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The Article Processing Charge for this Open Access work was supported by the Open Access Publication Fund of Ilmenau University of
Technology. The work presented in the paper was conducted as part of a video quality modeling competition conducted as a joint
standardization project of Study Group 12 of the International Telecommunication Union (ITU-T) and the Video Quality Experts Group
(VQEG). The work resulted in three video quality models, each specified in individual standard documents (‘‘Recommendations’’) and
developed by a different team. Here, the standard ITU-T Rec. P.1204.3 was developed by the team R. Rao, P. List, S. Göring, W. Robitza,
B. Feiten, U. Wüstenhagen and A. Raake. The standard ITU-T Rec. P.1204.4 was developed by S. Borer and S. Medagli. The standard
ITU-T Rec. P.1204.5 was developed by S. M. Satti, C. Schmidmer, T. Wittmann, M. Obermann and R. Bitto.

ABSTRACT The paper presents a series of three new video quality model standards for the assessment
of sequences of up to UHD/4K resolution. They were developed in a competition within the International
Telecommunication Union (ITU-T), Study Group 12, in collaboration with the Video Quality Experts Group
(VQEG), over a period of more than two years. A large video quality test set with a total of 26 individual
databases was created, with 13 used for training and 13 for validation and selection of the winning models.
For each database, video quality laboratory tests were run with at least 24 subjects each. The 5-point Absolute
Category Rating (ACR) scale was used for rating, calculating Mean Opinion Scores (MOS) as ground-
truth. To represent today’s commonly applied HTTP-based adaptive streaming context, the test sequences
comprise a variety of encoding settings, bitrates, resolutions and framerates for the three codecs H.264/AVC,
H.265/HEVC and VP9, applied to a wide range of source sequences of around 8 s duration. Processing
was carried out with an FFmpeg-based processing chain developed specifically for the competition, and via
upload and encoding through exemplary online streaming services. The resulting data represents the largest,
lab-test-based dataset used for video quality model development to date, with a total of around 5,000 test
sequences. The paper addresses the three models ultimately standardized in the P.1204 Recommendation
series, resulting in different model types and for different applications: (i) Rec. P.1204.3, no-reference
bitstream-based, with access to encoded bitstream information; (ii) P.1204.4, pixel-based, using information
from the reference and the processed video, and (iii) P.1204.5, no-reference hybrid, using both bitstream-
and pixel-information without knowledge of the reference. The paper outlines the development process and
provides holistic details about the statistical evaluation, test databases, model algorithms and validation
results, as well as a performance comparison with state-of-the-art models.

INDEX TERMS Bitstream, full reference, http adaptive streaming (HAS), hybrid, pixel-based, QoE, reduced
reference, video quality.
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I. INTRODUCTION
The video quality achieved with a given encoding setting
is of relevance for a variety of applications, such as video
on demand, live streaming or audiovisual communication.
For example, in services applying HTTP-based adaptive
streaming (HAS), such as Video on Demand (VoD) or live
streaming, the different video representations are typically
realized by encoding each sequence at different resolutions
and bitrates, reflecting a balance between target screen res-
olution and expected channel bandwidth (also referred to as
‘‘bitrate ladders’’), see e.g. [1]–[3]. Depending on its usage,
a video bitrate ladder reflects aspects such as the optimal
resolution and encoder setting for a given target bitrate, or the
bitrate that is needed for a given resolution to reach a certain
quality level.

For video-media services and applications, video quality
represents an important component of the users’ experience at
large, the latter typically referred to as Quality of Experience
(QoE). According to [4]–[6], QoE is ‘‘the degree of delight or
annoyance of the user of an application or service’’. During
a typical, HAS-based video streaming session, video quality
may vary due to a time-varying network bandwidth character-
ized by quality switches, initial loading delay during the fill-
ing of the playout buffer when starting streaming, or stalling
of the video playout when the buffer has run empty due to
network problems. Considerations on a more holistic view of
QoE for HAS-type or other streaming that includes long-term
integration or effects such as initial loading and stalling may
be found in [3], [7]–[19]. The present paper focusses on
video quality, as a key element for video streaming QoE.
The described models were designed for short-term video
quality assessment of videos of around 10 sec duration. The
primary focus of the models is the type of video used for HAS
(e.g. MPEG-DASH or HTTP Live Streaming). For example,
the models can be applied to analyze the quality of individual
segments of HAS-type representations. Accordingly, reliable
transport is assumed, using e.g. TCP or QUIC. It is noted
that the models presented in this paper can principally be
used also for assessing video quality for streams with unre-
liable transport, e.g. via plain UDP with RTP. Here, with the
models described in this paper, the impact due to resolution
re-scaling, framerate and encoding can be covered. Degrada-
tions due to packet loss resulting in slicing, freezing or some
catching-up accelerations of the stream are not addressed by
the models.

Due to its perceptual character, evaluating video qual-
ity ultimately requires feedback from users. Correspond-
ing data have been collected during formal laboratory or
crowd-sourcing tests [11], [12], [16], [20], [21], or were mea-
sured in terms of the viewing behaviour of users of a given
service, e.g. in terms of whether users were stopping playback
or take other actions in case of problems [13], [22]–[25].
When aiming for a sensitive assessment of encoding quality
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for high resolutions such as 4K UHD (3840 × 2160 pixels),
laboratory tests with a controlled and 4K-appropriate viewing
distance of 1.5 to 1.6 times the height of the screen (‘‘1.5H’’ or
‘‘1.6H’’) are recommended, see [26], [27]. As was shown in a
number of studies, even in laboratory tests with high-quality
screens and controlled viewing conditions that follow rec-
ommendations such as those in [27], [28], in many cases
video quality can hardly be distinguished between HD and
4K UHD resolution, specifically depending on the initial
quality of the source content used [29]–[33]. On the other
hand, test contents in video quality tests 1 often are rather
artificial and not representative of actual target applications
such as VoD or live streaming. The role of content and its
quality and representative character is discussed for example
in [12], [29], [32], [34]. As a consequence, well-designed and
well-conducted subjective tests are required, with a represen-
tative choice of contents for a valid determination of the video
quality as experienced by end users.

Running such well-conceived subjective tests requires
substantial human and material resources. Hence, for a
systematic and automatic video quality assessment that is
representative of human video quality ratings, instrumental
prediction, that is, ‘‘objective’’ models are needed. Here,
the suitability of a given model not only depends on the
required prediction accuracy, but also on the targeted appli-
cation and thus model input information and processing
resources available. With a well designed and validated video
quality model, a variety of applications may benefit, such
as the aforementioned encoding-related bitrate ladder deriva-
tion, or a holistic streaming-service or network monitoring,
as discussed further in Section VII.

Four basic categories of video quality models can be dis-
tinguished (see also [10], [35], [36]):

1) Metadata-based
2) Bitstream-based
3) Pixel-based
4) Hybrid

Metadata-based quality models (1) use information from the
metadata layer such as the video codec used, image reso-
lution, framerate and bitrate, which may be available from
player logs or during the planning of a service. Metadata-
based models can also be seen as lightweight variants of bit-
stream models that analyze only the metadata portion of the
bitstream. An example is ITU-T Rec. P.1203.1,2 ‘‘Mode 0’’
[37], [38]. Bitstream-based video quality models analyze
the encoded video bitstream without decoding and do not
require access to the original bitstream of the source signal.

1In the state-of-the-art literature, quality tests with human subjects are typ-
ically referred to as ‘‘subjective tests’’, and instrumental quality-prediction
models as ‘‘objective models’’. This terminology is also adopted in this
paper, in spite of some limitations.

2It is noted that the models described in ITU-T Rec. P.1203.1 [37] only
provide a per-one-second video quality estimation on the 5-point ACR scale
(MOS). In the absence of other degradations such as quality-switches due to
changes in the representation, stalling or initial loading delay, a video quality
estimate for short sequences of around 10 sec duration can principally be
obtained e.g. by simple averaging of the per-one-second scores over time.
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Examples are ITU-TRec. P.1203.1 (Modes 1 and 3) [37], [38]
for HAS-type streaming over TCP or QUIC, or P.1201.2 for
IPTV over UDP that may show effects of packet loss [39]–
[41]. Also ITU-T Rec. P.1204.3, which is addressed in the
present paper as one of the three models, is an example of a
bitstream-based model, with open-source software available
from [42]. Further examples of bitstream-based models can
be found in [10] and in Section II.

Pixel-based video quality models analyze the decoded
frames of the video. Different variants can be distinguished:
• Full Reference (FR) models, which derive quality esti-
mates from a comparison of the original content with
the decoded, processed sequence under test. Exam-
ples range from Peak Signal-to-Noise Ratio (PSNR)
[36] to Structural Similarity (SSIM) Index [43] and
models such as VideoMulti-Method Assessment Fusion
(VMAF) [44] and several ITU recommendations, such
as J.144 [45], J.247 [46], J.341 [47] – see Section II.

• Reduced Reference (RR) models, where ‘‘reduced’’
representations of the reference and the sequence to
be evaluated are used. The new standard ITU-T Rec.
P.1204.4 presented in this paper is a reduced-reference
model. As was shown during the development of this
standard, quality-prediction performance of this model
is as good as with an FR-version of the same algo-
rithm. Hence, in the remainder of this paper, P.1204.4 is
referred to as ‘‘RR/FR’’. Further examples are men-
tioned in Section II.

• No Reference (NR) models, where the evaluation is
performed without access to the reference content. Cur-
rently, no purely pixel-based NR model is known to
provide sufficiently good prediction accuracy that could
enable its usage in practical applications. In principle,
both the bitstream-based and the hybrid video quality
models presented in this paper are of the NR-type. More
information on NR models is provided in Section II
and [10].

Hybrid models are based on an evaluation of pixel infor-
mation and additional bitstream or metadata information,
as with the new standard ITU-T Rec. P.1204.5 presented in
this paper. Further state-of-the-art hybrid models are outlined
to in Section II.

The paper presents the results of a so far unique cam-
paign to video quality model development: For the first time,
bitstream-, pixel-based and hybrid models were developed,
trained and validated on a large common subjective test
dataset consisting of a total of 26 individual video quality
tests, each with at least 24 subjects. The work on develop-
ing the video quality models was conducted in collabora-
tion between Study Group 12 (SG12) of the International
Telecommunication Union (ITU-T) and the Video Quality
Experts Group (VQEG), referred to as the ‘‘P.NATS Phase
2’’ project. It followed up on the previous standardization
project ‘‘P.NATS Phase 1’’ run in ITU-T SG12, leading to the
standards series ITU-T Rec. P.1203, P.1203.1, P.1203.2 and
P.1203.3 [37], [48]–[50].

The bitstream-based P.1203 is primarily targeted towards
prediction of the integral quality of longer video streaming
sessions between 1 min and 5 min duration, more in line
with the idea of an overall session QoE rather than sheer
video quality. The P.NATS Phase 1 model series comprises
a short-term video quality component as well, P.1203.1 (see
[37], [38]). However, so as to develop short-term video
quality models with a degree of accuracy that would allow
applications such as deriving fine-grained video-quality-
based encoding ladders, ITU-T SG12 and VQEG launched
the P.NATS Phase 2 project. While Phase 1 addressed
bitstream-based models only, for Phase 2, a wider scope was
envisaged, focusing on all relevant video quality model types
that can enable high prediction accuracy: Bitstream-based,
pixel-based (FR, RR) and hybrid.

The P.NATS Phase 2 standardization work has recently
resulted in the new standard series ITU-T Rec. P.1204
[51], consisting of the bitstream-based NR model accord-
ing to P.1204.3 [52], the pixel-based, RR/FR model ITU-T
Rec. P.1204.4 [53] and the hybrid NR model ITU-T Rec.
P.1204.5 [54].

The new P.1204models presented in this paper target video
resolutions up to 4K/UHD. They were trained and validated
for three different video codecs, H.264, HEVC/H.265 and
VP9, covering video framerates between 15 up to 60 fps, with
different model variants for video presentation on PC or TV
type screens, tablets and mobile phones. More details on the
development procedure are presented in Sections III and IV.
In light of the target 4K/UHD resolution, the ground-truth

data for model development and validation had to be based on
a rigorous subjective laboratory testing approach. A dataset
of 26 subjective video quality test databases were created for
the competition, with a total of around 5,000 test sequences,
each rated by at least 24 test subjects. Here, special emphasis
was laid on selecting appropriate source sequences, coverage
of a wide range of encoding settings, well-controlled pre-
sentation and rating conditions used in the cross-lab testing
campaigns, based on dedicated approaches for data alignment
such as common set sequences and common test conditions,
a subsequent diligent checking of the individual test datasets
with regard to subject bias and inter-rater agreement, and
corresponding outlier detection and removal.

The paper, for the first time, summarizes the model devel-
opment and standardization process in a scientific publica-
tion. The result of the according competition is a set ofmodels
applicable in a variety of contexts, enabling the choice from
three highly accurate models, for example depending on the
type of model input information that can be made available in
a given application context. Hence, besides the large underly-
ing subjective test dataset, the new P.1204 standard represents
a unique combination of all relevant models, applicable to a
wide range of encoding settings and formats. The analysis
of the model prediction given in Section VI indicates the
outstanding performance of all the three models, also in
comparison to other metrics andmodels such as PSNR, SSIM
and VMAF.
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The key contributions of the paper can be summarized as
follows:

1) Details on the ITU-T SG12 / VQEG ‘‘P.NATS Phase
2’’ standardization project are provided, including the
statistical model evaluation criteria and procedure to
determine the winning model candidates.

2) Description of the procedure to automatically generate
a set of processed sequences to be rated in the P.NATS
Phase 2 subjective tests. The procedure includes the
creation of a dedicated processing chain to realize a
variety of encodings and thus representations of video
contents. The subsequent subjective tests resulted in a
novel large proprietary subjective test database with a
total of around 5,000 test sequences each rated by at
least 24 test subjects that was established to train and
validate the different model candidates targeted with
the P.NATS Phase 2 work. The creation process and
characteristics of the database are presented in detail in
this paper for the first time. The novelty of the resulting
database lies in the coverage of the three different
codecs H.264, HEVC/H.265 and VP9, the inclusion of
different resolutions, bitrates, framerates, and encoder
settings, and the fact that all information is contained
to enable that bitstream- and pixel-based models could
be trained and validated on the same databases.

3) The resulting three different types of high-precision
video quality models of the P.1204-series are presented
in a scientific and harmonized form for the first time,
outlining key algorithmic concepts.

4) A detailed model performance analysis is presented
for the initially submitted model candidates as well as
for the finally standardized models, using the P.NATS
Phase 2 databases. Further, the performance of all mod-
els is compared to other models of similar kind, using
the P.NATS Phase 2 database as well as additional
open-source databases that enable a performance anal-
ysis across all three model types.

The paper is organized as follows: Section II provides
an overview of the state-of-the-art, considering all the three
model types addressed in this paper. The P.NATS Phase
2 competition run in collaboration between ITU-T SG12 and
the VQEG Section III, including considerations such as the
statistical model evaluation. In the subsequent Section IV,
the training and validation databases are described, with
details about source contents, processing chain and database
characteristics. Then, Section V presents algorithmic descrip-
tions of the bitstream-based (P.1204.3), pixel-based RR/FR
(P.1204.4) and hybrid NR (P.1204.5) models, using a unified
nomenclature for an aligned presentation. An in-depth model
performance analysis is provided in Section VI, with per-
formance indicators given for the initially submitted model
candidates evaluated as it was done during the competition,
performance data for the finally standardized models and a
comparison with other metrics and models such as PSNR,
SSIM, and VMAF, also including publicly available test
databases.

II. RELATED WORK
A variety of bitstream-, pixel-based and hybrid video quality
models have been reported in the literature over the past years.
In this section, we focus on analysing some of these and
present the need for novel approaches. For more compre-
hensive reviews and surveys on state-of-the-art video quality
models, the authors refer to the various works provided, for
example, by [36], [55]–[59]. A recent review of the HAS
QoE modelling literature has been provided by Barman et al.
in [10]. It primarily focusses on a more holistic modelling
of HAS QoE, including audio and video quality as well as
initial loading delay and stalling, as it can be done for example
using the standard family ITU-T P.1203 [37], [48]–[50], see
Sec. II-A. In turn, the present paper proposes new high-
performance, short-term video quality models, solving some
of the challenges mentioned in [10]. Correspondingly, this
section primarily focuses on video quality models for video
durations around 10 s.

A. BITSTREAM MODELS
Several bitstream-based no-reference models have been pro-
posed in the literature for different use cases. The proposed
models range from very simple curve-fitting-based bitstream
models to more complex machine-learning-based ones. An
earlier review of bitstream models for video quality predic-
tion is presented by Joskowicz et al. in [60]. They conclude
that the bitstream models show good results when compared
with subjective quality ratings.

A more complex Mode 3 bitstream model for H.264/AVC-
encoded videos using motion values, QP-values, frame types
etc. is proposed by Keimel et al. [61]. The study shows
good performance of this type of model, also in compar-
ison to a number of full-reference models. For the case
of IPTV (RTP/UDP or MPEG2-TS/RTP/UDP) with cod-
ing and packet-loss degradation, Raake et al. [62] and
Garcia et al. in [40] propose two evolutions of packet-header-
based bitstream-based models, for SD and HDTV resolution
with H.264-type video encoding. The resulting video quality
estimation can be integrated with audio quality [63] into an
audiovisual quality estimation [64]. The complete audiovi-
sual quality model for IPTV is standardized as ITU-T Rec.
P.1201.2 [39], [41]. A complementary approach developed
for RTP/UDP-based transmission and lower video resolu-
tions, corresponding to typical mobile phone screens around
2010, was developed by Yamagishi et al. in [65] and has been
standardized as ITU-T Rec. P.1201.1 [66]. Note that on the
way towards the HAS-related standard ITU-T Rec. P.1203,
the higher-resolution model in ITU-T Rec. P.1201.2 was
extended to streaming with reliable transport, addressing
HAS’ predecessor ‘‘progressive download’’, based on the
work presented by Hossfeld et al. and Garcia et al. in [67],
[68] and [69], respectively.

In addition to the curve-fitting-based bitstream mod-
els, several machine-learning-based approaches have been
reported in the literature. An approach based on Support
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Vector Regression (SVR) was presented in [70], applica-
ble to streaming over unreliable transport including packet
loss. Amodel based on genetic programming-based symbolic
regression was proposed by Staelens et al. in [71]. Mocanu
et al. in [72] proposed a random neural network (RNN)
no-reference bitstream model. Demirbilek et al. introduced
a set of decision trees, deep learning and genetic program-
ming based models [73]. These models were developed for
H.263 or H.264 encoded videos and for non-reliable trans-
mission, that is, including cases of packet loss and resulting
in artifacts such as slicing. Since these effects are not present
in HAS as addressed in this paper, the models are not directly
applicable here. While encoding-type degradations are natu-
rally included in these models as well, the underlying sub-
jective tests used for model development are naturally biased
towards packet-loss-type degradations. Moreover, different
resolutions and framerates are typically not considered, fur-
ther limiting the usage for today’s streaming service quality
assessment.

ITU-T Recommendation P.1203 [38], [48], [74] describes
the first standardizedQoEmodel for audiovisual HTTP-based
adaptive streaming. The recommendation is divided into three
modules, one each for audio quality [49], video quality [37]
and quality integration [50]. The quality integration module
[50] takes into account the per-one-second audio- and video
quality output provided by the corresponding audio- and
video quality modules, also considering corresponding qual-
ity switches, as well as information about the initial loading
delay and stalling events. This standard explicitly handles the
case of HAS, but is applicable only for H.264 encoded videos
of up to 1080p resolution and framerate up to 30fps. An
open-source implementation of the complete P.1203 model
set is described in [74]. As mentioned in Section I, in the
absence of quality-level switches, initial loading delay or
stalling, the per-one-second video quality scores provided
by the different bitstream-models described in ITU-T Rec.
P.1203.1 [37], [38] can be integrated by simple averaging
over time to video quality estimates for the short sequence
durations addressed in this paper of around 8 to 10 sec. To take
into account higher resolutions and framerates and also newer
codecs, Ramachandra Rao et al. [75] proposed an extension
to the the standardized P.1203 Mode 0 model. However, this
extension is only based on two subjective tests with limited
range of encoding settings.

Besides the standardized P.1203 series of models, several
models have been proposed to predict video quality for the
HAS-specific scenario [76]–[80].

In essence, although the presented models together are
applicable in a wide range of scenarios, they suffer from the
following drawbacks: (a) they were not developed to handle
the case of higher resolutions (up to 4K/UHD-1), higher
framerates (up to 60fps) and newer codecs such as MPEG-H
HEVC/H.265 and VP9; (b) if applicable to higher resolutions
and framerates and newer codecs, they are developed using a
very limited number of quality test databases. To overcome
these drawbacks, the bitstream model presented in this paper

was developed, which is now standardized as ITU-T Rec.
P.1204.3 [52]. Further details are provided in Sec. V-A.

B. PIXEL-BASED MODELS
Unlike bitstream models, pixel-based models use raw pixel
data as model input to estimate video quality. Since these
models do not require any knowledge of how the video was
encoded, these types of models are agnostic to the underlying
encoding or transmission technologies. As outlined in Sec. I,
depending on the availability of the original undistorted, ref-
erence video, Full Reference (FR), Reduced Reference (RR)
and No Reference (NR) models can be distinguished. FR
models require complete access to the reference video. These
models compute quality indicators using frame-by-frame
comparison of the reference and degraded video. Examples of
such metrics are PSNR (Peak Signal-to-Noise Ratio), SSIM
(Structural Similarity) [43], [81], Netflix’ VMAF (Video
Multimethod Assessment Fusion) [44] and several ITU rec-
ommendations, such as J.144 [45], J.247 [46], J.341 [47].

Reduced Reference (RR) models extract a fixed, reduced
set of features from the reference and from the processed
video sequence, and compare these to estimate quality. Due
to the limited access to the reference video, RR models were
in the past less accurate than the FR models. Examples of
suchmodels include the ITU-TRecommendations J.246 [82],
J.249 [83], J.342 [84]. Other examples are ST-RRED [85] and
SpEED-VQA [86]. In their default versions, these include
a higher amount of features extracted from the reference.
Further, less complex variants were described that use one
feature value per reference frame only and also show a lower
prediction performance.

No Reference (NR)Models have no access to the reference
video and use only the degraded pixel information to predict
video quality. Examples of NR models include DIIVINE,
BRISQUE, BLIINDS and NIQE [87]–[90]. In the absence
of source information, such models are usually less accurate
than the corresponding FR and RR counterparts [91], [92]. As
a consequence, purely pixel-based NRmodels are not consid-
ered further in this paper, which targets higher-accuracy video
quality models.

C. HYBRID MODELS
Hybrid models use video pixel information in combination
with bitstream information for predicting video quality. Like
pixel-based models, hybrid models can be classified into
three main categories, depending on the availability and
use of reference-video pixel information, namely, hybrid-FR,
hybrid-RR and hybrid-NR models.

The use of bitstream information helps such models to
improve prediction accuracy considerably compared to the
traditional NR models. One example of a hybrid-NR model
is the model presented by Yamagishi et al. in [93] which
was developed for estimating video quality in the IPTV sce-
nario. This model uses features derived from the received
packet headers and pixel information such as spatial and
temporal information to estimate video quality. This model
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was developed for H.264 encoded videos with resolution of
1440× 1080 and framerate of 30 fps.

Further, Osamu et al. [94] also propose a hybrid
no-reference model applicable to H.264 encoded video. This
model uses the quantization parameter (QP) as the bitstream
feature. A spatial and temporal image feature each were
developed to be used as an input to the proposed model. The
spatial image feature estimates the block distortion that is
usually encountered in block-based encoding schemes. The
temporal image feature used in the model is used to quantify
the extent of the flickering artifact and hence a ‘‘flickering
measure’’ was developed. These features were then integrated
to estimate the video quality.

A hybrid no-reference model that takes into account packet
loss rate information has been proposed by Farias et al. [95].
The model uses features to estimate blockiness and blurriness
as the pixel features that is then integrated with the packet loss
rate information for video quality estimation. Like with the
models proposed in [93] and [94], this model is applicable to
H.264 encoded videos. This necessitates the development of
models that are applicable for videos encoded with modern
video codecs such as H.265, VP9 and capable of handling
higher resolutions like UHD-1 and framerates like 60fps.

In addition to these models, the J.343-series of ITU Rec-
ommendations contains hybrid models of all types, devel-
oped to measure the perceptual video quality for HDTV and
multimedia applications. These models are applicable for
H.264 encoded videos, so similarly to ITU-TRecs P.1201 and
P.1202 address unreliable transport resulting in possible
packet-loss artifacts. These models cannot be used for res-
olutions higher than fullHD, or framerates above 30 fps. The
standardized P.1204.5 [54] model is a hybrid no-reference
model developed specifically for the case of reliable trans-
port, thus not taking into account degradations like packet
loss. In addition this model is applicable to resolutions up to
UHD-1 and framerates upto 60fps.

III. OVERVIEW OF THE COMPETITION
The video quality model development campaign was con-
ducted as a joint-venture between the ITU-T Study Group 12
(SG12), Question Q14/12 and the Audiovisual HD (AVHD)
project of VQEG,3 under the name ‘‘AVHD-AS / P.NATS
Phase 2’’, or simply ‘‘P.NATS Phase 2’’. Its predecessor,
‘‘P.NATS Phase 1’’, was finalized in late 2016 with the con-
sent of the standards series ITU-T Rec. P.1203, P.1203.1,
P.1203.2 and P.1203.3 [37], [48]–[50]. The P.1203-series
addresses metadata- and bitstream-based models to predict
integral quality scores for longer video streaming sessions
between 1min and 5min duration.With the inclusion of audio
and video quality as well as initial loading delay and stalling,
the P.1203 predictions represent holistic QoE measurements.

The P.1203 model has a modular architecture, using a
short-term (per-1-second) estimation of video (P.1203.1 [37],
[38]), and audio quality (P.1203.2 [49]) and their integration

3www.vqeg.org

with additional information on initial loading delay and
stalling into an estimate of streaming session QoE (P.1203.3
[50]). More details about the P.1203 model series and an
open-source implementation can be found in [38], [74], and
an independent evaluation in [96].

The video quality module P.1203.1 [37], [38] was devel-
oped by primarily reverse-engineering the retrospective inte-
gral quality ratings obtained from the test subjects after
watching 1 min up to 5 min long audiovisual streaming
sequences that partly included quality switches, initial load-
ing delay and stalling events. As a consequence, it was
clear to the involved parties that the video quality module
P.1203.1 itself was of sub-optimal prediction accuracy so as
to enable more precise quality estimations suitable for appli-
cations such as a highly accurate bitrate ladder derivation
or quality monitoring, or possibly a monitoring-based player
optimization.

The P.NATS Phase 2 project was run as a competition
between nine participating institutions (‘‘proponents’’) devel-
oping candidate models. A set of different competition ‘‘dis-
ciplines’’ is represented by the different types of models
that could be submitted to the competition: (i) Bitstream-
based, (ii) pixel-based, namely RR, and FR, and (iii) hybrid,
metadata- and pixel-based, NR.

During model development, the nine proponents jointly
created a set of dedicated training databases. Before submis-
sion, the proponents could train their model candidates on the
training dataset, consisting of 13 individual video quality test
databases. After model submission, a second, new validation
dataset of further 13 subjective test databases was established
by the proponents. Each proponent contributed a pre-defined,
roughly equal number of training and validation databases to
the competition, following a common test protocol. In total,
about 5,000 test sequences were rated by at least 24 test sub-
jects each (with one exception, see Section IV). The P.NATS
Phase 2 development and standardization process is outlined
in more depth in the following.

1) LIST OF ACRONYMS
The following acronyms are used in the remainder of this
paper to specify different components of the model training
and validation databases.

• SRC (Sources): This refers to the original undistorted
source material, also referred to as the reference video,
that is subjected to different encodings.

• HRC (Hypothetical Reference Circuit): The various
encoding conditions that the SRC is treated with is
referred to as the HRCs.

• PVS (Processed Video Sequence): This refers to the
encoded video that is shown to the subjects for rating
the video quality.

• P2STR: All databases related to the training stage of the
competition are identifiable with this tag.

• P2SVL: This tag is used to indicate the validation
databases.
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A. GENERAL PROCEDURE
The PNATS2/AVHDproject was conducted in 5 project parts,
namely:

1) Training database creation
2) Model training and submission
3) Validation database creation
4) Model verification/validation
5) Model merging/optimization

In the training-database creation part (1), a total of 13 train-
ing databases (5 with display on a PC-monitor, plus 4 on TV
and 4 on mobile) were created by the nine proponents. The
training part involved identifying source material, defining
the encoding conditions (also known as hypothetical ref-
erence circuits, HRCs) and subjective test conduction. The
source material for both training and validation databases
were obtained from free-sources, i.e. sources with Open CC
license and further ones available to individual proponents.

These databases were used for training the models during
the model training part (2). A period of around 4 months was
allocated for training all the proponents’ models. In total,
35 model candidates have been submitted into the differ-
ent competition categories. This paper focusses on the three
finally standardized models. Following the P.NATS Phase 2
approach of only standardizing models that provide an actual
added value in terms of prediction performance and/or model
complexity, the RR model was ultimately standardized as
ITU-T Rec. P.1204.4. The FR model developed by the same
institution as the RR model, and following a similar philos-
ophy in algorithm design, did not show a significantly better
performance than the RR variant, so that only the latter was
standardized.

Each proponent submitting models did so by uploading
a virtual machine to a dedicated ITU Telecommunication
Standardization Bureau (TSB) server, containing all their
submitted models in a runnable format.

After model submission, preparation of video sources and
creation of validation databases was carried out (3). This
separation between the training and validation-database cre-
ation was chosen so as to make sure that the validation data
was completely unknown to the models at the time of model
development and submission. During this validation part of
the competition, a total of 13 databases (number of tests
per display type: 1 PC-monitor, 8 TV, 3 mobile, 1 tablet)
were created by the contributing proponents. The resulting
subjective scores were submitted to the ITU TSB, while the
data needed to run the models and obtain predictions was
shared among all proponents.

The subjective scores were disclosed to the individual pro-
ponents during the following model verification/validation
part of the competition (4), upon request to ITU. Before
sharing the subjective scores for the validation databases,
a bug fixing of submitted models could be requested by
proponents from the rest of the group. Such bugs were typi-
cally identified after proponents had run their models on the
validation-database model input information (i.e. bitstream

and / or pixel info). Following a well-defined bug-fixing
procedure, issues such as parsing errors or obvious mistakes
which could not alter the performance of the models were
agreed upon as allowable fixes by all proponents. After a
bug fix (if any), each proponent was asked to derive the pre-
dicted scores using their submitted models on the validation
databases, without the knowledge of the subjective scores for
these databases. The produced scores were uploaded to the
ITU TSB server into dedicated folders only accessible to the
given proponent.

At a verification/validation meeting held in Stockholm in
late 2019, a verification of the submitted scores was carried
out to make sure that these were indeed produced by the
submitted models. This way, it was sought to prevent that
the model scores on the validation databases were obtained
with a model that was modified over the initially submited
version. In particular, proponents were asked to reproduce
scores under the supervision of one other proponent. The
newly produced scores had to match the earlier submitted
scores, to confirm the verification of the models.

Once all models were verified, the subjective test scores
were disclosed to all proponents by ITU TSB. The predicted
scores were then compared against the subjective test scores
to compute the model performance for each of the submitted
models. Based on the criteria described in Sec. III-B, ‘‘win-
ning groups’’ were determined for each model category.

According to the rules set out for the competition, in the
model merging/optimization phase (5), all winning models
of a certain category were to be merged and optimized to
create the finally standardized model for that category. For
all three model types presented in this paper, only one model
candiate each ended up in the corresponding winning group.
As a consequence, no model merging was required.

The model coefficients were optimized based on the
cross-validation strategy elaborated in Sec. VI. In total, 5 such
splits were created, and for each split the models were
re-optimized. Following the validation criteria laid out in
Sec. III-B, a training weight of 0.1 and validation weight
of 0.9 was used to compute the average RMSE for a given
cross-validation optimization run. The coefficients for the
model version that led to the least average RMSE were
finally reported in the corresponding ITU-T P.1204 model
standards.

B. STATISTICAL EVALUATION
This section details the procedure followed to determine the
winningmodels/groups across the different model categories.
The final statistical evaluation procedure consisted of

• Data cleaning and mapping
• Calculating performance in terms of model prediction
error per database for each submitted model

• Definition of the minimum model acceptance require-
ments

• Model performance comparison
• Selection of winning models/groups
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The following subsections describe in details each step of
the statistical evaluation process.

1) DATA CLEANING AND MAPPING
Prior to computing model performance, an inspection of the
subjective test data was performed to identify problematic
model input cases. Examples of such cases are errors in the
applied processing chain or settings, or the use of unsuitable
source sequences. Also, issues found with the subjective test
procedure were used to remove databases. In case that it
could be assumed that a whole database was affected by
non-allowable conditions, the respective database was to be
removed from validation.

A common set of PVSs was specified to help with
analysing database validity. Three SRCs of varying complex-
ity were matched with the HRCs described in Table 3. This
set could then be used to investigate, how the rank order and
absolute scores differed between labs and tests. The analysis
of these PVSs enabled to confirm that every test had a similar
quality range with both high and low quality scores.

During the analysis, one of the training databases for PC
playout, P2STR07, was found to not comply with the sub-
jective test procedure agreed upon at the beginning of the
competition (see Sec. IV), and was hence removed. This
database consisted of a total of 183 PVSs.

For all other databases, any bias between the subjec-
tive tests was removed by applying a linear mapping (per
database) to the objective scores before computing any of
the performance evaluation metrics [97]. The mapping coef-
ficients were optimized by maximizing model performance,
as discussed in the following subsection.

2) PERFORMANCE MEASURE
The models were evaluated and optimized based on one sin-
gle statistical metric, i.e., the root mean square error (RMSE),
aggregated across all databases [97]. The calculation of the
RMSE for a model v and database k can be expressed as

RMSEk,v =

√√√√ 1
Nk − 2

Nk∑
i=1

(si − ŝv,i)2, (1)

where si is the subjective score for the ith sample in the
considered test, the score ŝv,i denotes the objective score
of the model v for the ith sample, and Nk the number of
samples in the test k . The use of the subtraction by 2 in
the denominator reflects the linear mapping to the subjective
scale described in Sec. III-B1.

For the model performance comparison, both training and
validation databases were used but weighted with different
coefficients:wtraining andwvalidation for training and validation
databases, respectively:

wtraining = 0.1 and wvalidation = 0.9. (2)

The evaluation of the models was based on their perfor-
mance across all subjective experiments, included in the train-
ing (known) and validation (unknown) datasets. Therefore,

for each model v the aggregated error across all the databases
was computed as a weighted sum of the mean squared error
per database,

pv =
1
W

M∑
k=1

wk · RMSE2
k,v, (3)

where M represents the total number of (training and vali-
dation) databases, wk the weight of each database given in
(2), and RMSEk,v the root mean square error of model v for
database k . The normalization constant W is given by W =∑M

k=1 wk . A large value for pv represents poor performances,
therefore, the best model is the one achieving lowest pv value.

3) MINIMUM REQUIREMENT
As a minimum requirement for model performance, a simple
baseline model was defined as a parametrized linear mapping
of log(bitrate) to subjective MOS,

Qbaseline = a · log(bitrate+ b)+ c, (4)

where the coefficients a, b and c depend on the codec and on
the target device. Thus, the six sets of coefficients (a, b, c),
for the three codecs times the two target devices, were opti-
mized on the corresponding samples of the training data.
These coefficients were then fixed and used to determine the
performance pbaseline of the baseline model according to (3).
Model candidates with an aggregated error pv ≥ pbaseline did
not satisfy minimum requirements and were removed from
any further evaluation.

4) MODEL PERFORMANCE COMPARISON
All the models which pass the minimum requirement criteria
qualify for this step. Model performances are not compared
on absolute-RMSE basis, rather any difference in model per-
formancewas tested for statistical significance. The statistical
significance test was applied to the aggregated error pv. The
aggregated error pv is approximately χ2-distributed accord-
ing to the Welch-Satterthwaite approximation [98], with the
degrees of freedom θ calculated by

θ ≈
(
∑M

k=1 wk )
2∑M

k=1
(wk )2
θk

, (5)

where wk represents the weight of the database k given
in equation (2) and θk denotes the degrees of freedom of
RMSE2

k,v and is given by θk = Nk − 2, with Nk the number
of samples in the database k . For the aggregated error pv of
model v, the statistical significance test takes the form

tv = max
(
0,

pv
pvmin
− F(0.95, θ, θ )

)
(6)

Here, vmin denotes the model with lowest error pvmin in
the evaluation, F(0.95, θ, θ ) denotes the 0.95-quantile of the
F-distribution with θ degrees of freedom [99]. If tv = 0,
the model v is considered to be statistically equivalent to the
model vmin. In case that tv > 0, the difference in performance
between the model vmin and model v is called ‘‘statistically
significant’’, or ‘‘significant’’ for short.
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5) MODEL SELECTION PROCEDURE
The three proposed models are the result of the model selec-
tion procedure described in this section. For most model cat-
egories, multiple models were submitted to the competition.
Themodel selection procedure was used to determine the best
performing model candidate per model category.

First, all models were required to perform better than the
baseline model, Sec. III-B3. Second, for each model cate-
gory, the best model together with all statistically equivalent
performing models were determined, according to Sec. III-
B4. Third, more complex models,4 in terms of model input,
were required to perform significantly better than simpler
models. With the present paper, it is intended to provide an
overview of the competition and especially the three stan-
dardized models and their performance, omitting some of
the more fine-grained details about what other models were
submitted, etc. The interested reader can find some more
information in [100], for example.

C. RESULT OF COMPETITION
As a result of the competition, each of the three models pro-
posed in this paper, the bitstream model ITU Rec. P.1204.3,
the reduced-reference pixel-based model P.1204.4, and the
no-reference hybrid model P.1204.5 were the single best
performing model in their category. In particular, none of the
full-reference pixel-based models submitted to the competi-
tion performed significantly better than the reduced-reference
model (P.1204.4) described in this paper. As a consequence,
due to its equivalent performance, the P.1204.4 model is
referred to as reduced-/full-reference model.

IV. DATABASES CREATION
In this section, details about each step of the database cre-
ation part of the competition are provided. The database
creation stage involved content selection, HRC design,
the encoding pipeline to create the resultant processed video
sequences (PVS) and the final distribution of these PVSs into
different databases. Content selection and HRC design steps
were conducted in parallel to use the time optimally, and a
final mapping of HRCs to the content complexity was done
using a content complexity measure described later.

A. CONTENT SELECTION
The subjective tests used in the process of creating the
P.1204.3-5 recommendations were performed with SRC clips
of around 8 s duration. 4K Source footage from both openly
available internet sources and some provided to the project in
kind by proponents (Yonsei University, TU Ilmenau and Eric-
sson AB) was collected to create a large pool to draw from.
1440p Source footage was allowed for databases intended to
run on Mobile or Tablet. All these videos were individually
reviewed and screened for impairments such as shaky scenes,

4Here, complexity means that either additional sources of information are
required (e.g. a pixel-based NR model vs. a pixel-based hybrid NR model),
or referring to complexity of input information of similar type, e.g. reduced
reference vs. full reference, with FR being more complex.

regions of non-pristine picture quality etc. The Source footage
parts deemed to be of appropriate quality were then cut into
source files (SRC) according to the information specified in
the manually created Scenecut file for each corresponding
Source footage. The cutting was done with FFmpeg using the
-copy video codec option to capture the correct frames into
a new file.

Each resulting SRC was further manually reviewed by
each proponent to ensure the best content clarity and, in case
problems were identified, either a recut was performed or
the corresponding SRC was rejected. For example, SRCs
with at least a scene cut in the first and last 2 seconds were
rejected. Approval from at least three proponents was needed
to consider an SRC to be valid for being included in subjective
testing.

The collection of Source footage for validation was per-
formed only after the model submission, to ensure that pro-
ponents had no prior knowledge of the validating contents.

The selected footages encompass a vast variety of possible
contents, i.e. natural scenes, movies, dynamic scenes, anima-
tions, video games etc. 3 SRCs were used both in the training
and validation phase to generate the ‘‘common set PVSs’’
(see section IV-B). One further SRC from the training phase
was re-used in validation with different test conditions. The
number of unique footages and SRCs for both the training
and validation phases is reported in Table 1.

TABLE 1. Number of unique footages and SRC files used in the
training (TR) and validation (VL) phase, and according footage framerates
in frames per second (fps).

All SRCs were characterized in terms of spatial and tem-
poral complexity, using the spatial and temporal informa-
tion measures SI and TI, respectively, as specified in ITU-T
Rec. P.910 [28]. The mean SI and TI values per SRC used in
the training and validation tests are shown in Fig. 1.

FIGURE 1. SI-TI of all the sources used in training and validation.
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B. HRC DESIGN
In this section, details about the HRC design process and
hence test conditions are provided.

At first, the codec parameter ranges were agreed upon
among all the proponents. Since the application areas of
the models developed are wide-spread, the parameter ranges
cover the typical encoding settings used in adaptive stream-
ing applications, and extend even beyond. In Table 2, all
parameter ranges are listed that were used for the three video
encoders across all the subjective tests. Fig. 2 depicts the
bitrate ranges for each encoder.

TABLE 2. Parameter ranges for video encoders.

Framerate up-sampling and resolution upscaling, where
the encoded framerate and resolution is higher than the ref-
erence video framerate and resolution, was not part of our
test matrix. HRCs were designed using a top-down approach,
where the above parameter ranges were spanned using a
number of test conditions. Then these test conditions were
split into individual databases by making sure that each
database contained roughly equal representations of differ-
ent video codecs, encoded resolutions and framerates. The
bitrate for different encoding resolutions was randomly sam-
pled from the specified ranges. For YouTube, Bitmovin and
Vimeo encodings, defined as ‘‘online conditions’’ in Table 2,
the SRCs were uploaded to the respective service, and the
encoded video bitstreams were downloaded. For YouTube
and Vimeo, no encoding parameters were allowed to be
specified. For Bitmovin, it is possible to exactly specify

FIGURE 2. Bitrate range for each encoder–resolution pair.

the input parameters. However, it was completely unknown,
how exactly the actual video encoding was performed for
these services. All databases include 5 common HRCs. Each
common condition wasmapped to 3 common SRCs, resulting
in 15 common PVSs. The idea with this ‘‘common set’’ used
in the tests across the different labs is to find out whether all
databases were roughly aligned in terms of the resulting qual-
ity ratings and hence scale usage. The encoding parameters
for the common set are detailed in Table 3.

To account for the difference in the target resolution of the
considered display devices, namely, PC/TV andMobile (MO)
/ Tablet (TA), implicitly comprising also different subject
expectations for quality on these different device categories,
the highest and lowest anchors were adjusted accordingly.
Since the display resolution of the MO/TA category was
2560 × 1440, the highest anchor HRC was HRC0484 and
not HRC0571 as it was used for PC/TV, for which the coding
resolution is 3840 × 2160. The lowest-quality anchor for
MO/TA was chosen as HRC0001, with an encoding resolu-
tion of 426× 240 and encoding framerate of 15 fps. For the
PC/TV case, the lowest-quality anchor was HRC0115, with
an encoding resolution of 640× 360 and encoding framerate
of 24/25/30 fps, to account for typical real-life conditions and
the higher expectation of quality on these devices.

To balance SRCs in terms of content complexity, a coding-
specific complexity measure was conceived. To this aim,
CRF encoding with the H.264 codec was used, encoding all
the SRCs at a fixed CRF value of 30. The resulting bitrate
was used to categorize SRCs into four different complexity
classes. For each HRC, 2 alternative values for bitrate were
specified as low/high value. The actual bitrate of a given PVS
took into account the complexity class of the corresponding
SRC: The low value was assigned to sources with complexity
0 or 1, while high was assigned to sources with complexity
class 2 or 3.
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TABLE 3. Common HRCs for the PC-Monitor/TV case. Video codec is H.264 for all common conditions.

C. DATABASES
A total of 13 training and 13 validation databases were
created as part of the competition. Each database contains
between 180-203 PVSs, each of 7 to 9 s duration. Subjec-
tive tests were performed on four different display devices,
namely, PC-Monitors (31.5-37 inch size), TV (55-75 inch
size), Mobile (Samsung Galaxy S7, 5.1 inch) and Tablet
(10 inch size). For the PC-Monitor and TV tests, the viewing
distance was 1.5H [101], where H denotes the height of
the display. The display resolution for PC-Monitor/TV tests
was 4K/UHD-1 (3840 × 2160 pixel). For mobile and tablet
databases, the viewing distance was 5-7H [101]. All subjec-
tive tests were conducted in compliance with ITU.P910 [28].
Subjects were handed written instructions common to all test
labs, and shown training videos to provide an understanding
of the test. Each test was roughly an hour long, including
the breaks. A minimum of 24 valid subjects were required
for each test. Outlier detection was based on Pearson Corre-
lation (PCC) of individual subjects with all others, using a
threshold of 0.75 below which subjects were considered as
outliers. The details of individual databases in terms of the
number of PVSs, display type, number of subjects, average
correlation over all subjects and the average confidence inter-
val are provided in Tables 4 and 5.

TABLE 4. Training database details. (‘‘DB-ID’’: Database ID. ‘‘Display’’
used for playout. ‘‘N’’: number of subjects. Avg. correl.: Average
correlation of individual subjects with mean. ‘‘Avg. CI’’: Average
confidence interval of mean. ‘‘PVSs’’: Number of PVSs in test.).

TABLE 5. Validation database details. (‘‘DB-ID’’: Database ID. ‘‘Display’’
used for playout. ‘‘N’’: number of subjects. Avg. correl.: Average
correlation of individual subjects with mean. ‘‘Avg. CI’’: Average
confidence interval of mean. ‘‘PVSs’’: Number of PVSs in test.).

Some training PVSs were screened out due to bad content
or wrong encoding settings. The total number of training and
validation PVSs after the screening process was respectively
2464 and 2483.

D. VIDEO PROCESSING
An FFmpeg-based processing chain was developed to con-
veniently go from the selected SRCs and HRC-setting files
to the PVSs intended to be viewed in the subjective tests. To
make the processing as repeatable as possible without having
all parties to buy the same hardware, an Ubuntu 16.04 virtual
machine (VM) image was shared. This image was prepared
with a specific build of FFmpeg 3.2.2 that could handle
both 8-bit and 10-bit video for all combinations of H.264,
H.265, and VP9 encoding/decoding. It also included specific
versions for the other software and libraries necessary for
running the processing chain. The FFmpeg lossless codec
ffv1 was used as an intermediate codec for all modifications
that were not codec-specific. An overview of the Processing
Chain is shown in the flow-chart in Fig. 3.
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TABLE 6. Proportions of different parameters in validation databases.

FIGURE 3. Processing chain flowchart.

To process the set of HRC and SRC combinations that
comprise a database, a Settings file had to be created in a
pre-defined YAML format. This file contains information
about the HRCs such as encoder settings, adaptation levels
and durations, stalling duration and so on. Only codec, pixel
depth, framerate- and resolution-related parameters were part
of the HRCs in the tests for the P.NATS Phase 2 competi-
tion. No stalling or explicit bitrate adaptation was used, even

though the processing chain has the capabilities to automat-
ically produce PVSs with such degradations. The.yaml-file
also describes how these HRCs should be combined with the
available SRCs and what, if any, post-processing should be
performed to create playable video output files.

Based on these inputs, the processing chain then creates
a set of FFmpeg commands to encode, decode, add stalling
events, and, if necessary, concatenate the decoded video
sequences. These commands are put in a queue and are
processed in series or in parallel, depending on the available
hardware, to create bitstream videoSegment files, decoded
video files referred to as AVPVSs, and meta data information
files describing quality-change events, stalling events and
media frame sizes (.qchanges-files, .buff-files and .afi/.vfi-
files).5 Following this, CPVS files are generated from the
AVPVS to create a video file that is not further upscaled or
changed in any way by the display it is played on. This last
step,Display processing, is done to minimize the effect of the
different TV and PC-display brands’ proprietary upscaling
algorithms. All CPVSs intended for PC/TV were output with
a resolution of 3840 × 2160 and 60 frames per second,
while the CPVS for Mobile/Tablet were in 2560×1440 pixel
resolution with the same frame rate, matching the resolution
of the display used in each test. PC/TVCPVS used a rawvideo
or v210 codec, depending on whether it was an 8-bit or 10-
bit video. The playout software for PC/TV supported both
.mkv and .avi containers. The Mobile/Tablet player [102]
could not play out rawvideo without stuttering or frame loss,
so a very high quality H.264 setting was used instead. The
CPVS were encoded with libx264 in FFmpeg using -crf
15 -preset fast -profile:v high settings.
If a video was supposed to be processed by online services

(YouTube/Vimeo/Bitmovin), the SRC was uploaded using
SFTP or manual upload, depending on the service. Some
services did not leave any choice for different encoding
parameters, while other presented a number of quality levels.
The intended encoded video was downloaded and renamed as
a valid videoSegment file. This enabled the processing chain
to generate all the metadata, AVPVS and CPVS files even
for cases for which the encoding was not performed by the
processing chain itself.

V. MODEL DESCRIPTION
A detailed description of the three standardized mod-
els, namely, the bitstream-based NR model (ITU-T Rec.
P.1204.3), the pixel-based FR/RR model (P.1204.4) and the
hybrid, meta-data and pixel-based NR model (P.1204.5) is
provided in this section.

At the start of the P.NATS Phase 2 standardization project,
the design of the P.1204 models was chosen so as to prin-
cipally be compatible with the modular P.1203 model archi-
tecture [38], [48], [74]. Accordingly, besides video quality

5It is reminded that for the short-term video quality models presented in
this paper, no quality changes, stalling or initial loading delay were used,
in contrast to what was done during the development of the longer-sequence
ITU-T Rec. P.1203 standard family.
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estimates for sequences of between 5 to 10 sec duration as the
primary model output, all models also provide per-1-second
video quality scores on a 5-point scale.

It is noted that this continuous score can be considered as
a memoryless instantaneous score, related with but concep-
tually different from the instantaneously rated quality as it
has been assessed, for example, in [8], [9], [17]–[19]. In such
studies, test subjects typically rate quality on a continuous
scale with a slider, following perceived quality over time.
A corresponding test method is SSCQE (Single Stimulus
Continuous Quality Rating), see ITU-R BT.500 [27]. Here,
ratings are dependent on the quality at previous times of the
same viewing session, and hence comprise aspects of human
memory.

The memoryless instantaneous score, provided per-1-
second by the P.1204.X models – and also their FHD
bitstream-based predecessor P.1203.1 – do not include these
memory effects, for a reason. As they are quasi memory-
less, they can be used continuously regardless of the prior
history of quality in a given session. With a model that
predicts instantaneously rated quality, there is no time-shift
invariance, since memory will differ depending on when the
viewing is considered to have started. Instead, with the chosen
per-1-sec scores, memory and longer-term integration can be
addressed at a later stage by a suitable quality integration
module, such as P.1203.3 [14], [50], [74], possibly together
with according per-1-second audio-quality data, as well as
initial loading delay and stalling information.

An illustration of the three P.1204 models and their corre-
sponding input information is shown in Figure 4.

FIGURE 4. Model outline for the three different P.1204 model variants
P.1204.3, P.1204.4 and P.1204.5 and their respective input information.

As can be seen from the diagram, information about the
device used is available to all three model types (i.e., PC/TV,
tablet, mobile). Further, the P.1204.3 bitstream model uses
input information obtained from parsing the encoded bit-
stream. The P.1204.3 model algorithm and the bitstream
information that the model requires are summarized in
Section V-A. An open-source implementation including the
bitstream parser is available, see [42]. The P.1204.4 pixel-
based RR/FR model requires both the processed-pixel and

reference-pixel information as input. Details about the model
algorithm are given in Section V-B. The hybrid NR model
P.1204.5 uses video metadata such as the codec used, resolu-
tion, framerate and bitrate together with the processed-pixel
information as input. The algorithm of the hybrid model is
described in detail in Section V-C.

A. BITSTREAM-BASED MODEL: P.1204.3
The bitstream model P.1204.3 consists of two parts, a ‘‘para-
metric’’ model part based on arithmetic functions mapping
input parameters to quality, and a machine learning model
part. The two parts are described in detail in the following
sections.

1) PARAMETRIC PART – CORE MODEL
The parametric part of the model, also referred to as ‘‘Core
Model’’, follows the principle of degradation-based model-
ing, as used for example in ITU-T Rec. P.1203.1 [37], [38].

The general idea is that video quality can be modelled
as the subtraction of different video degradations from
a quality-value for a pristine presentation. Three differ-
ent degradations are considered in this model: quantization
degradation Dq, upscaling degradation Du and temporal
degradation Dt . All degradation values are expressed on
a scale from 0 to 100, following the impairment prin-
ciple underlying the ‘‘Transmission Rating Scale’’ of the
so-called E-model, a planning tool for speech-quality assess-
ment [103]. This mapping from the 5-point ACR scale to the
100-point scale is performed to compensate for the known
compression of the 5-point ACR scale at its ends, which is
due to, among others, the avoidance of extreme ratings by
subjects (see e.g. [104]).

a: QUANTIZATION DEGRADATION: Dq

Quantization degradation relates to the observable coding
degradations that are introduced due to the chosen quanti-
zation settings during the encoding process and is usually
visible as blockiness or deblocking-filter-related blurring to
the end-user. The Core Model handles Dq separately per
codec.

First, the variable quant is defined as a function of the
quantization parameter by

quant =
QPnon−Iframes

QPmax
, (7)

where QPnon−Iframes is the average of the Quantization
Parameter (QP) for all non-I frames for an entire segment, and
QPmax is the maximum quantization parameter. The number
of codec categories is extended from the initial three (H.264,
H.265, VP9) to five, by including the bit-depth information
and splitting H.264 and H.265 into 8- and 10-bit variants.
Here, QPmax is codec- and bit-depth-dependent, using 51 for
the 8-bit variant of H.264 and H.265, 63 for the 10-bit variant
of H.264 and H.265, and 255 for VP9. The calculation results
in a scaled value quant ∈ (0, 1]. This value of quant is
used to estimate an intermediate quality value resulting from
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encoding mosq, using a parametrized exponential function,

mosq = a+ b · exp(c · quant + d). (8)

with mosq ∈ [1, 5].
Finally, mosq is converted to a degradation Dq_raw, using

the inverse-S-shape mapping function RfromMOS to map the
5-point ACR scale to a 100-point scale, similar to the one used
in the E-model, see ITU-T Rec. G.107 [103].

Dq_raw = 100− RfromMOS(mosq) (9)

The finalDq value is the result of clippingDq_raw to the range
[0, 100],

Dq = max(min(Dq_raw, 100), 0). (10)

b: UPSCALING DEGRADATION: Du

Besides the one for coding degradation, the Core Model
comprises a component for resolution upscaling degradation.
In general, an upscaling degradation results from upscaling
the distorted video to the screen resolution during playback,
which can be perceived by an end-user as blurriness. In
the real-world streaming scenario, upscaling is typically per-
formed by the player software, where streaming resolutions
lower than the target screen resolution typically are a result
of the adaptive streaming of bandwidth-dependent represen-
tations. In the model development process, this degradation
was assumed to be codec-independent.

First, the factor fscale is calculated as the ratio of the number
of pixels Ncoding at coding resolution to the number of pixels
Ndisplay at display resolution,

fscale = Ncoding/Ndisplay, (11)

withNdisplay = 3840×2160 for PC/TV display andNdisplay =
2560×1440 for mobile/tablet. Ncoding is the number of pixels
of the encoded video. The factor fscale is always limited to
fscale ∈ (0, 1]. Next, the upscaling degradation Du_raw is
calculated based on the scaling factor fscale by

Du_raw = x · log(y · fscale) (12)

and then clipped to the range [0, 100] by

Du = max(min(Du_raw, 100), 0). (13)

Here log denotes the natural logarithm, and x and y are
device-specific coefficients determined during model train-
ing.

c: TEMPORAL DEGRADATION: Dt
The third degradation type considered by the Core Model is
based on lower framerate representations as a possible means
of streaming adaptation and subsequent adjustment to the
used display, which may be perceivable as jerkiness. Simi-
lar to upscaling Du, we handle this in a codec-independent
fashion.

First, a frame rate factor cframerate ∈ (0, 1] is calculated as
the ratio of coding frame rate fpscoding to the fixed display
frame rate fpsdisplay = 60,

cframerate =
fpscoding
fpsdisplay

. (14)

Next, the temporal degradation Dt_raw is computed based on
the frame rate factor by

Dt_raw = z · log(k · cframerate) (15)

and then clipped to the range [0, 100] using

Dt = max(min(Dt_raw, 100), 0). (16)

Here, z and k are device-specific coefficients.

d: PREDICTION AND MODEL COEFFICIENTS
The quality prediction Qp,0−100 of the parametric part on the
[0, 100]-scale is given by subtraction of all three degradations
from the maximum quality,

Qp,0−100 = 100− (Dq + Du + Dt ). (17)

The final prediction Qparametric is given by a further rescaling
to a 5-point MOS-scale, the details of which can be found
in [52].

During training of the model, the subjective scores were
linearly mapped to a 4.5-point scale from the 5-point scale
in order to avoid information loss due to the RfromMOS
and MOSfromR computations, since both of these mapping
functions assume that the highest MOS that can be reached
is 4.5. As a final step, the predictions on the 4.5-point scale
were mapped back to the full 5-point scale range using a
simple linear transformation, the details of which can be
found in [52].

The coefficients for both the PC/TV and mobile/tablet
cases are reported in the corresponding ITU-T standard
ITU-T Rec. P.1204.3 and in the open-source model imple-
mentation,6 see [42], [52].

2) MACHINE-LEARNING-BASED VIDEO QUALITY MODEL
The second part of the model uses a machine learning
approach to estimate video quality. This part of the model is
used mainly to estimate the ‘‘residual’’, that is, the part of the
MOS that the parametric CoreModel part is unable to predict.
Hence, the target for the training of the machine learning part
of the model is the residual

Rtarget = MOS − Qparametric. (18)

Random Forest (RF) regression is used to predict the resid-
ual. Two different RF models are trained, one for PC/TV
and mobile/tablet cases. The model output is the predicted
residual Rpred .

Features such as the average motion per frame, motion
in the x-direction (horizontal motion) and frame sizes with

6https://github.com/Telecommunication-Telemedia-
Assessment/bitstream_mode3_p1204_3
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frame types are used in addition to the features of the
parametric, Core Model part. The rationale behind this is
that the parametric part is not able to fully incorporate
spatio-temporal content complexity of the video sequences.
Further, encoding-specific choices for certain bitstream rep-
resentations cannot completely be captured by QP, framerate
and resolution alone. The RF model also uses the parametric
part’s prediction Qparametric as an additional feature. These
features are aggregated according to different functions and
used as input to the random forests. These aggregations are
presented in Table 7. The Random Forest model used 20 trees
with a fixed depth of 8. The final Random Forest quality
prediction Qrandomforest is given by

Qrandomforest = Qparametric + Rpred . (19)

Hence, it is the addition of the predicted residual value Rpred
to the parametric prediction Qparametric.

TABLE 7. Aggregated features for RF model.

3) OVERALL VIDEO QUALITY PREDICTION
The final predicted quality Q of the model is then the convex
linear combination of the predictionQparametric from the para-
metric part and the prediction Qrandomforest from the machine
learning part,

Q = w · Qparametric + (1− w) · Qrandomforest (20)

In the presented model, equal weights, thus w = 0.5, are
assigned to both of the predictions, shown in Eq. 20.
In addition to the per-segment scores, the model also pre-

dicts the per 1-sec scores. The specific details of the per
1-sec score calculation can be found in the corresponding
standard [52].

B. PIXEL-BASED MODEL: P.1204.4
This section describes the reduced-reference pixel-based
model P.1204.4. A reduced-reference model is a special form
of full-reference model. In a full-reference model, quality Q
of a test video v – called degraded video – is estimated by

a function G depending on the degraded video v and on the
reference video vref ,

Q = G(v, vref ). (21)

In the reduced-reference case, the function G depends on
the reference through features fref of the reference vref only.
The features are extracted by the reference-feature extraction
function φ,

fref = φ(vref ), (22)

and there is a restriction on the size of the features. The quality
of the degraded video is estimated by function G′ by

Q = G′(v, fref ). (23)

The reference features fref are sometimes called the side
information, as in an operational setup this information can be
transmitted over a side-channel to the measurement device.

The following description contains the main ideas of the
reduced-reference model. The full details can be found in
ITU-T Rec. P.1204.4 [53], together with the values of con-
stants and parameters used in this description.

1) OVERVIEW
The general computation steps are presented here slightly
simplified to outline the overall ideas. For the video frames
of the test video and the reference, a multi-resolution pyra-
mid of the Y-component is computed. For each resolution,
an edge representation is determined. Local patch statistics
based on this edge representation are computed, where the
local patches are local both in space and orientation. Based
on patch statistics, relative feature values are determined:
the feature value of the test video is measured relative to
the reference feature. Features computed per video frame are
converted to a common scale with values in [0,1], measuring
degradations, D0,D1, .., such that larger values correspond
to stronger degradations and lead to lower quality. This con-
version uses S-shaped parametrized transformations Spar :
R+→ [0, 1], mapping values from the positive real numbers
to the unit interval. Aggregated, the quality Q is given by a
multiplication of the form

Q =
∏
i

(1− Di) (24)

to account for interactions between different degradations.
Besides a temporal degradation accounting for low frame
rates, main degradations are spatial degradations based on a
common edge feature described in the next paragraph.

2) EDGE REPRESENTATION
Let Y denote the Y component of a video frame for a given
resolution, a matrix, with the indices denoted by i, j in the
following. Features based on edge orientation and strength
are computed. To reduce the complexity of the algorithm,
edges are computed using the simplest possible filter: by
difference of adjacent pixels. The resulting pixel difference is
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compressed using an inverse tangent function. A normalized
edge representation is computed in the following way: Let
R[i, j] denote the edge strength at a spatial position (i, j) of
the frame and φ[i, j] the orientation, the angle of the edge. Let
S[i, j] denote the average edge strength at the two positions
at a fixed distance1 of the point (i, j) on a line perpendicular
to the edge.

The normalized edge strength Z is computed as the exceed-
ing of the center edge strength above the lateral average
S[i, j], relative to the sum of center and lateral edge strength,

Z [i, j] =
max(0,R[i, j]− S[i, j])
c+ R[i, j]+ S[i, j]

. (25)

Here, the strictly positive value of c avoids a division by zero.
The lateral inhibition by S is twofold, in the numerator by
subtraction, and by inclusion in the denominator.

3) PATCH STATISTIC
Based on the normalized oriented edge statistic computed
at different resolutions, local patch statistics are computed.
Patches are determined in a continuous way using a partition
of unity in the spatial domain, and a partition of unity in
orientation. For each of these local patches, a statistic is
computed. In more detail, a partition of unity is a family of
positive continuous [0, 1]-valued functions (θk )k=0,,,L−1 for
some integer L having

∑L−1
k=0 θk = 1. A family of patches

(Pmnk ) is computed using the partition of unity (9mn) in
the spatial domain and the partition (θk ) in orientation, i.e.
a partition of unity on the unit circle. For orientation index
k , and location indices m, n, a local patch P is computed by
multiplication of the spatial partition, the orientation partition
and the edge strength

Pmnk [i, j] = 9mn[i, j] · Z [i, j] · θk (φ[i, j]). (26)

A patch statistic smnk is computed as the average over all
values of Pmnk above a fixed quantile q,

smnk =
∑
i,j

Pmnk [i, j], (27)

where the sum runs over all indices i, j with Pmnk [i, j] > q.
The patch statistics are also called patch features. The value
of q depends on the resolution at which the patch statistic is
computed. The values of smnk are determined by the strongest
edges of similar orientation at a close location. In particular,
at high resolutions, there is a relation between the values
of smnk and the sharpness, or the loss of sharpness due to
up-scaling of the video.

Hence, at highest resolution, the sharpness statistic ssharp is
computed as the average over all patch statistic values above
the q = 0.95 quantile, independent of spatial location and
orientation.

These patch statistics smnk , computed at a fixed medium
resolution, the sharpness statistic, together with the frame
timestamps constitute extracted features of the video
sequence.

For the reference video, the patch statistics, the sharpness
statistics, together with the display time of each frame cor-
respond to the extracted features fref of equation (22). These
features can be computed based on the reference only. Thus,
for a fixed reference, these features need to be computed
just once and can be stored. All degraded videos having the
same reference can be evaluated by using only the stored
features of the reference. These features take at most 32kB
for each second of reference video duration.

4) QUALITY PREDICTION
Relating patch statistics of the degraded video to those of
the reference allows estimation of degradations. Missing
details, blurriness of the test video show up in patch statis-
tics having lower relative values. On the other hand, blocki-
ness, deformed details as a result of strong compression can
lead to an increase in patch statistics values. In particular,
it can change the orientation of strong edges locally due to
deformed details or blockiness. Thus, the orientation sensitiv-
ity of the patch statistics is important to measure an increase
and decrease of relative patch features at the same time. The
perception of degradations due to missing details and blurri-
ness can be quite different from deformed details and block-
iness. Therefore, the relative patch features are decomposed
into a positive and a negative part. Either degradation part
is mapped with a different S-transformation onto the quality
scale, whose product according to equation (24) determines
the overall quality.

Quality prediction is based on four spatial degradation
measures: increase and decrease in patch feature values at a
fixed medium resolution are the first two. Based on patch fea-
ture values at the highest resolution, sharpness is computed,
and a decrease and increase in sharpness are the other two
degradation measures. In more detail, the decrease of sharp-
ness statistic ssharp of the test video relative to the sharpness
statistic rsharp of the reference, is computed as

srel_sharp = min
(
1,
ssharp + cs
rsharp + cs

)
, (28)

where a constant cs > 0 avoids a division by zero. Similarly,
a fourth degradation measure determines the increase in the
relative sharpness statistic. These degradation measures cor-
respond to D1, ..D4 in equation (24).
This presentation is simplified, as perceptually and in the

model, the estimated degradation is a function on the amount
and spatial distribution of edges. In particular, a relative
degradation close the border of the frame is weighted less
than in the center, as attention is rarely driven to the border
area. Further, a weighting based on motion and luminance is
included.

Besides relative degradations estimated based on patch
statistics, there is a degradation measure d0 determining the
impact of low framerates, as a function of display time of each
frame and motion in the video sequence. As framerates below
24 fps are rare nowadays, the impact of this last ‘‘jerkiness’’-
type degradation measure is minor. Each degradation is
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computed per-frame: the product of equation (24) computes
a per-frame quality in the range [0, 1]. This per-frame quality
is non-linearly aggregated to an overall video quality. This
non-linear aggregation takes into account that low quality can
have a stronger impact on the overall quality than what is
achieved by a linear aggregation. Finally, the overall quality
is rescaled to the MOS range [1, 5]. In addition to the overall
quality, the model outputs a per 1-second score, which is the
average per-frame quality over the 1-sec interval.

Model parameters were optimized for two different view-
ing conditions: a viewing condition using a small relative
viewing distance representing a TV set or PCmonitor setting,
and a viewing condition representing a mobile use case with
a smartphone display. The model can provide predictions for
intermediate viewing distances by interpolation within the
core model.

C. HYBRID MODEL: P.1204.5
Next, the hybrid no-referencemodel ITU-TRec. P.1204.5will
be described [54]. The input for the hybrid model includes
• raw pixels as seen by the test subjects: i.e., decoded and
up-scaled video degVid

• bitstreammetadata information: type of encoder (H.264,
H.265 or VP9), encoded video bitrate, encoded video
resolution, encoded video framerate and the display
resolution

The performance of the hybrid model was assessed with
respect to three models, namely, the baseline model, the best
pixel-based no-reference model working using the pixels
of the decoded and upscaled video, the best bitstream
model of the corresponding category (in this case Metadata
Mode 0 model).

The hybrid no-reference model presented in this section
has a 4-parameter logistic a-like function which for a given
encoder maps average bitrate based feature x to an interme-
diate quality prediction S, where x is computed for each video
segments of fixed resolution and framerate.

S = a ·
(
1− exp(−d · (x − c))
1+ exp(−b · (x − c))

)
. (29)

Note that the above function without the term (1− exp(−d ·
(x − c))) is exactly the logistic function, where the constants
a, b and c determine the saturation point, decay rate and shift
of the quality curve with respect to x. The additional term
(1 − exp(−d · (x − c))) is introduced to add a faster decay
of the curve towards lower values of x, where the constant d
determines the decay factor of this additional decay term.

The constants a, b and c of the above equation are fur-
ther functions of the three quantities, namely, the framerate,
encoded resolution and the content complexity.

1) DEFINITION OF x
For a metadata-only model, bitrate carries the most important
information about the quality of the video. However, bitrate
only makes sense together with the information of encoder
used and the encoded chroma subsampling format. This is

because different encoders offer different compression effi-
ciency and different chroma formats, due to their different
size of the raw color information, may yield slightly different
encoded bitrates. Let bitrate be defined in kilobits per second,
then x is defined as:

x = log10(bitrate · exp(−h0 · (r − 1))), (30)

where r has a different value for each chroma subsampling
format. Precisely, r have values 1.0, 2/1.5, 5/4 and 5/3 for
YUV420-8buit, YUV422-bit, YUV420-10bit and YUV422-
10bit chroma subsampling modes, respectively. h0 > 0 is
a codec-specific constant. In other words, the raw bitrate is
adjusted depending on the actual chroma format of degVid .
Additionally, log10 is used to compress the range of the
adjusted bitrate values.

2) IMPACT OF ENCODED FRAMERATE ON QUALITY
a in Eq.29 is an increasing function of the framerate. This is
because high framerate yields a smoother representation of
motion and hence a higher quality compared to low fram-
erates. However, higher framerate means more frames to
be encoded, which in turn means higher encoded bitrate.
Hence, the quality curve shifts slightly to the right for high
framerates. In other words, c increases with framerate. On
the other hand, quality decay rate with regard to the bitrate
increases for lower framerates, because low framerate brings
more jerkiness in the represented motion, and hence b is a
decreasing function of the framerate. The above understand-
ing of the trend of the quality curve as functions of framerate
(fps) can be formulated as:

a′ = a0 − af ·
(
60
fps

)
(31)

b′ = b0 + bf ·
(
60
fps

)
(32)

c′ = c0 − cf ·
(
60
fps

)
, (33)

where af > 0, bf > 0 and cf > 0 are codec-specific
constants. a0, b0 and c0 are codec-specifc initial values.

3) IMPACT OF ENCODED RESOLUTION ON QUALITY
The quality curve for a higher resolution saturates at a higher
MOS and at higher bitrate values, so like the framerate case, a
and c are also increasing functions of the encoded resolution.
However, unlike framerate, quality decay reduces for lower
resolution, i.e., the quality versus bitrate curve for a lower
resolution is generally flatter compared to a higher resolution.
Hence we can say that b is an increasing function of the
encoded resolution. The above understanding of the trend of
the quality curve as functions of encoded resolution can be
formulated as

a′′ = a′ − as · log10(ua · (fscale − 1)) (34)

b′′ = b′ − bs · log10(ub · (fscale − 1)) (35)

c′′ = c′ − cs · log10(uc · (fscale − 1)), (36)
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where all constants in the above equations are codec-specific
positive constants. The factor fscale is defined as:

fscale = max
(
Wd · Hd
We · He

, 0
)
, (37)

where Wd · Hd and We · He define the display and encoded
resolutions, respectively.

4) IMPACT OF CONTENT COMPLEXITY ON QUALITY
Content complexity perhaps plays the most important role in
determining the saturation points, decay rate and the shift of
the quality curve of Eq.29. A simple content, for example,
involving talking heads, is much easy to compress compared
to a more complex content involving high motion or fast
camera movement.

Traditionally, the content complexity is categorized using
spatial information (SI) and temporal information (TI) fea-
tures [28]. These measures require the availability of the
original reference video to categorize the source complexity.
Being no-reference, the standardized hybrid model only uses
the pixels of the decoded signal which will have all the
distortions, hence such a SI/TI characterization will not be
accurate.

Moreover, these measures do not reflect the spatial and
temporal complexity from the encoders point of view. For
example, if we consider a video capturing only the transla-
tion motion of an object, TI will reflect temporal activity.
However, for encoders it is still a low temporal complexity
scene, as the motion compensation can perfectly capture the
simple translation motion of the object. Similarly, fairly reg-
ular spatial features in a video image can be easily predicted
using the intra prediction components in the encoder, while
SI may suggest a higher spatial activity for such frames.
So it is important that an encoder-consistent view of the
content complexity is employed to make a quality prediction
of encoded videos.

The standardized P.1204.5 hybrid model employs a
VP9-based content complexity characterization feature.
Using the constant rate factor (CRF) coding recipe of the
VP9 codec, the degVid is encoded at a certain quality Q
to an encoded file degVidEncoded , where Q is an unknown
quality value resulting from the CRF encoding of degVid at
CRF value of 32. The bitrate of the resulting degVidEncoded
is normalized with respect to framerate and resolution to
create a content complexity feature Ccomplexity. The idea is
that with a higher content complexity, videos will require
higher bitrate to encode to the quality Q. Similarly, a lower-
complexity content will require lower bitrate to achieve Q.
This way, the VP9 codec can be used as a tool to obtain an
encoder-consistent view of the content complexity.

It is known that the quality of a high-complexity source
decays fast with regard to the bitrate compared to a
low-complexity source. This is because complex videos
are more susceptible to blocking artifacts compared to
low-complexity videos. Hence, b is an increasing function
of the source complexity. Since a higher-complexity video

TABLE 8. Linear mapping coefficients for device separation.

requires more bits to achieve the same quality than a low com-
plexity video, c is an increasing function of the source com-
plexity. As for the saturation point a is concerned, the higher
the content complexity, the lower the saturation point. The
above understanding of the trend of the quality curve as
functions of content complexity can be formulated as

a = a′′ − ak · Ccomplexity (38)

b = b′′ + bk · Ccomplexity (39)

c = c′′ + ck · Ccomplexity, (40)

where ak > 0, bk > 0 and ck > 0 are codec specific
constants.

Equations 31 to 40 can be additively combined to yield
values of a, b and c, which can then be used to compute the
quality S for a certain video codec using the Eq.29.

5) IMPACT OF DISPLAY DEVICE ON QUALITY
The standard model has two sets of model coefficients,
one set for the PC-Monitor/TV displays and the other for
Tablet/Mobile displays. This is logical as subjects may assess
the quality differently on different devices. Quality assess-
ment on PC-Monitor and TV was quite consistent, hence
these devices were not dealt with separately at the coefficient
level. The same is true for the Tablet andMobile display type.
A final linear mapping accounts for slight variation in quality
prediction between PC-Monitor and TV, and the Tablet and
Mobile cases. Q, where 1.0 ≤ Q ≤ 5.0, is the actual model
prediction output.

Sd = m · S + g (41)

Q = min(5,max(1, Sd )), (42)

where Sd denotes the device-based mapped quality. The table
below reports the slope m and offset g values for the linear
mappings for different devices.

In addition to per-segment score, the model also pro-
duces per 1-sec scores, which are directly derived from the
per-segment score. The specific details of the per 1-sec score
calculation can be found in the corresponding standard [54].

VI. MODEL PERFORMANCE
In this section, the prediction performance of each of the three
models is presented. To evaluate the models, two different
categories of databases were considered, namely the competi-
tion databases and open databases. The competition databases
consist of the training and validation databases developed
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during the course of the P.NATS Phase 2 project within ITU-
T/VQEG. The open databases are publicly available ones,
which can be further categorized into two types

• Databases developed during the competition: For these
databases the HRCs are developed with a similar design
philosophy as the P.NATS Phase 2 databases, and can be
used to evaluate other models in comparison, in contrast
to the proprietary standardization databases.

• Completely independent databases, which are available
from external sources. The HRCs of such databases can
be designed with focus on a particular aspect of the
application area.

The evaluation on complementary open databases is done
to ensure that the model-performance evaluation is repro-
ducible.

As a first step to evaluate the performance of the models,
the P.NATS Phase 2 training and validation databases are
used. To start, the output of the baseline model is plotted in
comparison to the mean subjective scores (MOS) in the scat-
ter plot shown in Fig. 5. For each database, a linear mapping
was used to map the model output to the subjective scores,
to normalize the scale of the subjective databases, following
[97]. Further details on this normalization step are given in
Sec. III-B. The figure shows the mapped model output with
respect to the MOS for the 13 validation databases.

The x = y line depicts the ideal prediction line, for the
theoretical case of perfect agreement between model output
and subjective MOS scores for each tested video. The indi-
cated right boundary line corresponds to under-predictions of
the subjective scores by 1 MOS. Similarly, the left boundary
line corresponds to over-predictions of 1 MOS. It can clearly
be seen that the baseline model has a significant number
of points falling away from the ideal prediction line. The
prediction is particularly bad for lower MOS values. Fig. 5b
depicts the probability distribution function (PDF) of the
prediction error. For the computation of the PDF, a bin size
of 0.05 is used. Note that the prediction error for the baseline
model is not symmetric. The PDF indicates that the baseline
model over-predicts quality when compared to the MOS. The
over-prediction is particularly high for lower MOS values –
see the model prediction for the MOS range 1.0 to 2.5 in
Fig 5a. This means that despite the per-database mapping,
the baseline model does not have a neutral, unbiased scale
for MOS prediction.

Figures 5c, 5e, and 5g depict the scatter plots for the win-
ning bistream, pixel-based RR and Hybrid model candidates,
recpectively. As discussed in Sec. III-A, the initially submit-
ted model candidates were optimized before final standard-
ization. Only the points for the 13 validation databases are
shown in the scatter plots. For all three winning candidates,
a large majority of points lie close to the ideal prediction line.
There are some outlier cases for each of the three models.
However, in general the prediction is significantly better
compared to the baseline model. Additionally, the points
are roughly equally spread along the two sides of the ideal

prediction line. This can be confirmed by the roughly sym-
metric nature of the prediction error PDF plots of the three
models shown in 5d, 5f, 5h. Moreover, from the three scatter
plots it is evident that the models have a fairly neutral model
scale for prediction of normalized MOS quality. Like for the
baseline model, a MOS normalization was performed using a
per-database linear mapping (based on [97], see Sec. III-B).

After the model-validation phase, which determined the
winning models for each model category, the model coef-
ficients for the three winning models for the three model
categories were then re-optimized based on a cross-validation
strategy (cf. Sec. III-A). Note that the submitted models were
trained on the training databases identified by the prefix
‘‘P2STR’’ and validated on the databases identified by the
prefix ‘‘P2SVL’’, see Tables 4 and 5.

The model re-optimization was done using a 5-fold
cross validation. First, from the 26 databases, five splits of
databases were created, each split containing 13 training and
13 validation databases. The following procedure was used to
define the splits:

• Firstly, a level of prediction difficulty for each database
was determined using the average RMSE of three mod-
els for that database. A lower average RMSE means the
database is easy to predict while a high average RMSE
means the database is difficult to accurately predict
quality.

• Following this, 5 sets of 50 : 50 training-validation
split were determined by ensuring that (a) splits have
least similarity with each other, i.e., minimum overlap
of databases between different splits, (b) for each split,
the overall prediction difficulty of training databases
is not very different from the one for the valida-
tion databases. (a) ensures that coefficients for models
trained on different cross-validation splits are different,
while (b) ensures that the trained models will generalize
well for validation databases.

• For each split, databases of different display types
(TV/PC-Monitor and Mobile/Tablet) have a balanced
representation in the training and validation sets.

Model re-optimization was performed for each of the
5 cross-validation splits. The procedure outlined in Sec. III-B
was used to compute the aggregated RMSE for each split.
The coefficients corresponding to the best performing splits
(the ones with the least aggregated RMSE for the respective
model) have been reported in the final standard documents
[52]–[54].

Table 9 reports the aggregated RMSE of the three submit-
ted models and their standardized versions on the validation
database set and for all databases.When computing the aggre-
gated RMSE for all (both training and validation) databases,
a 0.1/0.9 training/validation weighting is used, as explained
in Sec. III-B. Note that for the submitted and standardized
models, the actual training and validation databases are differ-
ent. As indicated above, for the submitted models, the train-
ing databases are indicated by ‘‘P2STR’’ (Table 4), and the
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FIGURE 5. Scatter plots of MOS vs the predicted scores and error probability distribution
function (PDF) for the baseline model and the three winning model candidates.
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validation databases by ‘‘P2SVL’’ (Table 5). For the standard-
ized models, the training and validation databases were deter-
mined by the respective cross-validation split, as described
above. Note that all three models have comparable RMSE
figures when comparing the submitted and the finally opti-
mized/standardized versions. This confirms that the three
models, already in their submitted versions, provided stable
predictions. Themodel optimization via cross-validation only
resulted in a slight improvement in the performance of each
model. Since for each model the RMSE of the optimized
version on the validation databases (‘‘VL’’) is comparable to
the RMSE for the training (‘‘TR’’), it can be ensured that the
standardized models generalize well to unknown cases.

In Table 10, the model performance of the submitted ver-
sions of the three models described in this paper is compared
against FR models commonly used in the literature, namely
PSNR, SSIM and VMAF. For each model, a per-database
mapping is used to map the objective scores to the subjec-
tive MOS before computing the performance metrics. For
VMAF and the three models described in this paper, a linear
mapping is used, while for PSNR and SSIM, a 3rd-order
polynomial mapping is used, as PSNR/SSIM are known to
show a non-linear relationship to subjective quality scores. As
themain performance criterion, the RMSE is employed in this
paper also for comparison with other than the standardized
models, reflecting the criterion used for model-performance
evaluation in the P.NATS Phase 2 competition. In addition,
values for Pearson correlation are provided as indicative
information, reflecting the common practice in video quality
model evaluation.

For the computation of Pearson correlation, remapped
scores from all validation databases were pooled together.
Here, all MOS values from different experiments were first
combined to a joint set, then used to calculate correlations.
Note that this is unlike the derivation of the values given
in Table 9, where the RMSE per database was first computed,
and then a weighted aggregation of RMSE values was per-
formed. For both performance metrics reported in Table 10
(left part, ‘‘All HRCs’’), the proposed models outperform
PSNR, SSIM and VMAF. As can be seen from the results,
VMAF performs better than PSNR and SSIM, which is
expected. The lower performance of VMAF compared to

TABLE 9. Aggregated RMSE on validation and on all databases (training
and validation databases according to (3)) of the models submitted to the
competition, and the standardized (re-trained) versions of the models.

the proposed models can be partly explained by the fact
that the validation set includes frame-rate reduction HRCs,
and VMAF lacks a feature to handle such cases. This can
be confirmed when considering the complementary values
in Table 10, columns denoted by ‘‘HRCs using SRC fps’’,
obtained by recomputing the two performance figures for
VMAF and the other models for a subset of cases that do
not simulate frame rate reduction, that is, only consider cases
where the SRC and HRC framerates are the same. The perfor-
mance figure for VMAF on this subset (right two columns) is
better compared to the full set, while for submitted models
roughly show the same performance as on all data. It is
worth pointing out that frame rate reduction scenarios are
quite common in actual video streaming services. Just to give
an example, a 60 fps 4K upload to YouTube will yield HD
quality level with 30 fps.

The RMSE on individual validation databases is shown in
the subplots of Fig. 6 for the three models P.1204.3, P.1204.4,
and P.1204.5 as a deviation from the mean RMSE. In each
subplot, the RSME values for PSNR, SSIM and VMAF are
added for comparison. In general, the databases vary in terms
of quality-prediction difficulty, and hence model efficiency
can be different across databases. Moreover, since the three
models use different types of input information and follow
different modeling strategies, it can happen that one model
performs better on one database than other models. Note
that P.1204.3 and P.1204.5, which do not have access to the
reference, have quite similar per-database RMSE distribu-
tions around the mean, while for P.1204.4, the RMSE dis-
tribution is slightly different. For database 10 (‘‘P2SVL10’’),
P.1204.4 performs much better than the other two models.

A. EVALUATION ON OPEN DATABASES
A performance of the models on the aforementioned open
databases is presented in the following. For this purpose,
two different datasets, namely, AVT-VQDB-UHD-1 [91] and
MCML [92] are considered. To evaluate the model on the
AVT-VQDB-UHD-1 database, only samples for which the
source video was available were considered. Due to lim-
ited digital rights for some sources, not all sequences could
be made available. This resulted in considering 432 out
of 756 samples for this part of the evaluation. The reso-
lutions that were used in this dataset range from 240p to
2160p and framerates from 15 fps to 60 fps. Three codecs,
namely, H.264, H.265 and VP9 were used to encode the
videos. libx264, libx265 and libvpx were the encoder imple-
mentations used for H.264, H.265 and VP9 respectively.
This database consists of four different subjective tests that
are denoted as Test 1, a Test 2, Test 3 and Test 4 in
Tables 11 and 12.

The four sets use similar conditions (HRCs) as in
the P.NATS Phase 2 databases. Contrary to the P.NATS
Phase 2 databases, the four sets use a full-matrix design with a
smaller number of source videos, which can explain the large
variation in RMSE values among the sets. These databases
were developed during the competition and use the same
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TABLE 10. Overall model performance of different models on P.NATS Phase 2 validation databases only (the ones with prefix ‘‘P2SVL’’). Left: All HRCs.
Right: Only HRCs where the HRC framerate corresponds to that of the SRC.

FIGURE 6. Model prediction error (RMSE) per validation dataset. Plotted is the prediction error for the submitted models
P.1204.3 (red, left), P.1204.4 (green, middle), P.1204.5 (blue, right), and on all three subplots PSNR (purple), VMAF (orange),
and SSIM (brown). For each model, the bars show the deviation from the mean prediction error. It can be seen that the
prediction error for the models P.1204.x is lower than the prediction error of VMAF and PNSR.

TABLE 11. Details of the additional databases used for model validation.

HRC design philosophy as the P.NATS Phase 2 databases,
that is, a similar processing chain and FFmpeg-based encod-
ing algorithms.

As a completely independent database, the MCML
databases by Cheon et al. [92] is considered for model evalu-
ation. This database consists of 250 samples (240 compressed
and 10 reference videos) that are used for evaluation. It
should be noted that the samples span only two resolutions
namely, FHD and 4K UHD with a framerate of 30fps. This
database uses different encoder implemenatations than the
ones used for the P.NATS Phase 2 databases. For the case
of H.264/AVC, the JM reference software version 18.5 was
used, while for H.265, the HM reference software version

TABLE 12. Model validation on additional databases – RMSE figures.

10.0 was used. The libvpx software version 1.3.0 was used
for VP9 encoding and decoding. More detailed information
of these two datasets is provided in Table 11.
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VII. MODEL APPLICATIONS
There are a variety of application areas for the standard-
ized models presented here. Criteria for classification can
be found, for example, in [35]. For the models presented in
this paper, the applications can be categorized in terms of a
set of non-orthogonal factors, such as (1) the target service
to be assessed, e.g. on-demand streaming, live-broadcast,
interactive, real-time communication etc., (2) the goal of the
assessment, such as encoding ladder derivation or holistic
service or network monitoring, (3) the implementation of the
assessment approach, considering the locations of the quality
model and of the probe for input data acquisition along the
distribution chain, (4) whether the assessment takes place
during service operation in a non-intrusive, that is passive
manner, or off-line, as active (intrusive) measurement, (5) the
target quality-criterion being assessed, i.e. in the case of
this paper short-term video quality or an integrated quality
reflecting the QoE of a longer session.

In principle, all three models can be applied to a variety
of cases, with somewhat differing implications for the actual
implementation. In the paper, the models are described in
an integrative way that comprises the feature extraction and
quality estimation parts. Generally, implementaions are con-
ceivable where these parts are distributed and done in differ-
ent phyiscal or topological places, with the quality-estimation
itself and the measurement probe for model input data
acquisition implemented in different locations. Accordingly,
different ‘‘modes of operation’’ may be distinguished. Sim-
ilar to [35], a 2-letter code can be used to describe the
selected approach, one each for the probe and the model
locations. Considering that today’s streaming is typically
operated in end-to-end encrypted sessions, the following dis-
cussion does not include within-network monitoring (based
on encrypted traffic). Hence, for both probe and model,
the possible locations are: (H) Head-end server, in case
that the service-provider is involved in the measurements
or provides quality-related information as side information;
(C) client, which may be the case if any of the involved enti-
ties is running a measurement based on data obtained at the
streaming client; (B) both, where the respective component
is distributed across head-end server or client. A few likely
combinations of probe and model placement are given in
the following. It is noted that further combinations can be
conceived.

HH Probe andmodel are located at the server site. Possi-
ble applications here are encoding-ladder derivation
or encoder optimization. To this aim, in principle
any of the three models can be used. An RR/FR
model may have the advantage that it may be
more robust against variations of encoder settings.
This assumption has to be substantiated by further
research, though.

CC Both model input information acquisition and the
model are run in the client. This is possible for
NR models that have access to all required types
of input information. Depending on the level of

access enabled to bitstream and/or pixel informa-
tion, the bitstream-based NR model P.1204.3 or the
hybrid NR model P.1204.5 may be used.

BC Some model input information is provided from the
head-end, some from the client, and the model is
located in the client. An example is the provision of
reference-information to an RR or FR model such
as P.1204.4 running in the client, via a side channel.
Or, short-term quality information for the current
segment may be provided from the head-end server
to an NR-model located in the client via a side chan-
nel, either for short-term quality calculations using
P.1204.3 or P.1204.5, or for longer-term session
QoE assessment together with a quality-integration
component such as P.1203.3 [50].

BH Similar to ‘‘BC’’, where the model input infor-
mation is partly provided from the client, partly
from the head-end. Here, the model is located in
the head-end server. Any of the BC use cases
are similarly possible here. However, a dedicated
example may be quality-monitoring by an over-
the-top (OTT) service provider, whereby reference,
encoded-bitstream or processed-signal information
are acquired at the head-end server site, and client
information is used to indicate which segments are
being played out during streaming. This case could
be realized with any of the three models presented
in this paper, possibly in conjunction with a quality
integration component such as P.1203.3 [50].

In the following, exemplary possible applications are
briefly discussed per model type.

A. APPLICATIONS BITSTREAM-BASED MODEL P.1204.3
The required input information for the bitstream model is
readily available at the head-end site. Consequently, it can
be used for bitrate ladder derivation (HH) or, in conjunction
with additional information from the client side about the
played out segments, for more holistic service monitoring
(BH). Similarly, the model can be used for real-time quality
derivation at the head-end, delivered as side information to the
client side for such a more holistic service monitoring (BC).
When bitstream information is made available at the client
during decoding, also purely client-side monitoring can be
realized (CC). Since the bitstream model is computationally
much less complex than a decoder, real-time implementations
are easily conceivable.

B. APPLICATIONS RR/FR MODEL P.1204.4
The reduced-reference model has three computational parts:
extraction of the features of the reference video, extraction of
the features of the transmitted video, and the score prediction
based on these two sets of features. As full-reference model,
it can be used to e.g. evaluate a codec’s performance, or esti-
mate a bitrate ladder (see e.g. HH-mode above). An additional
operational setup for a reduced-referencemodel is to compute
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the reference features at the head-end and transmit these over
a side channel to the client, to predict the scores on the client
side (BC). It is also possible to extract the features on the
client side, and transmit these back to the head-end, where
the reference features are computed and the score prediction
takes place (BH). In such a setup, it can serve as a monitoring
solution. For the evaluation of a fixed reference, the reference
features, which are very small in size compared to the size
of the reference video, can be directly installed on the client
side (specific implementation of BC). The computational
complexity of the reduced reference model is kept low by
design. It is much lower than encoding a video at medium
settings, thus real-time applications are possible.

C. APPLICATIONS HYBRID NR MODEL P.1204.5
Extracting segment-level parametric information (like video
bitrate, codec, resolution and framerate) can be done by
parsing the bitstream header in real-time (i.e., as the seg-
ments are decoded and played out on the screen). For
source-complexity measurement, screen capturing solutions
can be used to capture the frames. These capturing solutions
can be applied to dump the frames of a played out video seg-
ment in CRF encoding format. This way, the hybrid model’s
source complexity feature can be extracted on a per-segment
basis in real-time. These aspect makes the P.1204.5 model
suitable for CC type video quality monitoring applications.
Note that the per-segment content complexity feature can
already be computed offline at the server side and transmitted
along a side channel to the client to realize BC type applica-
tions. Or, the played out segment information can be relayed
back to the server to realize a BH type of applications with
the P.1204.5 model.

VIII. DISCUSSION
It was shown that the three models all are of very high
prediction performance across a number of databases.
The authors acknowledge, that due to the standardization
framework that lead to the three models, specific encoder
implementations have been dominant during training and
standardization-related validation. However, performance
was shown to be similarly good also for other test databases,
which the models were either not trained on, or which were
completely unknown.

In comparison to other typicalmodels such as PSNR, SSIM
and VMAF, it was shown that the new standards series can
achieve highly competitive performance. Considering the fact
that none of these models comprise a dedicated component
for the case of frame-rate reduction to lower than 24 fps,
model performance was analyzed also for a reduced set of test
cases of higher frame rates. Here, too, the three new models
underlined their competitive performance.

When inspecting performance on specific databases such
as P2SVL10, a somewhat lower prediction performance was
found especially for the two NR-models, the bitstream-based
and the hybrid. This can be explained with the partly uncom-
mon encoding cases included in these specific tests. For

example, with the automatic generation of HRCs, a number
of cases with ‘‘ultrafast 2-pass encoding’’ have been applied.
Since these cases were not present during training, especially
the initially submitted models did not cater as well for the
resulting degradations as they did for the more common ones.
The RR/FRmodel can better handle this case, since it is based
on a comparison of a degraded sequencewith the reference. In
real-life settings, this encoding approach is likely to never be
used, since the two comprised approaches actually contradict
each other.

For the performance comparison with the other metrics
and models PSNR, SSIM and VMAF, it needs to be men-
tioned that these do not comprises a specific framerate or
‘‘jerkiness’’-related feature. Hence, in Sec. III-B4, the com-
parison was carried out by considering only the cases for
which the HRC framerate was not different from the SRC
framerate. While especially VMAF performs better in this
case than on the full dataset, overall the three new models
still clearly perform better than the state-of-the-art ones.

Hence, for practical usage scenarios with the encoding
settings common today, all three models may be applied.
Especially due to their high prediction accuracy, the models
can be employed also in case of demanding tasks such as
bitrate ladder derivation, as well as for a variety of other
applications.

IX. CONCLUSION AND OUTLOOK
This paper presents the details of the P.NATS Phase 2 com-
petition that resulted in the P.1204 series of Recommen-
dations for video quality prediction for sequences of up
to 4K/UHD resolution. Further, the paper provides and
evaluation of the models on open databases, showing the
strong performance also in com parison to other models.
An overview of the competition encompassing the com-
petition procedure, statistical evaluation of the models and
the determination of the winning groups are presented. The
descriptions of the three standardized models, namely, bit-
stream (P.1204.3), pixel-based reduced reference (P.1204.4)
and hybrid no-reference (P.1204.5) indicate key algorithmic
modelling concepts. The models were analyzed to be the best
among the submitted models for the respective model cate-
gories in the so-called ITU-T ‘‘PNATS Phase 2’’ competition,
where 9 proponent companies and research institutions had
submitted models. Extensive model training, validation and
optimization phases were carried out to yield stable model
coefficients.

As shown in the paper, the models demonstrate a neutral
prediction scale with regard to the subjective video quality
scores used for validation, as well as a symmetrically dis-
tributed prediction error. The models were first evaluated on
the PNATS Phase 2 databases. Here, it was found that the
prediction performance for all three standardized models is
significantly superior in comparison to the most widely used
open source full-reference metrics PSNR, SSIM and VMAF,
for both mobile and TV display type viewing. To ensure
the reproducibility of the performance analysis of the three
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new models and also their applicability to different encoder
configurations, the models were evaluated on open datasets.
Here, too, a high prediction performance could be shown, also
in comparisonwith the best performing state-of-the-art model
VMAF.

The general application scope of the standardized models
is that of HAS/DASH-type video streaming video quality and
QoE prediction. In particular, the models can be used for
short-term video segment quality evaluation of up to 10 s
duration, or to determine per-1-second video-quality scores
as part of a more holistic QoE evaluation of up to 5 min
long streaming sessions, together with an integration module
such as ITU-T Rec. P.1203.3. The three new short-term video
quality models cover a wide range of settings, for encoding
with either H.264, H.265/HEVC or VP9, and a variety of
video encoding resolutions from 240p to 4K/UHD-1. Based
on the good prediction performance, the paper describes
a number of possible application scenarios for the new
models.

As future work, the new model standards can be extended
for different formats such as HDR, higher resolutions (UHD-
2/8K) and framerates (> 60 fps). Moreover, the applicability
of the models for different related use cases such as gaming-
and 360◦-video quality assessment will be investigated. A
further logical extension will be to develop a more optimally
tailored long-term integration model, beyond the existing
ITU-T Rec. P.1203.3, to best combine the short-term video-
quality predictions of the new P.1204 standard series with
DASH/HAS-specific impairments such as quality switching
and stalling.
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