy minimization is used to seek a sequence
{(αC , hC )}C∈N. As C →∞, we pursue ∇qCDKL(q

C
||p)→ 0

such that
∑
∞

C=1 αChC = p. For C = 1, 2, · · · , (αC , hC ) can
be obtained with two steps as shown in Figure 1.
In each iteration, BVI updates hC based on the gradient
∇qC−1DKL(q

C−1
||p), and then updates αC with fixed hC .
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FIGURE 1. The Framework of BVI.

In order to obtain the gradient, we take a first-order Taylor
series expansion of DKL(qC ||p) in qC−1,

DKL((1− αC )qC−1 + αChC ||p)

= αC∇qC−1DKL(q
C−1)(hC − qC−1)

+DKL(qC−1||p)+ o(α2C )

= DKL(qC−1||p)+ αC
〈
log qC−1 − log p, hC

〉
−αC

〈
log qC−1 − log p, qC−1

〉
+ o(α2C ), (5)

where 〈q1, q2〉 =
∫
q1 q2 is the inner product. It is clear that

∇qC−1DKL(q
C−1
||p) = log qC−1 − log p. Since qC−1 and p

are constant, we can obtain the optimal hC by minimizing〈
log qC−1 − log p, hC

〉
with respect to hC . A direct minimiza-

tion of
〈
log qC−1 − log p, hC

〉
is ill-posed [24], since hC will

degenerate to a point mass. Here, we consider the regularized
cost function with respect to hC [25]. Specifically,

h∗C = argmin
hC

EhC (log q
C−1
− log p)+

δ

2
||hC ||22. (6)

whereEh(θ)(f (θ )) =
∫
f (θ )h(θ )dθ . Assume that weak learner

hC belongs to a certain distribution family with parameters
λC denoted as hC (θ; λC ). The ’best’ distribution in (6) is
represented by its parameters λ∗C . The problem (6) can be
rewritten as

λ∗C = argmin
λC

L1C (λC ), (7)

where

L1C (λC ) = Eθ∼hC (θ;λC )[log q
C−1(θ )− log p(θ |X )]

+
δ

2
||hC (θ; λC )||22. (8)

With fixed h∗C (θ; λ
∗
C ), we have q

C
= qC−1+αCh∗C (θ; λ

∗
C ).

The weight αC can be obtained byminimizing KL divergence
between qC and p, that is

α∗C = argmin
αC

L2C (αC ), (9)

where L2C (αC ) = Eθ∼qC (log q
C (θ )− log p(θ |X )).

Note that the optimal λ∗C and α∗C in (7) and (9) can be
obtained by each agent if each agent knows the global data
set {X}. However, in our paper, agent i can only access to
its local dataset {Xi}. Therefore, we have to investigate a
distributed algorithm to optimize L1C (λC ) and L2C (αC ).

III. DISTRIBUTED BOOSTING VARIATIONAL INFERENCE
In this section, we convert problems (7) and (9) into dis-
tributed optimization problem, and show how to obtain the
solution of (7) and (9) at each agent via distributed gradient
descent method.

Assume the data of each agent is mutually independent,
the log joint posterior can be obtained as

log p(θ |X )

= log[
N∏
i=1

p(Xi|θ )p(θ )]− log
N∏
i=1

p(Xi)

=
1
N

N∑
i=1

(N log p(Xi|θ )+ log p(θ )− N log p(Xi)), (10)

where p(Xi|θ ) and p(Xi) only relate to its local dataset Xi, and
θ is the global parameters. Substituting (10) into (8), we have

L1C (λC )

= Eθ∼h(θ;λC )(log q
C−1(θ )− log p(θ |X ))+

δ

2
||h||22

=
1
N

N∑
i=1

{Eθ∼h(θ;λC )[log q
C−1(θ )− log p̃(Xi|θ )

− log p(θ )]} +
δ

2
||h||22 + log p(X )

=
1
N

N∑
i=1

L1Ci (λC ) (11)

where log p̃(Xi|θ ) = N log p(Xi|θ ) means the likelihood of
parameter θ given local data replicatedN times. Since p(X ) is
a constant, L1Ci (λC ) can be rewritten as

L1Ci (λC )

= Eθ∼hCi [log q
C−1
i (θ )− log p̃(Xi|θ )− log p(θ )]+

δ

2
||h||22.

(12)

Similarly, local cost L2Ci (αC ) can be written as

L2Ci (αC )

= Eθ∼qCi [log q
C
i (θ )− log p̃(Xi|θ )− log p(θ )]. (13)

It should be noticed that local cost L1Ci (λC ) and L2
C
i (αC )

only relate to local dataset and the number of agents. There-
fore, our problem becomes{

minλC
∑N

i=1 L1
C
i (λC )

minαC
∑N

i=1 L2
C
i (αC ).

(14)

Our goal is to make local parameters approach to the
centralized solution, that is (αi,C , λi,C )→ (α∗C , λ

∗
C ) for C =

1, 2, · · · . The structure of (14) is suitable for distributed opti-
mization algorithm, such as distributed stochastic gradient
descent (DSGD) [27], [28] and distributed gradient descent
(DGD) [29], [30]. Next, we will show how to find the optimal
λ∗C and α∗C at each agent by DSGD.
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For agent i, qCi (θ ) =
∑

C αi,Chi,C (θ; λi,C ) where λi,C is
the parameters of weak learner hi,C and αi,C stands for the
weight of hi,C . A two iterative steps is used to optimize the
parameters λi,C and αi,C . For λi,C , we define an interme-
diate variable ϕi,C updated by gradient descent step. Then,
a combination step is used to make the parameters consensus.
Specifically, the update of λi,C is

ϕti,C = λ
t−1
i,C + ηt∇λt−1i,C

L1Ci (λ
t−1
i,C ) (15a)

λti,C =
∑
j∈Ei

aijϕti,C , (15b)

where ∇
λt−1i,C

L1Ci (λ
t−1
i,C ) is the gradient of L1Ci (λ

t−1
i,C ), and the

step size ηt should satisfy the following conditions [18]

ηt > 0,
∑

ηt = ∞,
∑

η2t <∞. (16)

Here, we consider ηt = 1/(d + τ t) [18], where the forgetting
rate τ controls the decreasing speed of ηt , and d is a positive
constant, d ≥ 1.
With fixed h∗i,C , α

∗
i,C can be updated as follows

φti,C = α
t−1
i,C + ηt∇αt−1i,C

L2Ci (α
t−1
i,C ), (17a)

αti,C =
∑
j∈Ei

aijφti,C . (17b)

The update of parameters in (15) and (17) is motivated
by distributed stochastic gradient descent algorithm over net-
works [28], [31], [32]. Each agent runs a gradient descent
step using its own dataset. Then, the combination step can
be considered as a procedure gradually collecting the global
information of parameters. Therefore, the convergence value
of the procedure (15) and (17) is not a local solution but the
centralized one.

The gradient ∇λi,CL1
C
i (λi,C ) in (15) can be estimated by

the re-parameterization trick [12], [33], [34], that is

∇λi,CL1
C
i (λi,C )

= ∇λi,CEθ∼hi,C (θ;λi,C )[log q
C−1
i (θ )− log p̃(Xi|θ )

− log p(θ )]+∇λi,C
δ

2
||h||22

≈
1
L

L∑
l=1

∇λi,CL1
C
i (θ

l
i ), (18)

where θ li stands for the lth Monte Carlo sample, and L is the
total number of Monte Carlo samples. Similarly, we have

∇αi,CL2
C
i (αi,C )

= ∇αi,CEθ∼qCi (θ;αi,C )[log q
C
i (θ )− log p̃(Xi|θ )

− log p(θ )]

= Eθ∼hi,C f (αi,C )− Eθ∼qC−1i
f (αi,C ), (19)

where

f (αi,C ) = log
(1− αi,C )q

C−1
i (θ )+ αi,Ch∗i,C (θ; λ

∗
i,C )

p̃(xi|θ )p(θ )
.

The proposed distributed boosting variational infer-
ence (DBVI) algorithm is summarized in Algorithm 1. DBVI
begins with a single component, where we use DVI [18] to
fit the parameter λi,1 and set αi,1 = 1. If C > 1, we fix
the previous approximation qC−1i , and obtain the optimal λ∗i,C
and α∗i,C by minimizing L1Ci and L2Ci .

Algorithm 1 Distributed Boosting Variational Inference
(DBVI)
Input: Construct the posterior model p(θ |X ), give a network

G = {V, E} and local dataset Xi at agent i, and denote the
maximum of C as M .

Output: Local approximation qMi of each agent.
1: Start with λi,1 by DVI [18] with αi,1 = 1;
2: for C = 2 : M do
3: Optimize λi,C via (15);
4: Optimize αi,C via (17);
5: qCi = (1− α∗i,C )q

C−1
i + α∗i,Ch

∗
i,C ;

6: end for
7: return Local approximation: qMi

Remark 1: Compared with BVI, the proposed algo-
rithm (DBVI) is applicable for distributed data. By decom-
posing the centralized cost into a sum of local ones, varia-
tional boosting over networks is formulated as a distributed
optimization problem. With the help of distributed stochastic
gradient descent method [27], [28], local solution converges
to the centralized one.

IV. DBVI WITH GAUSSIAN MIXTURE MODEL
In variational approximation field [17], [18], [35], [36],
Gaussian mixture model has been widely used to approx-
imate the multi-modality distribution. It has been proved
that Gaussian mixture model can effectively approxi-
mate an arbitrary distribution [15]. In this section, Gaus-
sian mixture model (GMM) is applied to the proposed
algorithm.

A network with N agents is considered, and each agent i
has Ni observations xij(i = 1, 2, · · · ,N ; j = 1, 2, · · · ,Ni).
The Gaussian mixture model is described as

qMi (θ ) =
M∑
C=1

αi,CNi,C (θ;µi,C , σi,C ), (20)

where 0 < αi,C ≤ 1,
∑M

C=1 αi,C = 1,,M is the total number
of mixture components, Ni,C (θ;µi,C , σi,C ) means the C th
component, and αi,C is the corresponding weight. We first
show how to find N (θ;µi,C , σi,C ). Then, we optimize αi,C
with fixed N (θ;µ∗i,C , σ

∗
i,C ). Specifically, substituting hi,C =

N (θ;µi,C , σi,C ) into (12) and (13), we have

L1Ci (µi,C , σi,C )

= Eθ∼N (µi,C ,σi,C )[log q
C−1
i (θ )− log p̃(Xi|θ )

− log p(θ )]−
δ

4
|σ Tσ |, (21)
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L2Ci (αi,C )

= Eθ∼qCi [log q
C
i (θ )− log p̃(Xi|θ )− p(θ )]. (22)

Now, our problem becomes{
µ∗i,C , σ

∗
i,C = argminµi,C ,σi,C

∑N
i=1 L1

C
i (µi,C , σi,C )

α∗i,C = argminαi,C
∑N

i=1 L2
C
i (αi,C ),

(23)

which can be solved by (15)- (19).
The details of DBVI with Gaussian mixture model is pre-

sented in Algorithm 2.

Algorithm 2 DBVI With Gaussian Mixture Model
(DBVI-GMM)
1: Start with qi,1 by DVI [18];
2: for C = 2:M do
3: Obtain µ∗i,C , σ

∗
i,C via minimizing (21);

4: Obtain α∗i,C via minimizing (22);
5: qCi = (1− α∗i,C )q

C−1
i + α∗i,Ch

∗
i,C ;

6: end for
7: return local approximation: qMi .

Next, we present how to start algorithm 2 with the first
component, qi,1(θ; λi,1) = N (θ;µi,1, σi,1). The algorithm
starts by DVI [18] with a single component to approximate
to the posterior. Specifically,

µ∗i,1, σ
∗

i,1 = argmin
1
N

N∑
i=1

Eθ∼qi,1 [log qi,1(θ )

− log p̃(Xi|θ )− log p(θ )]. (24)

where log p̃(Xi|θ ) = N · log p(Xi|θ ).
Moreover, we briefly analyze the performance of the

sequence DKL(qCi ||p) generated by DBVI-GMM. From (5),
we have

DKL(qC ||p)− DKL(qC−1||p)

≤ α∗C

〈
log qC−1 − log p, h∗C − q

C−1
〉
. (25)

Refer to the Triangle Condition in [24], we have

〈log qC−1 − log p, h∗C − q
C−1
〉

=

∫
(h∗C − q

C−1)(log qC−1 − log p)

= DKL(h∗C ||p)− DKL(h
∗
C ||q

C−1)

−DKL(qC−1||p) ≤ 0. (26)

Then, we have DKL(qC ||p) ≤ DKL(qC−1||p). From the
properties of DSGD in [30], we know that qCi converges
to qC in theory. Hence, DKL(qCi ||p) decreases continuously
as C increases.
Remark 2: Compared with DVI-GMM [18], DBVI-GMM

presents a new adaptive variational method, where a joint
optimization on {αi,C , (µi,C , σi,C )}MC=1 is converted into a
sequence of optimizations on {αi,C , (µi,C , σi,C )} from C = 1
to M . DBVI-GMM ensures that the approximation error

decreases continuously with an increasing number of com-
ponents, so that it is natural to adjust the number of mixture
components by monitoring the training error.

V. SIMULATION RESULTS AND ANALYSIS
In this section, we verify the performance of the proposed
algorithm on several examples. We mainly focus on whether
local solution of DBVI can approach to the centralized one of
BVI, and whether DBVI can capture the multi-modality pos-
terior. We firstly consider an one-dimensional multi-modality
posterior to test the performance of DBVI-GMM, and then
use a real data (frisk dataset [37]) to test the performance
of DBVI-GMM.

Here, a network with 6 agents is considered, where the
topology is shown in Figure 2, and the adjacent weighted
matrix A is defined as follows

A =


0.7 0.1 0 0 0 0.2
0.1 0.5 0.3 0 0 0.1
0 0.3 0.5 0.2 0 0
0 0 0.2 0.5 0.3 0
0 0 0 0.3 0.5 0.2
0.2 0.1 0 0 0.2 0.5

 .

FIGURE 2. The Topology of Sensor Network.

A. ONE-DIMENSIONAL DISTRIBUTION
The target distribution is generated from the mixture of two
Gaussian components. The corresponding parameters are set-
ting as follows

α = (α1, α2) = (0.75, 0.25),

µ = (µ1, µ2) = (−3, 2),

σ = (σ1, σ2) = (2.5, 6). (27)

In Figure 3, the background (grey shaded area) depicts
the target distribution. DBVI-GMM starts by DVI-GMM
with C = 1 to approximate the target distribution.
As shown in Figure 3, local approximation with a single
component can effectively capture the mainly part of target
distribution.

FIGURE 3. The approximation of one-diensional posterior with C = 1.
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FIGURE 4. Initial new component at C = 2.

FIGURE 5. The approximation of one-dimensional posterior with C = 2.

FIGURE 6. The cost (KL divergence) for the first component at S2.

FIGURE 7. The cost (KL divergence) for the second component at S2.

FIGURE 8. The approximation for the BVI with C = 2.

Next, a new component is initialized randomly for C = 2,
as shown in Figure 4. We find that the value of the first
component decreases. The reason is that the mixture weight
of the first component decreases due to the addition of a new
component. We fit the new component by DBVI-GMM, and
the solution with C = 2 is shown in Figure 5. It can be

FIGURE 9. The approximation for the DVI-GMM with 2 components.

FIGURE 10. The cost (KL divergence) of the DVI-GMM with 2 components.

TABLE 1. The detail results of parameters.

noticed that the mixture model with C = 2 already achieves
a good approximation. Figures 6 - 7 show the evolution of
the cost (KL divergence) for the first and second compo-
nent, respectively. It is noticed that the cost decreases with
the introduction of new component. Figures 5-7 show that
DBVI-GMM can effectively approximate the multi-modality
distribution. As we see from the curve shown in Figure 5 and
Figure 8, each agent can obtain the centralized solution.
As a comparison, we compare the performance with

DVI-GMM in [18], [20]. Since we do not know the proper
number of mixture components, it needs to rerun the
DVI-GMM with different C . Figure 9 shows the approxima-
tion ofDVI-GMMwith 2 components, and Figure 10 plots the
corresponding cost curve. It can be found that each agent also
approximates the target distribution successfully. The detail
results of DBVI-GMM, BVI and DVI-GMM are presented
in Table 1.
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FIGURE 11. The average cost of the DBVI-GMM with different τ .

FIGURE 12. The evolution of the consistency error with different
iterations.

FIGURE 13. The approximations for the BVI with C = 21.

Moreover, we analyze the influence of step size ηt =
1/(d + τ t) to the performance of DBVI-GMM. Figure 11
shows the average cost of all agents for different τ with the
same initialization after 300 iterations. It is found that the
optimal setting of τ is near τ = 0.01 with d = 1. In addi-
tion, we analyze the proper iteration of the consistency step
in (15) and (17). As we see in Figure 12, the larger iteration

FIGURE 14. Local approximations of agent 1 for the DBVI-GMM with
C = 21.

FIGURE 15. Local approximations of agent 2 for the DBVI-GMM with
C = 21.

is, the smaller the consistency error becomes. The consistency
error approach to zero when Iteration > 20.

B. MULTI-LEVEL POISSON GLM
In this subsection, we apply DBVI-GMM to approximate
the posterior for a hierarchical possion GLM (generalize
linear model). We randomly divide the frisk dataset [37] into
six sub-datasets, and each agent gets a sub-dataset as its local
dataset. We use a hierarchical Poisson GLM to measure the
relative rates of stop-and-frisk events in different ethnicities
and precincts [26]. Specifically, the model for agent i is

VOLUME 8, 2020 195651



X. An et al.: Distributed Boosting Variational Inference Algorithm Over Multi-Agent Networks

FIGURE 16. Local approximations of agent 3 for the DBVI-GMM with
C = 21.

FIGURE 17. Local approximations of agent 4 for the DBVI-GMM with
C = 21.

formulated as

µi ∼ N (0, 102)

ln σ 2
i,α, ln σ

2
i,β ∼ N (0, 102)

αi,e ∼ N (0, σ 2
i,α)

βi,p ∼ N (0, σ 2
i,α)

ln λi,ep = µi + αi,e + βi,p + lnNi,ep
Yi,ep = P(λi,ep), (28)

where Yi,ep are the number of stop-and-frisk events within
ethnicity group e and precinct p, Ni,ep is the total number
of arrests, αi,e and βi,e are the ethnicity and precinct effects.

FIGURE 18. Local approximations of agent 5 for the DBVI-GMM with
C = 21.

FIGURE 19. Local approximations of agent 6 for the DBVI-GMM with
C = 21.

Since the posterior is a 37-dimensional Poisson GLM, we just
present a handful of bivariate marginals for the frisk model
in this simulations as shown in Figures 13-20, where the
different axes represent different attributes pairs including
(α0, α1), (α0, β0), (α0, ln σα0 ), (β0, β1).

We set M = 21, τ = 0.01, d = 1, iteration = 20 and
train the model using Algorithm 2. For each single compo-
nent, we take 200 gradient descent steps in (15) and (17),
and 100 samples to estimate the gradient in (18) and (19).
Figure 13 shows the approximation of BVI with M = 21.
Figures 14 − 19 show local approximation of each
agent, respectively. It can be found that local approxi-
mation is almost the same as the centralized solution.
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FIGURE 20. The approximation for the DVI-GMM with 3 components.

FIGURE 21. The cost(KL divergence) of the DVI-GMM with 3 components.

FIGURE 22. The cost of the DBVI-GMM with different components.

Moreover, we present the evolution of the cost (KL(q||p)) for
DBVI-GMM with an increasing number of mixture compo-
nents in Figure 22.
Compared with DBVI-GMM in order to seek a good

approximation, DVI-GMM needs to have a try with different
values of M , such as M = 5, 10, 15 . . .. If we consider
a DVI-GMM model with 21 components as comparison,
it means that 1575 parameters would be optimized together,
and it is difficult to obtain the optimal solution. Hence,
we just give the solution of DVI-GMM with 3 components
in Figure 20, and present the evolution of the cost
in Figure 21. It can be noticed that the approximation of
DVI-GMM is not as well as that of DBVI-GMM. Compared

with DVI-GMM, DBVI-GMM adds the new component one-
at-a-time, and it is natural to adjust the number of mix-
ture components adaptively by tracking the training error.
Hence, DBVI-GMM can effectively deal with the challenges
in DVI-GMM from the computation.

VI. SUMMARY AND CONCLUSION
In this paper, we proposed a distributed boosting variational
inference (DBVI) algorithm to approximate the posterior over
networks. The mixture model was used to approximate the
complicated posterior, and the components of mixture model
were trained one-at-a-time in a distributed form. For each new
component, we formulated the global cost as a sum-of-costs
form, and each agent obtained the centralized solution by
distributed stochastic gradient descent method. In addition,
we derived DBVI with Gaussian mixture model in detail.
Simulations demonstrated that DBVI can perform almost as
well as the centralized BVI and could effectively deal with
the challenges in DVI in computation.
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