
Received September 10, 2020, accepted October 12, 2020, date of publication October 22, 2020, date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3033008

Solving the Intractable Problem: Optimal
Performance for Worst Case Scenarios in XML
Twig Pattern Matching
SHTWAI ALSUBAI 1 AND SIOBHÁN NORTH 2
1Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
2Department of Computer Science, The University of Sheffield, Sheffield S1 4DP, U.K.

Corresponding author: Shtwai Alsubai (sa.alsubai@psau.edu.sa)

ABSTRACT In the history of databases, eXtensible Markup Language (XML) has been thought of as the
standard format to store and exchange semi-structured data. With the advent of IoT, XML technologies
can play an important role in addressing the issue of processing a massive amount of data generated
from heterogeneous devices. As the number and complexity of such datasets increases there is a need for
algorithms which are able to index and retrieve XML data efficiently even for complex queries. In this
context twig pattern matching, finding all occurrences of a twig pattern query (TPQ), is a core operation in
XML query processing. Until now holistic joins have been considered the state-of-the-art TPQ processing
algorithms, but they fail to guarantee an optimal evaluation except at the expense of excessive storage costs
which limit their scope in large datasets. In this article, we introduce a new approach which significantly
outperforms earlier methods in terms of both the size of the intermediate storage and query running time.
The approach presented here uses Child Prime Labels (Alsubai &North, 2018) to improve the filtering phase
of bottom-up twig matching algorithms and a novel algorithmwhich avoids the use of stacks, thus improving
TPQs processing efficiency. Several experiments were conducted on common benchmarks such as DBLP,
XMark and TreeBank datasets to study the performance of the new approach. Multiple analyses on a range
of twig pattern queries are presented to demonstrate the statistical significance of the improvements.

INDEX TERMS XML, holistic joins, XML databases, structural XML query processing.

I. INTRODUCTION
XML technology has emerged as the de facto standard for
storage of semi-structure data and for data exchange in
e-business [19]. Twig Pattern Matching (TPM) is a core oper-
ation in XPath [41] and XQuery [42] which are popular XML
query languages. A Twig Pattern Query (TPQ) is an XML
path expression which represents the basic building block
of XML query languages. The existing literature on XML
query processing is extensive and focuses particularly on the
twig pattern matching problem because it is the hardest [6],
[40]. A Twig Pattern Match is defined as mapping functionM
between a given tree pattern query Q and an XML document
D, M : Q → D that maps nodes of the query Q into nodes
of the document D preserving structural relationships and
satisfying the predicates of Q. Formally, TPM has to find all
matches of a given tree pattern queryQ on an XML document

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

D [1], [10], [16], [18], [21], [33], [40]. For a document D
and a query Q with n nodes (q1, . . . , qn), a complete match
is an n-dimensional tuple (e1, . . . , en) which consists of the
database elements that identify a distinct match of Q in D.
An output match is a projection of a complete match such
that the database elements corresponding to non-output query
nodes are excluded [36]. The answer to Q on D is an ordered
set of all the output matches of Q on D where the tuples are
sorted in order of the common prefixes of the individual root-
to-leaf paths.

The pioneering twig join algorithm, TwigStack was pro-
posed in [10]. In the literature several twig join algorithms
have been proposed to improve on this initial approach. In dis-
cussing them in this article, these algorithms have been
grouped into the two main categories. On one hand, top-
down twig join algorithms process TPQs by reading the
nodes in pre-order traversal of the input document and check-
ing child descendant extensions for internal query nodes.
On the other hand, bottom-up algorithms store elements of

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 192569

https://orcid.org/0000-0002-6584-7400
https://orcid.org/0000-0002-8478-8960

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

the input document in post-order manner and inspect match-
ing elements through virtual sub-trees. A major drawback
of this second approach is its high memory consumption
because all elementsmapping to leaf query nodes reside in the
main memory until the entire document has been completely
processed but, in terms of processing time, it is faster than top
down algorithms [6].

In the literature, top-down processing, which is based on
getNext() [10], has been combinedwith bottom-up algorithms
as a filter in order to reduce memory usage and thus improve
the overall performance. The main weakness of using a top-
downfilter is that it does not provide an optimal evaluation for
TPQs which include Parent-Child (P-C) relationships. This
is a major bottleneck because such relationships are common
in queries. The problem is a result of the restricted access
mechanism (i.e., a single sequential scan of partitions of the
input document) adopted in order to guarantee linear I/O
Cost. Figure 1 depicts the simple partition technique used by
XML query processing called a tag streaming scheme where
each query node q is associated with a stream Tq consisting of
all nodes with the same tag as q sorted in an order compatible
with the depth-first traversal of the XML tree. Holistic algo-
rithms can not guarantee that the head elements would form
matches to TPQs comprising of P-C edges [6], [13], [20].
This dilemma (i.e., two head elements block each other with
respect to P-C relationship) means that holistic algorithms
must either output useless intermediate results or risk missing
some potential answers to TPQs. The advantages of a top-
down filter in bottom-up algorithms are that they speed up
the sequential reading of the input streams but avoid storing
elements which do not have ancestors likely to participate in
the final solution. However, no top-down filter algorithm can
remove leaf query nodes effectively when a mixture of P-C
and A-D queries are processed.

The work of [3] proposed a new filtering strategy in twig
joins which takes advantage of the the properties of prime
numbers to avoid an additional pre-processing step. The
Child Prime Label (CPL) algorithm is an extension of the
getNext() core function in the classical holistic twig joins
algorithm, TwigStack [10]. This new filtering function can
filter out irrelevant elements efficiently without either vio-
lating the document order or consuming additional space.
A new top-down holistic algorithm TwigStackPrime was pre-
sented, which reduced memory consumption and the com-
putation overhead of twig pattern matching when P-C edges
are involved. In particular, holistic algorithms using the CPL
indexing technique were shown to be I/O and CPU optimal
when a TPQ has only A-D edges or where there are P-C edges
to connect leaf query nodes. This analysis was confirmed by
experimental results on a wide range of real-world, bench-
mark and artificial datasets.

Over the past decade, two holistic joins, proposed in [7],
[20], have been considered as the best top-down and bottom-
up combinations. The authors of [20] proposed a new pre-
order filtering function called getPart()which introduced two
improvements to the original getNext() function. Compared

FIGURE 1. Tag streaming model of a query node q [50].

with the existing preorder filtering function, getPart() returns
child query nodes if and only if they have a relevant ancestor
processed by previous calls of getPart() and stored in inter-
mediate storage. The second improvement is to skip irrelevant
elements depending on the current query node’s descendants
and ancestors, in contrast to the getNext() which is only able
to skip useless elements based on the current query node’s
descendants. Other authors [7] further improved the getPart()
function by avoiding unnecessary function calls. The new
advanced preorder filtering function is called getMatch(). The
getPart() function serves as the advanced preorder filtering
strategy for a family of twig matching algorithms devised in
[20]. The alternative is the GTPStack algorithm [7] which
uses the getMatch() function.

However, two issues must be taken into account when a
combination of preorder and postorder filtering is considered
[7], [20], [29]:

1) The filtering algorithm must return each element of
a query node q in document order. This is impor-
tant because when visiting document elements in pos-
torder (i.e, reversed order) it is possible to determine
whether or not e satisfies the twig pattern query directly
without further investigation because all its descendants
have been visited.

2) Elements must be pushed into the intermediate storage
in preorder since the answer to TPQ Q with n nodes
can be represented as an n-ary relation where each tuple
(e1, . . . , en) consists of the database elements that iden-
tify a distinct match of Q in D. Some fields may be
duplicated and some may not be in the document order,
but tuples have to be sorted in order of the common
prefixes of the individual root-to-leaf paths. As a result,
if we push elements into the intermediate storage in
postorder, the enumeration outputs the resulting tuples
unordered.

In this article, we explain how the improvement of the
recent top-down algorithm, TwigStackPrime [3] can be trans-
formed into new state-of-the-art bottom-up algorithm by
exploiting ideas proposed in [3], [7], [20], [29], [50] and
extend the original holistic join approach to solve these
issues. We also show that it is not necessary to maintain a set
of stacks to adopt the level split vectors intermediate storage
when preorder storing is required. As a result, we can prove
that for a certain class of TPQs our bottom-up approaches
have linear time complexity with respect to the size of the

192570 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

input and output and the linear space complexity with respect
to the longest path of the XML tree. To the best of our
knowledge, this is the first work which guarantees optimal
worst case evaluation for bottom-up holistic joins without
performing pre-processing (i.e., stream pruning). The main
contributions of this article are summarized as follows:

• Introducing the CPL approach to the advanced pre-
order filtering functions used by the TJStrictPre and
GTPStack algorithms, namely getPart() and getMatch(),
respectively.

• A set of novel bottom-up holistic twig matching algo-
rithms which are based on a new advanced preorder fil-
tering function which has the ability to preserve the doc-
ument order, unlike previous filtering strategies, such as
[30], [32], and filter out irrelevant elements when P-C
relationships are invloved in TPQs. Full proofs of cor-
rectness for the algorithms necessary to evaluate subsets
of TPQs containing P-C and A-D axes are provided as
well.

• Lastly, the paper provides an empirical proof of
improvements of the holistic algorithms proposed, based
on the CPL approach, over other related methods from
the literature.

The paper is organized as follows. The following section,
Section II, reviews the related work. In Section III, we give
an overview of models and techniques used in this article.
Section IV introduces the TwigPrime algorithm and its opti-
misations while Section V experimentally verifies and vali-
dates the advantages of the new approaches. Finally, the paper
is concluded in Section VI.

II. RELATED WORK
A. NODE LABELLING SCHEME
Most existing XML query processing algorithms [5], [7],
[10], [20], [25], [29], [32], [43] rely on XML indexing tech-
niques to access only XML data relevant to the XML query.
In XML, there are two basic types of index. The first indexes
each node in an XML document by recording its position.
This group are known as node labels or labelling schemes.
Node indexing approaches index each node in an XML doc-
ument by assigning an unique label (based on a labelling
scheme) to every node. This label encodes its positional
information within the XML tree. The values of labels are
a reflection of the chosen labelling scheme. This group of
indices uses nodes as the basic unit of a query which provides
the opportunity to perform structural queries very efficiently
by exploiting information encoded in the labels. According
to [37], a labelling scheme has to guarantee uniqueness and
order preservation of node labels, and ensure that the hier-
archical relationships between a pair of data nodes can be
determined directly from the labels. To better explain the
mechanisms of node indexing methods and their properties,
[22] classified node indexing into four distinct types; Sub-tree
labelling, Prefix-based labelling, Multiplicative labelling and
Hybrid labelling. A full discussion of the different categories

lies beyond the scope of this article but, all XML query pro-
cessing algorithms which perform structural join operations
to match a given query against an XML document rely on
either sub-tree labelling schemes or prefix-based labelling
schemes. A well-known example of sub-tree labelling is the
regional labelling scheme proposed in [49]. In this approach,
each node is assigned with a 3-tuple as <start, end, level>.
Start and end contain values of positions corresponding to
the opening tag <tag> and the closing tag </tag> of the
subtree and level represents the depth of the node within the
XML tree. The two basic relationships Ancestor-Descendant
(A-D) and Parent-Child (P-C) can be determined easily from
this. Given two nodes u and v, u is an ancestor of v if and
only if u.start < v.start < v.end < u.end . Furthermore, a P-
C relationship is defined as node u is the parent of node v if
and only if u.start < v.star < v.end < u.end, v.level =
u.level + 1. An example of the regional labelling scheme
can be found in Figure 5. A classic example of multiplica-
tive labelling is a prime number labelling scheme. This was
proposed to support labelling dynamic XML documents. In a
prime number labelling scheme [46], every node is given a
unique prime number called the self-label. Then the label
for each node is the product of its self-label and its parent-
label. This labelling scheme completely avoids re-labelling
when a new data node is inserted, only the simultaneous
congruence value to determine the document order needs to
be recalculated.

B. TWIG QUERIES
The holistic join was introduced by [10] as a new approach
to evaluate query twig patterns efficiently. The work was
an extension to the sophisticated PathStack algorithm which
decomposed queries into a set of binary structural relation-
ships. They proposed the decomposition of twigs into a set
of root-to-leaf paths and evaluated each root-to-leaf path
using the PathStack algorithm. The final results are produced
by a merge join operation on the intermediate results. The
algorithm is called TwigStack and has shown a significant
performance improvement in reducing intermediate results
in comparison to the binary structural join algorithms. The
TwigStack algorithm only guarantees an optimal evaluation
of twig queries with A-D relationships connecting all query
nodes. The optimal evaluation in an holistic approach means
every query node pushed into the encoding data structure (in
the case of TwigStack is a chain of stacks) must be part of the
final result. This is established by scanning them sequentially
[15]. However, TwigStack’s performance suffers from its
generation of useless intermediate results when twig queries
encounter P-C relationships. TwigStack performs twig eval-
uation in two phases: the first phase is to decompose a twig
pattern query into single root-to-leaf paths and the second is
to match them against XML data. The second phase is the
merge phase in which all matching results produced by the
first phase are merged to compute the final query results.
Obviously, the second phase is an expensive process since
an n-way merge has to be performed where n is the number

VOLUME 8, 2020 192571

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

of single paths in the twig query. TwigStack is considered
the keystone for algorithms in this family and many research
papers have suggested improvements to it [2], [4], [11]–[13],
[20], [23], [24], [26], [31]–[35], [38], [43], [44], [47], [48].
Nevertheless, an optimal evaluation of a tree pattern query
with any arbitrary combination of A-D and P-C relationships
has been proven to be impossible by [15] for the TwigStack
algorithm and its variants. In order to speed up the query pro-
cessing and avoid reading useless data nodes, the authors of
TwigStack [10] proposed an XB-tree index, which is a variant
of B-tree index, to reduce the disk-read costs of TwigStack
by skipping over input streams corresponding to inner query
nodes which do not satisfy A-D relationships with child query
nodes.

In [13], the authors reviewed the sub-optimality of the
existing clustering technique used in TwigStack where an
XML document is clustered into tag streams which group
together elements with the same tag name. They proposed
two different novel streaming schemes, namely: prefix path
and tag + level streaming schemes. A tag + level streaming
scheme clusters all the elements which have the same tag
and are located at the same level. A prefix-path streaming
scheme, or PPS for short is an ordered set of elements
which have the same prefix path. Figure 2 presents different
streaming schemes over a given XML tree, elements are
grouped based on similarity in tag names and level in case
of tag + level streaming scheme or unique path in case of
prefix path streaming scheme. For the sake of simplicity,
the number associated with each tag indicates the level using
tag + level streaming scheme as in Figure 2c and the path
associated with each tag indicates the unique path using prefix
path streaming scheme as in Figure 2d. For example, a1

streaming list contains all elements with a-tagged node and
appear at level 1. Based on the new streaming schemes, they
proposed an extension to TwigStack called iTwigJoin. Their
algorithm is optimal for queries with A-D edges only when
tag streaming schemes (i.e., label lists) are applied. The use
of tag + level streaming scheme in iTwigJoin guarantees
the optimality in two classes of queries: A-D or P-C edges
only. In addition, the iTwigJoin depends on prefix path (i.e,
iTwigJoin + PPS) and is optimal in three classes of queries:
A-D, P-C edges or one branching query node only. It has been
proven in [28] that the efficiency of iTwigJoin reduces when
the number of streams for every query node is increased.

TwigStack and its variants described above all work by
decomposing twig queries into individual root-to-leaf paths
and processing the queries top-down to filter out irrelevant
nodes which may match query nodes’ tags but do not satisfy
its structural constraints. Top-down filtering can be seen as
prefix path matching where a sequence of steps in an XPath
expression connects descendants to their ancestors. For exam-
ple, consider a given query which consists of k query nodes
as q1/q2/ . . . /qk . If a document element e corresponding to
q2 in the mapping function q2 → e such that e is satisfied
and if and only if it has an ancestor element corresponding
to q1 which also satisfies the mapping function and so on

FIGURE 2. Illustration of different data partitioning schemes.

to the leaf query node qk , then each element in the entire
path will be pushed into their corresponding stacks in the
intermediate storage. This means that the top-down process
checks document elements in pre-order and stores them in
post-order.

The alternative approach of examining XML queries
against document elements in post-order was first introduced
by [12]. In this article the authors prove that decomposition
of twigs into a set of single paths and enumeration of these
paths is not necessary to process twig pattern queries. The key
idea of their approach is based on the proposition that when
visiting document elements in post-order (i.e, reversed order)
any element e the determination whether or not e satisfies the
twig query sub-rooted at e is implicit because all its descen-
dants have been visited. They proposed a new algorithm to
process twig queries without merge joining single paths using
a new encoding to store twig results in main memory. Their
representation is a tree of stacks in which every query node
n is associated with a hierarchical stack HSn which consists
of an ordered sequence of stack trees. Pointers are heavily
used to capture the basic relationships between elements
in different hierarchical stacks as shown in Figure 3. The
researchers developed a new algorithm called Twig2Stack to
evaluate awider range ofXMLqueries than TwigStack and its

192572 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

variations including generalized twig pattern (GTP) queries
which are a fundamental building block for XQuery process-
ing. GTP queries contain both mandatory (corresponding to
the FOR or WHERE clauses) and optional (corresponding to
LET clause) relationships. Twig2Stack produces its solution
using an enumeration function over the pointers in the hier-
archical stacks. In the same context, a new algorithm was
proposed in [26], called HolisticTwigStack. This algorithm
combined the filtering strategy of TwigStack to Twig2Stack
in order to reduce memory consumption. The major limita-
tions with both algorithms is the complex stack structure.
Although they both reduce the cost of query execution by
eliminating the merge phase (second phase in TwigStack),
the pointers in both algorithms, especially Twig2Stack, are
complex and expensive to maintain. In the worst case the
entire document needs to be loaded into the main memory. To
overcome these drawbacks, a new algorithm called TwigList
was proposed in [38]. TwigList replaced hierarchical stacks
with a list for every node and used simple intervals to capture
structural relationships. TwigList used a global stack to read
the whole document in pre-order and adds data nodes to the
corresponding lists in post-order manner if they satisfy the
mapping function conditions. To demonstrate the difference
between the two algorithms consider Figure 3b; element a1
in La has two intervals specified by four pointers in two
2-tuples, namely <starty, endy> and <startx , endx>, starty
records first element matches a1 as one of its descendants
with y-tagged node while endy records last element is one
of a1’s descendants with a y-tagged node. a1 has <1, 2> as
its recorded interval for contained elements corresponding to
query node y. Reference [29] extended TwigList by combin-
ing the features of two-phased holistic algorithms and one-
phased algorithms, namely TwigStack and TwigList. They
improved TwigList by applying the filtering strategy applied
in TwigStack to select useful elements before pushing them
into the TwigList stack. To do this they proposed two novel
algorithms, called TwigMix and TwigFast to improve the effi-
ciency of TwigList. When twig pattern queries contain only
A-D edges both algorithms guarantee all elements in inter-
mediate results contribute to the final results. In their exper-
iments TwigMix and TwigFast significantly outperformed
TwigList.

The authors in [20] proposed a new storage scheme, called
a level split approach which splits the intermediate list con-
nected to its parent list into levels equal to the depth of the
XML tree as shown in Figure 4 for the same XML tree and
a given query as in Figure 3. In their paper, a combination
of preorder and postorder filtering methods is adopted to
develop two algorithms, namely: TJStrictPre and TJStrict-
Post. Their experimental results demonstrated the ability of
the new method to eliminate useless elements in inner lists,
and so the number of intermediate results is far smaller than
in TwigList and TwigFast. These approaches can guarantee
linear CPU and I/O complexity of the output enumeration
relative to the output size. However, they suffer from large
intermediate results in comparison to the query output. In [7],

FIGURE 3. The intermediate storage of Twig2Stack and TwigList when
processing a TPQ Q1 = a[//y]/x over the XML tree T1 in Figure 5.

FIGURE 4. Illustration of level split list approach introduced in [20]. L2
x

stores elements which have level values equal to 2 in the XML tree.

the authors improved the filtering strategy proposed in [20]
by eliminating unnecessary self-nested matching checks (i.e.,
recursive calls) similar to the approach introduced in [28].
Table 1 provides the breakdown of twig matching algorithms
according to filtering strategies, intermediate storage and
optimal query types.

III. PRELIMINARIES
A. DOCUMENT AND QUERY MODEL
In XML, both data and queries are represented using a tree-
structured model. An XML Tree is a rooted, node-labelled
tree as T = (V ,E, r,

∑
V , µ) where V = {v1, . . . , vn} is a

finite set of nodes. E = {(u, v) ∈ V × V } is a set of edges.
r ∈ V is a distinguished node called the root.

∑
V is the set

of element names appearing in T. µ : V − {r} →
∑

V is
a labelling function which associates an element name with
each node other than the root. The level of any node in T is
the number of distinct element(s) in the unique path between
it and the root thus level(r) = 0.
Definition 1 (Child Relationship): Given two nodes u and

v in a rooted, labelled tree where u, v ∈ V , v is a child of u if
and only if ∃e ∈ E : e = (u, v). This relationship is denoted
as PC or P-C and if v is a child of u then u is a parent of v.

VOLUME 8, 2020 192573

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

TABLE 1. Previous algorithms and their filtering properties. A simple vector is the default for algorithms adopting element references to store
intermediate results.

Definition 2 (Descendant Relationship): Given two nodes
u and v in a rooted, labelled tree where u, v ∈ V , v is a
descendant of u if and only if ∃n1, . . . , nk ∈ V such that
(u, n1) ∈ E, (n1, n2) ∈ E, . . . , (nk , v) ∈ E where 1 ≤ k <
the depth of the tree. If v is a descendant of u then u is an
ancestor of v. This relationship is denoted as AD or A-D.
Formally, Twig Pattern Query (TPQ) is also a rooted,

node-labelled tree TPQ = (V ,E, r,
∑

V , µ) where V =
{v1, . . . , vn} is a finite set of query nodes. E = {(u, v) ∈ V ×
V } is a set of edges which represents parent-child or ancestor-
descendant relationships between connected query nodes.
The set of child edges is denoted by E/, while the set of
descendant edges is denoted by E//. r ∈ V is a distinguished
query node called the root.

∑
V is the set of element names

appearing in TPQ.µ : V →
∑

V is a labelling functionwhich
associates an element name with each node. The difference
between an XML tree and a twig pattern is in the type of
their edges, an XML tree can only have parent-child edges
connecting its nodes, while the twig pattern is an extension
that can handle the Ancestor-Descendant structural relation-
ships as edges connecting its nodes. In practice, a twig pattern
is much smaller than the original XML tree. It can be seen
as a representation of a user query although translating an
XML query plan into a twig pattern is not a simple task
[21]. Complex XML queries are divided into several twig
patterns because a single twig pattern can represent only
a single XPath path expression. The complexity of XML
queries determine the difficulty of translating them into twig
pattern(s). In XML query optimization, the process of trans-
lating user queries to twig patterns and then optimising them
has been the subject of considerable research [51].

B. CHILD PRIME LABELS
In holistic twig joins, head elements pointed to by cursors of
streams are classified to three types with respect to a twig
pattern query Q with n nodes:

• Matching element where en has a minimal extension to
qn.

FIGURE 5. A sample XML tree, XQuery query and the corresponding TPQ.

• Useless element where en can not participate in a match
to Q with the current or future elements.

• Blocked element where en is a neither amatching or use-
less element.

Recently, a new indexing technique which can be used in
conjunction with existing labelling schemes and minimises
the number of blocked nodes during the processing of TPQs
with P-C edges was proposed in [3]. The key idea of this work
is that it can be used in addition to the triplet of range-based
labelling scheme to prevent elements becoming blocked. The
name of the new approach, Child Prime Labels (for short
CPL), arises from the exploitation of child relationships in
XML trees and the property of prime numbers. All the distinct
tags in the XML tree are identified and assigned unique
prime numbers. Then, the intuition of the CPL is to use the
modulo function to test whether or not an element has an
element with a particular tag name among its children. The
leaf elements will be annotatedwith 1 as their CPLs, while the
inner elements (i.e., parent elements) are assigned CPLs by
multiplying the prime numbers of the distinct tags its of child
elements. The immediate child elements of inner elements

192574 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

FIGURE 6. An XML tree labelled with range-based augmented with CPL
and the corresponding tag indexing.

can be derived from their labels so that the process of handling
P-C relationship among head elements in the streams can be
resolved by computation.

For illustration, consider an element e, with all distinct
names of children, C = {c1, c2, . . . , cm} and a list of prime
numbers P = {p1, p2, . . . , pm}. The bijective mapping func-
tion f : C → P for all element p ∈ P, there is a unique
element c ∈ C such that f (c) = p. Then, the CPL for element
e can be computed as follows:

CPL(e) =

m∏
i=1

f (ci), if m ≥ 1

1, otherwise
(1)

The unique prime number associated with q is obtained
from tag indexing where a lookup table to find unique prime
numbers associated with distinct tags within a given XML
document during query processing. As in the original work
of [3], the original range-based labelling scheme is extended
to incorporate the CPL information so that each range-based
label with CPL is a quadruple =(start, end, level, CPL). The
first three attributes are those of the original labelling scheme,
see Figure 5 and the last is the CPL. For illustration, consider
the XML tree in Figure 6. The tag names are assigned prime
numbers as they are identified when scanning the tree in
depth-first traversal. Prime numbers are assigned as follows:
a → 2, x → 3, y → 5. The element a2 has a CPL value
equals to 15 as CPL(a2) = f (x) × f (y) = 3 × 5 = 15
while the element a3 has a CPL with value of 6 as CPL(a3) =
f (a)× f (x) = 2× 3 = 6.

The most important advantage of the CPL approach over
other related filtering strategies is that it has the ability to
filter out elements without consuming extra storage or dis-
torting the node processing order which is a problem of the
TwigStackList algorithm [32].

C. NOTATION
Throughout this article, the term element is a reference to a
data node in an XML tree and node refers to a query node

in a twig pattern. It is also useful to name some auxiliary
operations on TPQ and its nodes used in the twig matching
process. These operations are:
• children(q) which returns all child nodes of q.
• subtree(q) returns all nodes of the subtree rooted at q.
• childrenAD(q) returns all child nodes which have A-D
relationship with q.

• childrenPC(q) returns all child nodes which have P-C
relationship with q.

• isRoot(q) returns true if q is the root and false otherwise.
• isLeaf(q) returns true if q is a leaf node and false other-
wise.

• getRoot(TPQ) returns the root of the query.
• parent(q) returns the parent query node of q.
• getVector(q,Integer level) returns the regular intermedi-
ate result list if q is below an A-D edge or a split list by
level if q is below a P-C axis.

Streams are implemented by a retrieval mechanism simi-
lar to inverted lists in the field of Information retrieval [9].
Every stream Tq in TPQ is equipped with a cursor, Cq,
which initially points to the first element in Tq. As shown
in Figure 1, the stream of query node q has two parts: head
which is pointed by Cq and the remaining elements referred
to as the tail. As with earlier approaches the streams end
with a virtual end element labelled with infinity values as
(∞,∞,∞).
The following operations are defined over every cursor of

a stream in TPQ.
• getStart(Cq) returns the start attribute of the head ele-
ment for query node q.

• getEnd(Cq) returns the final attribute of the head element
corresponding to query node q.

• getLevel(Cq) returns the level attribute of the head ele-
ment for query node q.

• advance(Cq) moves the cursor of q forward by one
position to point to the next element.

• eof (Tq) returns true if Cq points to the end of stream for
Tq and false otherwise.

IV. OPTIMAL TWIG JOINS
This section introduces a new bottom-up holistic twig match-
ing algorithm which combines the advantages of the previous
approaches [3], [7], [20], [29]. The new algorithm is called
TwigPrime and is based on a total rewrite of TwigFast [29].
In other words, the algorithm combines the efficient selec-
tion of useful elements for TPQs with both P-C and A-D
edges introduced in [3] and uses a level split data structure
as the primary intermediate storage. It contains a further
improvement on TwigFast by strictly checking prefix path
matching for P-C relationships before storing the interme-
diate results. It includes an extension to the state-of-the-art
filtering strategies getPart() and getMatch() which can apply
the CPL approach in order to explore the potential benefit
of the CPL approach in a contemporary one phased holistic
algorithms.

VOLUME 8, 2020 192575

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

A. TwigPrime
The TwigPrime approach can be seen as a new alternative to
the TwigFast algorithm. It differs from the original TwigFast
in that it adopts the advanced preorder function getNext()
which is based on the CPL approach and the use of a level
split data structure to store the intermediate results. The use
of pointers in TwigPrime and its refined versions is similar to
that in [29].

The structure of the main algorithm, TwigPrime presented
in Algorithm 1 is more complex than the original TwigFast
algorithm. In [29], there is one list containing matches for
each query node, the list is sorted in preorder. Each element
in the list records intervals for each child query node. Interval
start values are recorded as elements appended to intermedi-
ate lists while interval end positions are recorded only when
the elements can not be part of any other match. In order
to construct intervals whilst avoiding the use of stacks, each
element appended to the list has a pointer to the closest
ancestor in that list. Each list also has a tail pointer which
indicates the candidate parent query node. An advantage of
this approach is that there is no overhead from maintaining
a set of stacks. However, it does not perform prefix path
filtering checks so that elements can be added without having
relevant parents.

TwigFast can not be adapted to a level split data structure
directly because there are specific families of nodes that have
to be treated exceptionally. To illustrate the difficulty Fig-
ure 8 shows the intermediate results after running TwigFast
to process Q1 against T2 in Figure 7. When f2 is returned,
the algorithm will record the interval end positions for x1 and
x2 since the tail for x-node points to x2 and x2 has an ancestor
pointer to x1 in the same list. When a level split approach is
used, if x2 is only pointed by the tail pointer, then a match
including x1 could be missed. Thus, to ensure the descendant
intervals are set correctly, there must be a tail for each level
and each tail must be checked separately introducing a new
form of filtering.

The level split tail filtering described by Algorithm 2
only happens in one situation, but a relatively common one.
It is necessary if the incoming element for a query node
qn has an A-D relationship to the parent query node qp
that has, in turn, a P-C relationship with the parent query
node, the tail for every level split list corresponding to the
query node qp must be checked to record the end positions
correctly. This definition can be formalized as in Defini-
tion 3. It should be also noted that using a pointer to the
closest ancestor in the same list is unnecessary when an
element has a P-C relationship to the parent as they are stored
in different lists. Henceforth, a tail pointer is sufficient to
track potential parents or ancestors for query nodes under
P-C edges.
Definition 3 (AD Follows PC): Given a query node p,

which is connected with P-C edge to its parent, and its A-D
child c, suppose n separate level split lists of p has been
visited. In intermediate lists of p, all elements which are
pointed by n tails will be checked. The tail elements that are

FIGURE 7. An example to illustrate tail pointers for level split data
structure.

FIGURE 8. Intervals for intermediate storage handling approaches after
processing f1.

not ancestors of the current element ec will be assigned their
end interval values.
Definition 4 (Strictly Matching): A query node in a TPQ

Q as qn ∈ Q with an edge e = (qn, qv) ∈ E is a strict match
of an XML element M (qn) ∈ D if and only if M (qn) and
M (qv) are related as specified by e.
Definition 5 (Weakly Matching): A query node in a TPQ

Q as qn ∈ Q with an edge e = (qn, qv) ∈ E is a weak match
of an XML element M (qn) ∈ D if M (qn) is an ancestor of
M (qv).
Definition 6 (Prefix-Path Matching): A query node in a

TPQ Q as qn ∈ Q is a strict/weak prefix-path match of an
XML element M (qn) ∈ D if and only if the simple path
q1, . . . , qn is a strict/weak match of qn, where q1 is the root
query node.

192576 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

Algorithm 1 TwigPrime
Input: A TPQ Q with n nodes (q1, . . . , qn)
Output: All n-dimensional tuples (e1, . . . , en) as

answers for Q
1 // initialise Lni = ∅ for each ni ∈ TPQ Q if ni is
root or ni ∈ childrenAD(parent(ni)) and ni.tail = −1

2 // initialise an array of L[]ni = ∅ for each ni ∈ TPQ Q
if ni ∈ childrenPC(parent(ni))

3 while ¬end(getRoot(Q)) do
4 qact = getNext(getRoot(Q)) or get-

Part(getRoot(Q)) or getMatch(getRoot(Q)) // using
CLP filtering Introduced in [3]

5 vact = getElement(qact)
6 if ¬ isRoot(qact) then
7 setEndPointerParent(qact ,parent(qact)) // see

Algorithm 2
8 end
9 if isRoot(qact) ∨ getParentTail(qact) 6= −1 then
10 if qact ∈ childrenPC(parent(qact)) then
11 h = level(vact) - 1 // parent should be stored

one level higher
12 vp = getVectorElement(parent(qact),h)
13 if ¬ PCrealtionship(vp,vact) then
14 // here to perform strict prefix path

filtering which TwigFast [29] misses
15 advance(qact)
16 continue // skip the following lines and

moves to the next cycle
17 end
18 end
19 if ¬ isLeaf(vact) then
20 // set the end values for all elements in Lqact

which are not ancestor of vact
21 // ∀ ni ∈ children(qact) vact .startni =

length(getVector(ni))
22 // vact .ancestor = getTail(qact) // pointer to

the closest ancestor or −1 if it does not have
one

23 // setTail(qact) to length(getVector(qact)) //
this to set the tail pointing to vact as the open
element for this list

24 end
25 // append vact to the corresponding list
26 end
27 advance(qact)
28 end
29 // Process remaining open elements using an imaginary

‘‘end’’ element whose start and end are all∞
30 // Clean intermediate results with postorder checks
31 // Enumerate results

Definition 7 (Subtree Matching): A node in a TPQ Q as
qn ∈ Q is a strict/weak subtree match of an XML element
M (qn) ∈ D if and only if all query nodes which are

Algorithm 2 Level Split Tail Filtering

1 Function isADfollowsPC(Query node q):
2 p = parent(q)
3 if q ∈ ChildrenAD(p) then
4 if p ∈ ChildrenPC(parent(p)) then

return: true
5 end
6 end

return: false
7 Function getTail(Query node q, Integer h):
8 if isRoot(q) ∨q ∈ childrenAD(parent(q)) then

return: q.tail
9 else

return: q[h].tail
10 end
11 Function getParentTail(Query node q,Query node p):
12 h = level(getElement(q))
13 if ¬ isADfollowsPC(q) then

return: getTail(p, h-1)
14 else
15 ∀ level ∈ used level if getTail(p,level) 6=−1) then

return: getTail(p,level)
16 end

return: −1
17 end
18 Procedure setEndPointerParent(Query node q,

Query node p):
19 if isADfollowsPC(q) then
20 ∀ level ∈ used level of Lp
21 if getTail(p,level) 6= −1) then
22 vact = getVectorElement(p,level)
23 if getEnd(vact)<getStart(getElement(q)) then
24 markEnd(vact) // set the end valuse for ecah

ni ∈ children(p)
25 // vact .endni = length(getVector(ni)) −1
26 end
27 end
28 else
29 while getParentTail(q,p) 6= −1 do
30 vact = getVectorElement(p,0)
31 if getEnd(vact)<getStart(getElement(q)) then
32 markEnd(vact) // set the end values for each

ni ∈ children(p)
33 setTail(vact) // set tail for the particular

query node.
34 else
35 break
36 end
37 end
38 end
39 Function getVectorElement(Query node q, Integer

level):
40 // return the current element pointed by the tail of the

regular intermediate result list if q is below an A-D
edge or split list given by level if q is below a P-C axis.

41 Procedure setTail(Query node q,Integer level):
42 // set the tail to point to the closest ancestor of the

current tail if any exists, otherwise −1. if q is below an
A-D edge q.tail or q[level].tail given by level if q is
below a P-C axis.

VOLUME 8, 2020 192577

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

child or descendant nodes of qn are in a strict/weak prefix-
path match of the simple paths starting from qn as the root to
each one of its children and descendants in Q.

The above definitions are fundamental to the new
approach. The main algorithm of TwigPrime, Algorithm 1
describes the general framework for constructing interme-
diate results in preorder sequence, thus extending TwigFast
[29]. It supports any combination of preorder and postorder
filtering and either simple or level split vectors. It also can be
extended to use advanced preorder filtering functions such
as getPart() and getMatch() since elements are stored in
preorder. It invokes getNext() iteratively based on the CPL
approach [3] to identify the next query node for processing.
Unlike the original TwigFast algorithm, elements are passed
straight to the intermediate result storage if they pass a strict
prefix path filtering (see Definition 6). If the head element
of qact fails to satisfy the strict prefix path matching, its
cursor is shifted to point to the next element in the stream
and the algorithm proceeds to the next iteration. But first the
algorithm performs a weak prefix match by determining the
end positions for any element which is not an ancestor of the
head element of qact the intermediate lists corresponding to
parent(qact) according toDefinition 3when level split vectors
are used to avoid false negative errors. This is performed by
calling the setEndPointerParent in Algorithm 2. After that,
if the head element of qact has the right ancestor extension
and qact is not a leaf query node, the algorithm updates the end
values for elements in the same list which are not ancestors.
Then, the start positions for intervals of element vact will be
determined. These are equal to the current lengths of vact ’s
child lists and the tail and ancestor pointers are updated.
The purpose of these pointers is to identify elements which
still have potential descendants. For example, in Figure 8,
when y2 is the head element of qact = y, it indicates that
a2 will not have any further descendant so that the end
positions intervals for a2 are recorded. Then, the current
element is appended into the corresponding list. The cursor
of the current query node qact is advanced and the algorithm
proceeds to the next cycle. When all streams have ended,
the algorithm concludes the top-down processing by using the
largest range-based label (∞,∞,∞) to update the intervals
of all open elements. To perform strict subtree matching
checks, the intermediate results are filtered bottom-up in post-
processing order which ensures optimal enumeration. That is,
an internal element eq is removed from the list Lq if and only
if for any ni ∈ children(q), eq.startni > eq.endni . Finally,
once the intermediate storage contains elements with their
intervals, TwigPrime will enumerate the output by applying
the enumeration algorithm introduced in [38] and extended
in [7], [20] to use child intervals when level split approach is
applied.

The improvement of TwigStackPrime [3] can trivially be
ported to algorithms in bottom-up approach such as TJStrict-
Pre, TJStrictPost and GTPStack. In this article, we propose
new algorithms, namely TJStrictPrePrime, TJStrictPostPrime
and GTPStackPrime, which are less involved modifications

of the original ones. This is due to the fact that they are based
on advanced preorder filtering strategies (i.e., getPart and
getMatch) which are extensions of getNext. To achieve such
an improvement, getPart and getMatch are modified to use
the CPL approach to improve structural relationship checks.
As a result, getPart(q) and getMatch(q) return an element eq
of a query node q ∈ TPQ with four properties:

1) eq has a descendant element eqi in each of the streams
corresponding to its child elements where eqi is the head
element of a query node qi = children(q).

2) each of its child elements satisfies recursively the first
property.

3) if q has P-C edge(s) connected to its child query nodes,
then eq has a child eqi in Tqi for each query node qqi =
childrenPC(q) (this property is checked using the CPL
approach).

4) if ¬isRoot(q), then eq has a relevant ancestor ep stored
in the main algorithm which has been the head element
of a query node p = parent(q) in previous calls of
getPart(p) or getMatch(p), respectively).

In the same way, TwigPrimePart and TwigPrimeMatch
are proposed as refined versions of TwigPrime to utilise the
getPart() [20] and getMatch() [7] functions.

1) ANALYSIS OF TwigPrime
This section shows the correctness of the new algorithms and
analyses their complexities.
Lemma 1: Let eq be an element corresponding to the query

node q in the intermediate storage. Then its child and descen-
dant intervals are correctly recorded.

Proof: Query node q is either leaf or internal. If q is
a leaf query node, the lemma holds. Otherwise, it is shown
by the proof of TwigStackPrime in [3], eq is returned by the
advanced preorder filtering because it satisfies the following
properties (1) the current element in stream q has a descen-
dant element in each stream qi, for qi ∈ childrenAD(q),
(2) the current element in stream q has a child element in
each stream qi, for qi ∈ childrenPC(q), and (3) each current
element in stream qi recursively satisfies the first and second
property. Therefore, eq is appended into the intermediate list
before child and descendant elements of eq are stored in their
corresponding lists, and the start positions of the intervals
thus can be set correctly at Line 21 of TwigPrime. Using an
advanced preorder filtering strategy property, it will be known
that all elements in the XML tree which are part of some
solutions at subtree rooted at eq will be returned in preorder.
Henceforth, all child and descendant elements of eq are stored
in the intermediate storage while eq is pointed by the tail of q
and the procedure setEndPointerParent correctly records the
end values for eq’s intervals. For both cases the lemma holds.

The next theorem will be used to prove the correctness of
TwigPrime, TwigPrimePart and TwigPrimeMatch.
Theorem 1: Given a twig pattern query Q and an XML

document D, Algorithms TwigPrime, TwigPrimePart and

192578 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

TwigPrimeMatch correctly construct the intermediate results
of Q on D.

Proof: In Algorithm TwigPrime, getNext(getRoot(Q))
is repeatedly invoked to determine the next query node to be
processed. It is shown by the proof of TwigStackPrime in [3]
that all elements returned by qact = getNext(getRoot(Q))
satisfy the following properties (1) the current element in
stream q has a descendant element in each stream qi, for
qi ∈ childrenAD(q), (2) the current element in stream q has
a child element in each stream qi, for qi ∈ childrenPC(q),
and (3) each current element in stream qi recursively satisfies
the first and second property. If qact 6= getRoot(Q), Line
7, the algorithm sets the end values for all elements in the
intermediate lists Lparent(qact) that are not ancestors of the
head element of qact by Using an advanced preorder filtering
strategy property. After that, it is already known qact satisfies
the three properties so that Line 9 checks whether the tail
of parent(qact) is pointed to proper ancestor or not. If so,
it indicates that it does not have the ancestor extension, and
it can be discarded safely to continue with the next iteration.
Otherwise, the current head element of qact has the ancestor
extension which guarantee its participation in a weak match
of prefixed path from itself to the root. After that, if qact is
connected to the parent query node with P-C edge, Lines 13-
16 ensure that the current element has a strict match of a
prefixed path. If the head element fails to pass a strict prefix
path filtering, then it can be skipped safely to proceed to the
next cycle. Otherwise, the corresponding list of vact is cleaned
by setting end values of intervals for elements which do not
contain the head of vact , and the start positions of intervals
for vact are recorded, using Lemma 1. Then, if vact has an
ancestor in the same list, the ancestor pointer of vact is pointed
to qact .tail. Otherwise, vact .ancestor is set to −1 indicating
that it does not have a proper ancestor in the list. Finally,
qact .tail is updated to point to vact , and vact is appended
into its corresponding intermediate list. Once the intermediate
storage containing elements with their intervals correctly set,
it is straightforward to perform the output enumeration.

The correctness of the enumeration algorithm follows
from the correctness of the TwigList enumeration method
[38] which is trivially extended to use child intervals when
elements are stored in level split lists as in [20]. More-
over, TJStrictPrePrime, TJStrictPostPrime and GTPStack-
Prime are correct due to the correctness of the preorder
filtering used in TwigStackPrime [3] and the correctness of
the original algorithms introduced in [7], [20].

With respect to the space and time complexity of these
algorithms, the new algorithms read elements from data
streams only once in a single forward scan through advanced
preorder filtering functions. When elements are appended
to the intermediate storage, each child check and interval
set take constant time. Therefore, the worst-case time and
space complexity when building the intermediate storage is
O(f × |Input|) where f is the maximum fanout at any query
node in a TPQ with n query nodes and Input is the sum of
the lengths of the n input lists. Therefore it is possible to

FIGURE 9. An example to illustrate the basic notations of TwigPrime.

suggest that the new approaches guarantee optimal evaluation
for the case where the TPQ has A-D edges or there are only
P-C edges connected to the leaf query nodes similar to that
provided by TwigStackPrime. Interested readers may refer to
[3] to find more details on the optimality conditions. Thus,
elements are only stored in the intermediate result if they
contribute to the final result. Thismeans that, the intermediate
result can be enumerated in linear time O(|Output|) where
Output is the number of matched elements. However, in the
case where P-C axes connect internal query nodes, linear
performance for output enumeration can be achieved by per-
forming a strict subtree filtering (i.e., cleaning intermediate
result lists bottom-up in the query, by overwriting elements
not satisfying subtree matches), but the algorithms can not
guarantee optimal evaluation. To put it another way, they can
provide optimal enumeration (i.e., all elements in internal
lists must be part of the final result). Consequently, the worst-
case I/O and CPU time complexity is linear with respect to
the sum of the input list sizes and the size of the output result.
For example, to demonstrate the difference between optimal
evaluation and enumeration, TwigPrime in Figure 10a guar-
antees optimal evaluation while TJStrictPre and GTPStack
of Figure 10b provides optimal enumeration by performing
extra passes over the intermediate lists. The space complexity
of the new approaches is O(|Intput|) which is linear with
respect to the total number of elements whose tags appear in
TPQs. This is because they construct the intermediate results
directly. However, when the new algorithms are optimal,
the �(u) lower bound is matched, where u is the total num-
ber of elements to which query nodes can be matched (i.e.,
optimal evaluation) [19], [39]. However, an early enumera-
tion approach introduced in [12] can significantly reduce the
intermediate storage size necessary. The early enumeration
starts when the incoming element corresponding to the first
branching query node does not have a relevant ancestor in the
corresponding intermediate list or stack of the first branching
query node.

V. EXPERIMENTAL EVALUATION
This section describes experiments that explore the effects
of the CPL approach, different advanced preorder filtering
strategies and different intermediate storage approaches in

VOLUME 8, 2020 192579

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

FIGURE 10. One-phased algorithms and their corresponding intermediate
storages for processing Q2 against T3 in Figure 9.

TABLE 2. Characteristics of the experimental datasets.

TABLE 3. Zipf TPQ templates for XPath expressions.

bottom-up holistic twig matching algorithms. It compares the
performance of the new bottom-up twigmatching algorithms,
namely TwigPrime, TwigPrimePart, TwigPrimeMatch,
TJStrictPrePrime, TJSTrictPostPrime and GTPStackPrime
against state-of-the-art holistic algorithms: TwigList [38],
TwigFast [29], TJStrictPre [20], TJStrictPost [20] and GTP-
Stack [7], across a variety of significantly different XML
datasets. To improve the efficiency of the output enumeration,
TwigList and TwigFast include the strategy of next sibling
links introduced in [38]. With the exception of TwigList and
TwigFast, the algorithms in the experiments are implemented,
by default, to use the level split approach except those

labelled with the ‘‘_’’ as suffix to indicate intermediate results
are stored in simple lists (e.g., TwigPrime_). When Twig-
Prime, TwigPrimePart, TwigPrimeMatch TJStrictPrePrime,
TJSTrictPostPrime and GTPStackPrime use the simple list
approach, they apply next sibling links. TwigPrime_N, Twig-
PrimePart_N and TwigPrimeMatch_N stand for TwigPrime,
TwigPrimePart and TwigPrimeMatch which use the simple
list approach and the strategy of next sibling links. Through-
out this section, the term ‘‘CPL’’ refers to bottom-up holistic
algorithms based on the CPL approach combined with the
level split, while the term ‘‘CPL_’’ refers to bottom-up holis-
tic algorithms based on the CPL and simple list approaches.
As a result, the ‘‘CPL’’ includes TwigPrime, TwigPrimePart,
TwigPrimeMatch, TJStrictPrePrime, TJSTrictPostPrime and
GTPStackPrime algorithms. The ‘‘CPL_’’ refers to the set
of algorithms including TwigPrime_, TwigPrimePart_ Twig-
PrimeMatch_, TJStrictPrePrime_, TJSTrictPostPrime_. Note
that the CPL approaches are used to denote bottom-up twig
matching algorithms using the CPL relationship introduced in
[3] regardless the approach used to store intermediate results.
Versions of algorithms are implemented as new algorithms
to make sure the overhead of the complex methods does not
affect the simpler ones.1

A. XML DATASETS AND QUERIES
The algorithms were tested using five datasets with a variety
of characteristics and sizes, these collections are commonly
used in many approaches [7], [20], [29]; DBLP, XMark,
TreeBank, Random and Zipf. Table 2 shows the datasets used
in the experiments and their properties. They were deliber-
ately chosen to test the algorithms as thoroughly as possible.
DBLP is highly structured and is very wide and shallow,
while TreeBank is a deep-recursive dataset with a very many
distinct tags and an irregular structure. The XMark dataset is
well-known benchmark XML dataset which can be generated
with the factor f to control the size: we used f = 1. We also
generated two synthetic datasets called Random and Zipf.
The Random dataset contains six tags and has maximum
depth sets to 13 and fan-out ranging from 0 to 6. The Zipf
dataset was generated using the Zipfian distribution to spread
the node labels within the dataset. In this article, the Zipf
dataset contains seven different labels from a to g, where a
is the most common (≈38.55%) and g the least ((≈0.055%).
Queries for DBLP, XMark, TreeBank and Random datasets
are similar to those used in the experiments of [3]. The
XML structured queries for evaluation over the Zipf dataset
were generated using five query templates shown in Table 3.
Templates specify relationships between query nodes. For
each template, ten TPQs were randomly generated such that
α, β, χ, δ ∈ {a, b, d, g} and ε, η, γ ∈ {a, b, c, d, e, f , g}.
In order to illustrate the difference between the algorithms
clearly and make the experiment more comprehensive, ten

1All the algorithms were implemented in Java JDK 1.8. The experiments
were performed on 2.9 GHz Intel Core i5 with 8GB RAM running in Mac
OS X El Capitan.

192580 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

recursive TPQswere generated abased on the template t5. The
complete list of the TPQs can be found in Table 4.

B. METRICS
Our experiments compared two variables for each TPQ. The
comparisonwas based on twometrics; storage and processing
time. The storage measure is simply the number of elements
stored in the intermediate storage. The running time is more
complicated. It is the running time (in milliseconds) of the
whole TPQ including filtering and listing the results. All
TPQs were executed 103 times, with the timing for the first
three runs excluded to avoid cold cache issues. The I/O cost
for tag indexing files for the set of algorithms in ‘‘CPL’’ and
‘‘CPL_’’ was not included because it is negligible, and the
cost of reading the tag indexing is constant over the TPQs for
each dataset [3] because it only needs to be read once for a
set of TPQs over a particular dataset.

C. EXPERIMENTAL RESULTS
The experimental results are very similar over the five
datasets so, in this article, we focus on the results from the
TreeBank dataset because it is the most complex XML doc-
ument from most aspects of query processing [6], [35] even
though it is not the largest in our experiments. This means that
the suboptimal evaluation of the existing approaches can be
demonstrated here most clearly. This is shown in Figure 11.
This dataset also demonstrates the effectiveness of the CPL
filtering strategy in bottom-up approaches.

1) INTERMEDIATE STORAGE
The most significant attribute, with regard to efficiency,
of any of the holistic twig matching algorithms is the inter-
mediate storage size. The intermediate result size for each
algorithm was evaluated by computing a ratio of the number
of elements stored by each algorithm and the number of
relevant elements for each collection. A ratio of 1, indicates
the algorithm was optimal for all queries tested because no
unnecessary results were stored. Beyond that, the smaller the
ratio the better, since this shows how successful the algorithm
was in filtering out irrelevant elements. As shown in Table 5,
the ‘‘CPL’’ and ‘‘CPL_’’ approaches failed to provide optimal
evaluation for TQ2, TQ5, TQ8 and TQ11 because useless ele-
ments were stored but they stored several orders of magnitude
fewer elements than the comparable algorithms. This result
may be explained by the fact that the ‘‘CPL’’ and ‘‘CPL_’’
approaches use the CPL information to eliminate irrelevant
elements from the parent streams, but due to the restricted
access mechanism, they may store useless elements as they
consider only the CPL relationship between two streams
while processing TPQs in bottom-up (i.e., elements are for-
warded to contain their descendants). As a result, when there
are P-C edges between internal query nodes, many useless
elements can be removed from the streams safely (e.g., TQ11).
For TQ6, the ‘‘CPL’’ and ‘‘CPL_’’ approaches performed
efficiently by storing only useful elements of 16 062, whereas
the number of elements stored in the state-of-the-art algo-

rithms (i.e., TJStrictPre and GPTStack) was between 374 370
for the level split approaches and 563 741 for the simple
list approaches. On the other hand, TwigList and TwigFast
built up the intermediate storage with 770 052 and 669 312
elements in order to evaluate TQ6, respectively.
Figure 11 provides a summary of an analysis of the experi-

mental results. To avoid extreme value differences in storage
ratio, experimental results of TwigList regarding the number
of elements stored in the intermediate storage are not included
in the illustrative graphs since the remaining algorithms use
an improved version of TwigList. However, TwigList has
storage ratios 577.95 for DBLP, 6.34 for XMark, 34.42 for
TreeBank and 65 for Random. It can be seen from the data
in this figure that the CPL algorithms significantly outper-
formed other methods. An almost optimal evaluation was
achieved in complex datasets with many recursions in the
structure (e.g., Treebank, Random and Zipf datasets) and
an optimal evaluation was achieved for relatively structured
XML collections with a lot of repetitive subtrees (e.g., DBLP
and XMark datasets).

2) PROCESSING TIME
Processing time has also been improved but to make the
evaluation easier a ratio showing the improvement of all algo-
rithm pairs for all TPQs over each dataset in the experiments
has been used to demonstrate the scale of this improvement.
The improved ratio (IR) of algorithm A over algorithm B for
a set of queries issued over an XML dataset can be computed
using Formula 2 [7], [28], where TA and TB are the median
running times for algorithms A and B, respectively.

IRA,B =
TB − TA
TB

(2)

The ‘‘CPL’’ and ‘‘CPL_’’ approaches significantly outper-
formed the other algorithms tested with respect to processing
time. Eleven different versions of the new approaches are all
noticeably faster than the other algorithms, and the combina-
tion of TwigPrime and the getMatch() function using the sim-
ple list approach showed a better performance than the other
combinations of TwigPrime (i.e., TwigPrimeMatch_). The
reason for this is the use of the CPL approach to filter useless
elements and the getMatch() to avoid redundant computa-
tions. When the new algorithm TwigPrime uses the level split
approach, the getPart() function has the best performance of
all. This is can be attributed to the use of an additional vector
which stores one extra value for each query node to check
the latest ancestors that form a weak full match for the entire
TPQ in getPart(). The alternative, getMatch() has to check
several tails and ancestors to determine whether an element
is useful or not. Figure 12 shows results for running TQ6 with
cost divided into two phases, GTPStack algorithm is excluded
because it is almost 382 slower than the fastest algorithm.
The CPL filtering minimises the cost of constructing inter-
mediate results because the size is reduced, and the cost of
enumerating results because unnecessary traversal is avoided.
Note that TQ6 is the most expensive query in the experiments,

VOLUME 8, 2020 192581

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

TABLE 4. Experimental TPQs.

TABLE 5. Ratio of the number of elements stored in intermediate storage and the number of relevant elements for each query.

it touches a very high proportion of the document and has
a great many query results. It was chosen because it shows
the effects of the CPL approach. For TQ6, only the ‘‘CPL’’
and ‘‘CPL_’’ algorithms can provide optimal evaluation and
hence the reduction in the CPU cost of the algorithms.

Figure 13 shows the summary of the results for this exper-
iment on DBLP. Overall, these results show that the CPL_
approaches (i.e., TJStrictPostPrime_, TwigPrimeMatch_N
and TwigPrimePart_) provided an efficient solution and
improved the overall performance. The results obtained

from the experiments on XMark, TreeBank and Random
datasets can be compared in Figure 14. For example, on the
XMark dataset, the improvement of TwigPrimeMatch_N
over TJStrictPre and GPTStack is more than 11% and
72%, respectively. Interestingly, the improvement of Twig-
PrimeMatch_N was on the TreeBank dataset, over TJStrict-
Pre and GPTStack was observed to be more than 73% and
98%, respectively.

The Zipf collection and queries were included to gain
an insight into the advantages and disadvantages of using

192582 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

FIGURE 11. Ratio of the number of elements stored in intermediate storage and the number of relevant elements for each dataset. The y-intercepts
equal 1 indicating the optimal approach.

FIGURE 12. Running TQ6 on TreeBank dataset. Cost divided into constructing intermediate results (TQ6_const) and
result enumeration (TQ6 _enum).

combinations of the CPL approach, different preorder fil-
tering functions (i.e., getNext(), getPart() and getMatch())
and level split intermediate results. In order to do a sensible
comparison only algorithms using the level split approach
to build the intermediate storage and storing elements in
preorder were compared. Approaches which store elements
in postorder in the intermediate storage, such as TJStrictPost
and TJStrictPostPrime, were not included in the performance
comparison because they output the result tuples unordered,
hence they are not directly comparable. One of the properties
of the Zipf dataset is that every element has exactly two
children and the longest path in the document is 26. Figure 13
provides the experimental data on Zipf dataset. From this
data, we can see that the use of the CPL approach improved

the existing TJStrictPre by 52%. Moreover, the improvement
of the winning algorithm, i.e., TJStrictPrePrime,

Closer inspection of Figures 13 and 14 shows that GPT-
Stack and GPTStackPrime have their performance degraded
because of the use of linked lists as the main data structure
to store intermediate results. This affects the enumeration
performance when A-D relationships exist in TPQs issued
over datasets with high repetitive structures such as TreeBank
dataset as descendants may overlap, see Figure 12.

3) SUMMARY
The experimental results described above have shown that the
CPL approach can filter out irrelevant elements effectively
mostly without any overhead. The number of elements stored

VOLUME 8, 2020 192583

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

FIGURE 13. The IR of TJStrictPostPrime_ compared to all approaches tested for all queries on DBLP and The IR of
TJStrictPrePrime compared to all approaches tested for all queries on Zipf.

FIGURE 14. The IR of TwigPrimeMatch_N compared to all algorithms tested for all queries on XMark, TreeBank and
Random.

by the new algorithms (i.e., ‘‘CPL’’ and ‘‘CPL_’’) is always
fewer than that stored by the other up-to-date approaches.
In most cases the algorithms proposed have a far better per-
formance than state-of-the-art algorithms. This is because the
CPL approach can filter out many useless elements before
storing them in the intermediate storage, thus the overall
running time is decreased. Surprisingly, the use of simple
list to store intermediate results was found to outperform
the utilization of the level split technique for all the pro-
posed approaches. This must be because the CPL filtering
minimises the cost of building intermediate results because
their results are smaller and the cost of enumerating results

because redundant traversal is avoided. The outcomes of
the experiments appear to support the assumption that using
of the same advanced preorder filtering function and the
same design of algorithm (e.g., pointers, local stacks with
references and level split technique) for all TPQs is not
always the best approach. In all cases, however, the algo-
rithms based on the CPL_ and CPL approaches significantly
outperformed the other-related algorithms in the experiments.
The improvement of the new approaches over state-of-the-art
algorithms on common benchmarks such as DBLP, XMark
and TreeBank datasets reaches 20%, 72% and 98%, respec-
tively.

192584 VOLUME 8, 2020

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

VI. CONCLUSION
In this article, we have presented new approaches that use
the CPL indexing to improve filtering phase of bottom-up
twig matching algorithms. We also introduced a novel design
of algorithm which uses the level split approach along with
the CPL technique thus avoiding stacks. We have performed
experiments that compare our technique with the fastest pre-
vious solutions: GTPStack, TJStrictPre, TJStrictPost, Twig-
Fast and TwigList. For common benchmark queries our new
CPL algorithms are more than an order of magnitude faster
than the other related methods. In terms of space consump-
tion, the new algorithms can filter out many irrelevant ele-
ments effectively and it can be observed that the number of
elements stored by the algorithms is significantly fewer than
that stored by the existing approaches. However, there is still
room for improvement.

In future work we would like to combine the algorithms
proposed with previous orthogonal approaches such as use-
less elements skipping [17], [24], [24], refined partitioning
[8], [11], virtual streams [27] and content search [44], [45].
Since the study was limited to holistic algorithms which do
not use structural summaries, it was not possible to evaluate
the performance of the CPL approaches with methods which
combine structural summaries and node labelling schemes.

Lastly, it would be interesting to address general subclass
of TPQs rather than A-D and P-C edges. Further work also
needs to be done to investigate the behaviour of the CPL
approachwhen processing logical expressions and in support-
ing the GTP semantics.

REFERENCES
[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and

Y. Wu, ‘‘Structural joins: A primitive for efficient XML query pattern
matching,’’ in Proc. 18th Int. Conf. Data Eng., 2002, pp. 141–152.

[2] S. A. Aghili, L. Hua-Gang, D. Agrawal, and A. El Abbadi, ‘‘TWIX: Twig
structure and content matching of selective queries using,’’ in Proc. 1st Int.
Conf. InfoScale, 2006, p. 42.

[3] S. Alsubai and S. North, ‘‘TwigstackPrime: A novel twig join algorithm
based on prime numbers,’’ in Web Information Systems and Technologies,
T. A.Majchrzak, P. Traverso, K.-H. Krempels, and V.Monfort, Eds. Cham,
Switzerland: Springer, 2018, pp. 1–20.

[4] R. Bača and M. Krátký, ‘‘On the efficiency of a prefix path holistic,’’
in Proc. 6th Int. XML Database Symp. Database XML Technol. (XSym),
no. 201, Z. Bellahsène, E. Hunt,M. Rys, and R. Unland, Eds. Lyon, France,
Berlin, Germany: Springer, Aug. 2009, pp. 25–32.

[5] R. Bača and M. Krátký, ‘‘XML query processing,’’ in Proc. 16th Int.
Database Eng. Appl. Symp. (IDEAS), 2012, pp. 8–13.

[6] R. Bača, M. Krátký, I. Holubová, M. Nečaský, T. Skopal, M. Svoboda, and
S. Sakr, ‘‘Structural XML query processing,’’ ACMComput. Surv., vol. 50,
no. 5, pp. 1–41, 2017.

[7] R. Bača, M. Krátký, T. W. Ling, and J. Lu, ‘‘Optimal and efficient gener-
alized twig pattern processing: A combination of preorder and postorder
filterings,’’ VLDB J., vol. 22, no. 3, pp. 369–393, Oct. 2012.

[8] R. Bača, M. Krátký, and V. Snášel, ‘‘On the efficient search of an XML
twig query in large dataguide trees,’’ in Proc. Int. Symp. Database Eng.
Appl. (IDEAS), New York, NY, USA, 2008, pp. 149–158.

[9] R. Bača, J. Walder, M. Pawlas, and M. Krátký, ‘‘Benchmarking the
compression of XML node streams,’’ in Database Systems for Advanced
Applications. DASFAA (Lecture Notes in Computer Science), vol. 6193,
M. Yoshikawa, X. Meng, T. Yumoto, Q. Ma, L. Sun, and C. Watanabe,
Eds. Berlin, Germany: Springer, 2010.

[10] N. Bruno, N. Koudas, and D. Srivastava, ‘‘Holistic twig joins: Optimal
XML pattern matching,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
Madison, WI, USA, 2002, pp. 310–321.

[11] B. Chen, T. W. Ling, M. T. Ozsu, and Z. Zhu, ‘‘On label stream partition
for efficient holistic,’’ in Proc. 12th Int. Conf. Database Syst. Adv. Appl.
(DASFAA), Bangkok, Thailand, 2007, pp. 807–818.

[12] S. Chen, H.-G. Li, J. Tatemura, W.-P. Hsiung, D. Agrawal, K. Sel,
U. Candan, and K. S. Candan, ‘‘Twig2Stack: Bottom-up processing of
generalized-tree-pattern queries over XML documents,’’ in Proc. 32nd Int.
Conf. Very Large Data Bases, Seoul, Sounth Korea, 2006, pp. 283–294.

[13] T. Chen, J. Lu, and T. W. Ling, ‘‘On boosting holism in XML twig pattern
matching using structural indexing techniques,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data (SIGMOD), 2005, pp. 455–466.

[14] Z. Chen, H. V. Jagadish, L. V. S. Lakshmanan, and S. Paparizos, ‘‘From tree
patterns to generalized tree patterns: On efficient evaluation of XQuery,’’
in Proc. VLDB, 2003, pp. 237–248.

[15] B. Choi, M. Mahoui, and D. Wood, ‘‘On the optimality of holistic algo-
rithms for twig queries,’’ in Proc. Database Expert Syst. Appl. 14th Int.
Conf. (DEXA), Prague, Czech Republic, Sep. 2003, pp. 28–37.

[16] D. Che, T. W. Ling, and W.-C. Hou, ‘‘Holistic Boolean-twig pattern
matching for efficient XML query processing,’’ IEEE Trans. Knowl. Data
Eng., vol. 24, no. 11, pp. 2008–2024, Nov. 2012.

[17] M. Fontoura, V. Josifovski, E. Shekita, and B. Yang, ‘‘Optimizing cursor
movement in holistic twig joins,’’ in Proc. 14th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), 2005, pp. 784–791.

[18] G. Gou and R. Chirkova, ‘‘Efficiently querying large XML data repos-
itories: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 19, no. 10,
pp. 1381–1403, Oct. 2007.

[19] N. Grimsmo and T. A. Bjørklund, ‘‘Towards unifying advances in twig join
algorithms,’’ in Proc. 21st Australas. Conf. Database Technol., vol. 104,
2010, pp. 57–66.

[20] N. Grimsmo, T. A. Bjørklund, and M. L. Hetland, ‘‘Fast optimal twig
joins,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 894–905, Sep. 2010.

[21] M. Hachicha and J. Darmont, ‘‘A survey of XML tree patterns,’’ IEEE
Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 29–46, Jan. 2013.

[22] S.-C. Haw and C.-S. Lee, ‘‘Data storage practices and query process-
ing in XML databases: A survey,’’ Knowl.-Based Syst., vol. 24, no. 8,
pp. 1317–1340, Dec. 2011.

[23] H. Jiang, W.Wang, H. Lu, and J. Yu, ‘‘Holistic twig joins on indexed XML
documents,’’ in Proc. 29th Int. Conf. Very Large Data Bases, vol. 29, 2003,
pp. 273–284.

[24] H. Jiang, H. Lu, W. Wang, and B. C. Ooi, ‘‘XR-tree: Indexing XML data
for efficient structural joins,’’ in Proc. 19th Int. Conf. Data Eng., 2003,
pp. 253–264.

[25] Z. Jiang, C. Luo, and W.-C. Hou, ‘‘An efficient one-phase holistic twig
join algorithm for XML data,’’ in Proc. 15th ACM Int. Conf. Inf. Knowl.
Manage., Arlington, VA, USA, 2006, pp. 786–787.

[26] Z. Jiang, C. Luo, W.-C. Hou, Q. Zhu, and D. Che, ‘‘Efficient processing of
XML twig pattern: A novel one-phase holistic solution,’’ inProc. Database
Expert Syst. Appl. 18th Int. Conf. (DEXA), Regensburg, Germany, Berlin,
Germany: Springer, Sep. 2007, pp. 87–97.

[27] S. Lee, B.-G. Ryu, and K.-L. Wu, ‘‘Examining the impact of data-access
cost on XML twig pattern matching,’’ Inf. Sci., vol. 203, pp. 24–43,
Oct. 2012.

[28] G. Li, J. Feng, Y. Zhang, and L. Zhou, ‘‘Efficient holistic twig joins in leaf-
to-root combiningwith root-to-leaf way,’’ inProc. 12th Int. Conf. Database
Syst. Adv. Appl. (DASFAA), Bangkok, Thailand, vol. 1, R. Kotagiri,
P. R. Krishna, M. Mohania, E. Nantajeewarawat, Eds. 2007, pp. 834–849.

[29] J. Li and J. Wang, ‘‘Fast matching of twig patterns,’’ in Database and
Expert Systems Applications. DEXA (Lecture Notes in Computer Science),
vol. 5181, S. S. Bhowmick, J. Küng, and R.Wagner, Eds. Berlin, Germany:
Springer, 2008.

[30] J. Li and J. Wang, ‘‘TwigBuffer: Avoiding useless intermediate,’’ in Proc.
13th Int. Conf. Database Syst. Adv. Appl. (DASFAA), New Delhi, India,
J. R. Haritsa, R. Kotagiri, V. Pudi, Eds. Berlin, Germany: Springer,
Mar. 2008, pp. 1–8.

[31] G. Liu, M. Yao, D. Wang, and E. Chen, ‘‘A novel three-phase XML
twig pattern matching algorithm based on version tree,’’ in Proc.
8th Int. Conf. Fuzzy Syst. Knowl. Discovery (FSKD), vol. 3, 2011,
pp. 1678–1688.

[32] J. Lu, T. Chen, and T. W. T. Ling, ‘‘Efficient processing of XML twig
patterns with parent child edges: A look-ahead approach,’’ in Proc. 13th
ACM Int. Conf. Inf. Knowl. Manage., Washington, DC, USA, 2004,
pp. 533–542.

[33] J. Lu, T. W. Ling, Z. Bao, and C. Wang, ‘‘Extended XML tree pattern
matching: Theories and algorithms,’’ IEEE Trans. Knowl. Data Eng.,
vol. 23, no. 3, pp. 402–416, Mar. 2011.

VOLUME 8, 2020 192585

S. Alsubai, S. North: Solving the Intractable Problem: Optimal Performance for Worst Case Scenarios in XML TPM

[34] J. Lu, T. W. Ling, T. Yu, C. Li, and W. Ni, ‘‘Efficient processing of
ordered XML twig pattern,’’ in Proc. 16th Int. Conf. Database Expert
Syst. Appl. (DEXA), Copenhagen, Denmark, K. V. Andersen, J. Debenham,
R. Wagner, Eds. Berlin, Germany: Springer, Aug. 2005, pp. 300–309.

[35] J. Lu, X. Meng, and T. W. Ling, ‘‘Indexing and querying XML using
extended dewey labeling scheme,’’ Data Knowl. Eng., vol. 70, no. 1,
pp. 35–59, Jan. 2011.

[36] P. Lukas, R. Bača, and M. Krátký, ‘‘Cooking Lightweight XML query
processor with binary joins and comparing it with holistic joins: Techni-
cal report,’’ Comput. Res. Repository (CoRR), vol. abs/1703.0, pp. 1–24,
Mar. 2017.

[37] C. Mathis, T. Härder, K. Schmidt, and S. Bächle, ‘‘XML indexing and
storage: Fulfilling the wish list,’’Comput. Sci. Res. Develop., vol. 30, no. 1,
pp. 51–68, 2012.

[38] L. Qin, J. X. Yu, and B. Ding, ‘‘TwigList: Make twig pattern match-
ing fast,’’ in Proc. 12th Int. Conf. Database Syst. Adv. Appl. (DASFAA),
R. Kotagiri, P. R. Krishna, M. Mohania, and E. Nantajeewarawat, Eds.
Bangkok, Thailand, Berlin, Germany: Springer, 2007, pp. 850–862.

[39] M. Shalem and Z. Bar-Yossef, ‘‘The space complexity of processing XML
twig queries over indexed documents,’’ in Proc. IEEE 24th Int. Conf. Data
Eng., Apr. 2008, pp. 824–832.

[40] M. A. Tahraoui, K. Pinel-Sauvagnat, C. Laitang, M. Boughanem,
H. Kheddouci, and L. Ning, ‘‘A survey on tree matching and XML
retrieval,’’ Comput. Sci. Rev., vol. 8, pp. 1–23, May 2013.

[41] XML Path Language (XPath), 2.0 2nd ed., W3C, Cambridge, MA, USA,
2010.

[42] XQuery 3.0: An XML Query Language, W3C, Cambridge, MA, USA,
2014.

[43] H. Wu, C. Lin, T. W. Ling, and J. Lu, ‘‘Processing XML twig pattern
query with wildcards,’’ in Database and Expert Systems Applications.
DEXA (Lecture Notes in Computer Science), vol. 7446, S. W. Liddle,
K. D. Schewe, A. M. Tjoa, and X. Zhou, Eds. Berlin, Germany: Springer,
2012.

[44] H. Wu, T. W. Ling, B. Chen, and L. Xu, ‘‘TwigTable: Using semantics
in XML twig pattern query processing,’’ in Journal on Data Semantics
XV (Lecture Notes in Computer Science), vol. 6720, S. Spaccapietra, Ed.
Berlin, Germany: Springer, 2011.

[45] H.Wu, T.W. Ling, and G. Dobbie, ‘‘TP+output:Modeling complex output
information in XML twig pattern query,’’ in Proc. 7th Int. XML Database
Symp. (XSym), Singapore, 2010, pp. 128–143.

[46] X. Wu, M. L. Lee, and W. Hsu, ‘‘A prime number labeling scheme for
dynamic ordered XML trees,’’ in Proc. 20th Int. Conf. Data Eng., 2004,
pp. 66–78, doi: 10.1109/ICDE.2004.1319985.

[47] X. Xu, Y. Feng, and F. Wang, ‘‘Efficient processing of XML twig queries
with all predicates,’’ in Proc. 8th IEEE/ACIS Int. Conf. Comput. Inf. Sci.
(ICIS), Jun. 2009, pp. 457–462.

[48] T. Yu, T. W. Ling, and J. Lu, ‘‘TwigStackList¬: A holistic twig
join algorithm for twig query with not-predicates on XML data,’’ in
Database Systems for Advanced Applications, vol. 3882, M. L. Lee,
K.-L. Tan, and V. Wuwongse, Eds. Berlin, Germany: Springer, 2006,
pp. 249–263.

[49] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, ‘‘On sup-
porting containment queries in relational database management systems,’’
ACM SIGMOD Rec., vol. 30, no. 2, pp. 425–436, Jun. 2001.

[50] S. Alsubai, ‘‘Child prime label approaches to evaluate XML structured
queries,’’ Ph.D. dissertation, Univ. Sheffield, Sheffield, U.K., 2018.

[51] P. Michiels, G. A. Mihaila, and J. Simeon, ‘‘Put a tree pattern in
your algebra,’’ in Proc. IEEE 23rd Int. Conf. Data Eng., Apr. 2007,
pp. 246–255.

SHTWAI ALSUBAI received the bachelor’s degree
in information system from King Saud University,
Saudi Arabia, in 2008, the master’s degree in com-
puter science from CLU, USA, in 2011, and the
Ph.D. degree from The University of Sheffield,
U.K., in 2018. He is currently an Assistant Pro-
fessor in computer science. His research interests
includeXML,XMLquery processing, XMLquery
optimization, machine learning, and natural lan-
guage processing.

SIOBHÁN NORTH received the degree in math-
ematics and the Ph.D. degree in computer science
fromTheUniversity of Sheffield. She is currently a
Senior Lecturer in computer science. She currently
works in two areas such as XMLdatabases and for-
mal languages. The XML database work currently
concerns indexing and compression techniques,
and the formal language work relates to translation
between Z and SAL.

192586 VOLUME 8, 2020

http://dx.doi.org/10.1109/ICDE.2004.1319985

