
Received September 30, 2020, accepted October 12, 2020, date of publication October 21, 2020, date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032637

Distributed SignSGD With Improved Accuracy
and Network-Fault Tolerance
LE TRIEU PHONG 1 AND TRAN THI PHUONG 2
1National Institute of Information and Communications Technology (NICT), Tokyo 184-8795, Japan
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Corresponding author: Tran Thi Phuong (tranthiphuong@tdtu.edu.vn)

The work of Le Trieu Phong was supported in part by JST CREST under Grant JPMJCR19F6.

ABSTRACT This paper proposes DROPSIGNSGD, a communication-efficient and network-fault tolerant
algorithm for training deep neural networks in a distributed and synchronous fashion. In DROPSIGNSGD,
all numerical elements communicated between machines are either 1 or −1, represented by only one bit.
More importantly, DROPSIGNSGD does not decline the benchmark accuracy on the ImageNet dataset when
compared with the traditional distributed stochastic gradient descent algorithm, owing to a little trick in
memorizing unused gradients. Experimental results are supported by a mathematical proof showing that
DROPSIGNSGD converges under standard assumptions.

INDEX TERMS Network-fault tolerance, communication efficiency, distributed SGD, deep learning.

I. INTRODUCTION
A. BACKGROUND
In recent years, deep learning has produced excellent utilities
in many practical applications. Along with the development
of the field, it has also been realized that the scale of training
data and neural network parameters can significantly enhance
final leaning result.

Distributed stochastic gradient descent (SGD) is a key
algorithm in deep learning. In distributed SGD, many
distributed workers each possessing a local dataset con-
stantly communicate with a central parameter server, thereby
enabling the shared neural network model at the workers to
learn from all local datasets.

The scale of training data and neural network parame-
ters raises two system-level concerns regarding the original
distributed SGD algorithm: communication efficiency and
network-fault tolerance, as briefly illustrated in Figure 1.
Many studies have observed that the communication between
any worker and the central server can become a bottleneck in
the entire system [1]–[7].Moreover, the network link between
any worker and the server may suffer from unexpected, pos-
sibly adversarial faults [8], [9].

As an attempt to simultaneously address both
communication efficiency and network-fault tolerance,
Bernstein et al. [11] have examined an algorithm called

The associate editor coordinating the review of this manuscript and

approving it for publication was Qingli Li .

FIGURE 1. Synchronous distributed computation model with
unexpectedly slow or faulty communication.

signSGDwith majority vote, in which only the gradient signs
are transmitted from the workers, and the signs of the gradient
aggregate are sent from the central parameter server. Such
an aggressive quantization of gradients for communication
and fault tolerance is elegant, but (unfortunately) reduces
the learning accuracy. Indeed, on the ImageNet dataset,
the signSGD with majority vote algorithm in [11] suffers
from an accuracy decline of approximately 4% compared
with the baseline result of distributed SGD (see Table 1).

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 191839

https://orcid.org/0000-0003-2219-1867
https://orcid.org/0000-0002-0383-8891
https://orcid.org/0000-0001-5063-8801

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

TABLE 1. Comparison with variants of distributed SGD.

FIGURE 2. While both are robust against network-faults, our
DROPSIGNSGD has better top-1 accuracy than that of
Bernstein et al. [11] in the end. See also Table 1.

It has been also shown in [12] by counter-examples that the
use of gradient signs may result in nonconvergence of the
algorithm. In this work, we are interested in overcoming these
drawbacks, and simultaneously improving the communica-
tion efficiency further.

B. OUR CONTRIBUTIONS
We propose DROPSIGNSGD as a variant of signSGD with
majority vote [11]. In addition to inheriting the properties of
communication efficiency and network-fault tolerance of the
original algorithm in [11], DROPSIGNSGD has the following
additional merits outlined in Table 1:

• Both workers and the central server in DROPSIGNSGD
are allowed to further reduce their amounts of commu-
nication by partially dropping at random the gradient
signs. For example, each worker can only send 0.3d bits
to the server, and then receives 0.5d bits from the server
in each iteration, where d is the number of parameters
of a neural network. From a network latency viewpoint,
this is advantageous because the network between any
worker and the server may become unexpectedly slow
at times, as often observed in real systems [3].

• The top-1 accuracy on the ImageNet dataset of
DROPSIGNSGD is even better than the baseline result
as seen in Table 1. This overcomes the demerit of the
distributed signSGD with majority vote algorithm [11]
with respect to top-1 accuracy. Figure 2 depicts the
top-1 accuracy graph of both algorithms, which reveals
that DROPSIGNSGD is better in the end. Indeed,

DROPSIGNSGD can reach a top-1 accuracy of 76.64%
(and top-5 accuracy of 92.91%) when the communica-
tion cost of worker and server is 0.3d + 0.5d , whereas
signSGD with majority vote [11] reaches an inferior
top-1 accuracy of 72.77%. When the communication
bits from the server vary to other values of 0.3d and
0.7d , the corresponding top-1 (resp., top-5) accuracies
change, as expected, to 76.09% (resp., 92.71%) and
76.85% (resp., 93.01%). It is worth noting that, further
increasing the communication rates does not necessarily
yield better accuracy results.

Technically, DROPSIGNSGD uses a method previously
exploited in [4], [10], [12], remembering the unused gradi-
ent magnitudes and adding those to the subsequent training
iteration. Nonetheless, because network-fault tolerance is one
of our design goals, which is not exhibited by the algorithms
in [4], [10], [12], care must be taken to maintain the network-
fault tolerance property. A little trick that we introduce is to
use an error-learning rate to update the local errors caused
by unused gradient magnitudes, as detailed in a subsequent
section.

The paper is organized as follows. The proposed
DROPSIGNSGD is fully described in Algorithm 1. The con-
vergence of the algorithm is ensured by Theorem 1. Finally,
Section IV presents experimental results on the ImageNet
dataset.

C. RELATED WORKS
Regarding communication, the standard distributed SGD
algorithm is inefficient when compared with its subsequent
variants, as illustrated in Table 1. Moreover, it is not network-
fault-tolerant: if a gradient vector is rescaled by some large
factor over the faulty network when transmitted from a
worker to the server, the gradient average on the server
is severely affected by the factor. Therefore, the parameter
update becomes faulty to the extent of divergence.

Network faults can be handled by Byzantine fault-
tolerance as in [13]–[15], but these do not consider communi-
cation efficiency as a design goal. In addition, signSGD with
majority vote [11] is more dedicated to network faults, with
relatively graceful tolerances as examined in [11].

Variants of distributed SGD having communication effi-
ciency for workers were proposed in [4]–[6], [16]–[19], but
without examining network-fault tolerance. The communica-
tion from the server to workers in [6], [17] is not compressed,
and hence identical to traditional SGD.

191840 VOLUME 8, 2020

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

Techniques dealing with slow (while not necessarily
faulty) workers have been extensively reported in the lit-
erature. Replication-based techniques as in [20]–[24] make
use of cloned workers or repeated communication; in con-
trast to our proposed system. Asynchronous optimization as
in [1], [2], [25], [26] can handle slow workers effectively;
nevertheless synchronous distributed SGD exhibits better
accuracy as shown in [27], [28]. Code-based techniques as
in [7], [29]–[32] can also be used when redundancy required
in the codes can be satisfied.

Techniques for handling errors in neural networks as sur-
veyed in [33] can be locally used in each workers. These
techniques are complementary to this paper, because they
deal with errors inside but not outside the workers.

II. MATHEMATICAL ASSUMPTIONS FOR CONVERGENCE
Associated to a non-convex loss function ` : Rd

× 4 →

R+, consider f (x) = Eξ [`(x, ξ)], in which x ∈ Rd is the
neural-network weight parameters, and ξ ∈ 4 is the data
in computation. The following assumptions are standard and
have been used in previous works [4], [10]. Below ‖·‖ denotes
the Euclidean norm of a vector, and 〈·, ·〉 the inner product.
Assumption 1: We have f ? = infx∈Rd f (x) < ∞. In addi-

tion, f is L-smooth, namely f is differentiable, and for some
L ≥ 0

‖∇f (x)−∇f (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Rd , (1)

which implies the following

f (x) ≤ f (y)+ 〈∇f (y), x − y〉 +
L
2
‖x − y‖2. (2)

Assumption 2: LetEt denote the expectation at iteration t.
Then Et [gt,i] = ∇f (xt) and ∃σ, Et [‖gt,i −∇f (xt)‖2] ≤ σ 2.

Assumption 3: There is a constant ω such that
‖∇f (xt)‖2 ≤ ω2.
Assumption 4: The vectors {gt,i−∇f (xt)}1≤i≤M are inde-

pendently random.
Below are some useful and direct derivations from the

assumptions used later in the mathematical proof of conver-
gence. Because Et [‖gt,i − ∇f (xt)‖2] ≤ σ 2 and ‖∇f (xt)‖2 ≤
ω2, we obtain

Et [‖gt,i‖2] ≤ G2
= σ 2

+ ω2. (3)

which implies

Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 ≤ G2. (4)

By Assumption 4, we have

Et

∥∥∥∥∥
M∑
i=1

(gt,i−∇f (xt))

∥∥∥∥∥
2 = M∑

i=1

Et
[∥∥gt,i−∇f (xt)∥∥2]

≤ Mσ 2.

Therefore

Et

∥∥∥∥∥ 1
M

M∑
i=1

(gt,i −∇f (xt))

∥∥∥∥∥
2 ≤ σ 2

M
. (5)

III. ALGORITHM 1 AND ITS MATHEMATICAL
CONVERGENCE
The design of Algorithm 1 follows those in [4], [10], but the
communication between anyworker and the server is gradient
signs as in [11]. To make this combination not decreasing the
top-1 accuracy on the ImageNet dataset, we introduce a little
trick in lines 12 and 17 of Algorithm 1: the errors in each
iteration are updated by error-learning rates ct (at worker) and
c̃t (at server). In the experiments, we simply select ct = c̃t =
O(10−3) as a small constant. These errors are bounded as in
Lemma 1.
To realize the randomized method signβt,i (p) at line 8

where each sign is kept as-is with probability βt,i, it suf-
fices for the workers and the server to agree on a
method maskgen(t, i) generating a vector mask(t,i) =
(mask(t,i)1 , . . . ,mask(t,i)d) ∈ {0, 1}d in which each compo-
nent is 1 with probability βt,i and 0 with probability 1− βt,i.
Each worker i, at iteration t , only transmits the gradient signs
corresponding to the component of value 1 in themask vector.
For line 16, a similar method maskgenServer(t) is agreed
between the server and the workers.
Lemma 1 (Error Bound for Lines 12 and 17 of

Algorithm 1): Let p be a vector in Rd . For some sufficiently
small c > 0, there exists 0 < δβ < 1 such that

‖c · signβ (p)− p‖
2
≤ (1− δβ)‖p‖2 (6)

Proof: Expanding the left-hand side as follows:

‖c · signβ (p)− p‖
2

= 〈c · signβ (p)− p, c · signβ (p)− p〉
= 〈c · signβ (p), c · signβ (p)〉 − 2c〈signβ (p), p〉 + 〈p, p〉

= c2‖signβ (p)‖
2
− 2c〈signβ (p), p〉 + ‖p‖

2.

To ensure (6), it suffices to have

c2‖signβ (p)‖
2
− 2c〈signβ (p), p〉 + ‖p‖

2
≤ (1− δβ)‖p‖2

which is equivalent to the following

δβ ≤
2c〈signβ (p), p〉 − c

2
‖signβ (p)‖

2

‖p‖2
. (7)

To allow δβ > 0 in (7), it is necessary that

2c〈signβ (p), p〉 − c
2
‖signβ (p)‖

2 > 0,

or equivalently,

2〈signβ (p), p〉
‖signβ (p)‖2

> c (8)

owing to the fact that c > 0. Note that, with vectors p =
(p1, . . . , pd) ∈ Rd , signβ (p) = (s1, . . . , sd) ∈ {−1, 0, 1}d ,

VOLUME 8, 2020 191841

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

Algorithm 1 Distributed signSGD With Sign Dropouts (DROPSIGNSGD)

1: Input: Neural-net loss function `, sequences {ηt }, {ct }, {c̃t }, momentum 0 ≤ µ < 1, keep-or-drop parameters βt,i, β̃t
2: Initialize: x0 ∈ Rd ; m−1,i = e0,i = 0 ∈ Rd ; ẽ0 = 0 ∈ Rd initially
3: for t ∈ {0, . . . ,T − 1} do
4: • on each worker i (1 ≤ i ≤ M):
5: Select data ξt,i and compute gt,i = ∇`(xt , ξt,i) F stochastic gradient
6: mt,i = µmt−1,i + gt,i F stochastic momentum
7: pt,i = µmt,i + gt,i + et,i F gradient with Nesterov momentum plus the error from the previous iteration
8: 1t,i = signβt,i (pt,i) F the gradient signs, kept as-is (i.e., ±1) with prob. βt,i, and 0 with prob. 1− βt,i
9: push 1t,i to server

10: pull 1̃t from server
11: xt+1 = xt − ηt1̃t F update the neural network weight
12: et+1,i = pt,i − ct1t,i F update the local error, with error-learning rate ct
13: • on central parameter server:
14: receive 1t,i for all 1 ≤ i ≤ M
15: compute p̃t = 1

M

∑M
i=1 ct1t,i + ẽt F average all workers 1t,i, and adding possible server error

16: push 1̃t = signβ̃t (p̃t) to each worker F each component is ±1 with prob. β̃t , and 0 with prob. 1− β̃t
17: ẽt+1 = p̃t − c̃t1̃t F update the server error, with error-learning rate c̃t
18: end for

and I = {i : si 6= 0}, we have

〈signβ (p), p〉 =
∑
i∈I
|pi| > 0

and thus the left-hand side of (8) is a positive number. There-
fore, there always exists a small constant c satisfying (8),
finishing the proof.

In the experiments, we select c as small as O(10−3) by the
following intuition from formula (8). The left-hand side of
formula (8) can be written as, using the same notations as
above,

2
∑

i∈I |pi|
|I|

,

which is proportional to the average of gradient norm. There-
fore, if the average is larger than the small constant c (e.g.,
c = O(10−3)), Lemma 1 holds true; and hence by the
subsequent Theorem 1, Algorithm 1 continues to converge,
which is desirable. Reversely, when the gradient average
becomes smaller than the constant c, Algorithm 1 potentially
reaches a stationary point which can be a minimum. As a
concrete example, we plot in Figure 3 the graphs of accuracies
when varying the error-learning rates ct = c̃t = c, using
the ImageNet dataset and the ResNet-50 model for a few
epochs. The top-1 accuracies with c = c′ × 10−3 with small
c′ ∈ {2, 4, 6, 8, 10} are close, and relatively more stable than
the one with larger c′ = 100. We exploit this observation in
subsequent experiments in Section IV.
Lemma 2 (Total Error Bound): In Algorithm 1, let ηt =

η > 0, and δ = min{δβt,i}t,i and δ̃ = min{δβ̃t }. There exists a
value U depending on δ, δ̃ such that∥∥∥∥∥ẽt + 1

M

M∑
i=1

et,i

∥∥∥∥∥
2

≤
G2 U

(1− µ)2
.

FIGURE 3. Searching for a suitable error-learning rate.

Proof: Given in the Appendix.
Themathematical convergence assurance ofDROPSIGNSGD

is in Theorem 1 in which Lemma 1 and Lemma 2 play an
important role in estimating the errors incurred by not sending
the real gradients but only their signs. Other lemmas play a
supporting role, breaking the complexity of the proof into
small parts to ease the presentation.
Theorem 1 (Convergence ofDROPSIGNSGD): Suppose that

Assumptions 1-4 hold. Let ηt = η > 0, ct = c̃t = c > 0 ∀t ≥
0, then there exists a learning rate η such that

mintE[‖∇f (xt)‖2] ≤ O
(

1
√
MT

)
.

Proof of Theorem 1: We consider the following iterate
as in Lemma 8

zt = x̃t −
ηµ2

c(1− µ)
1
M

M∑
i=1

mt−1,i,

191842 VOLUME 8, 2020

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

where

x̃t = xt −
η

c

(
ẽt +

1
M

M∑
i=1

et,i

)
.

Using (2), under the smoothness assumption,

Et [f (zt+1)]

≤ f (zt)+ 〈∇f (zt),Et [zt+1 − zt]〉 +
L
2
Et [‖zt+1 − zt‖2]

= f (zt)−
η

c(1− µ)

〈
∇f (zt),Et

[
1
M

M∑
i=1

gt,i

]〉

+
Lη2

2c2(1− µ)2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 (9)

= f (zt)−
η

c(1− µ)
〈∇f (zt),∇f (xt)〉

+
Lη2

2c2(1− µ)2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 , (10)

where (9) is by Lemma 8 and (10) is by Assumption 2.
In addition, given

Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i

∥∥∥∥∥
2 = Et

[
‖∇f (xt)‖2

]

+Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i −∇f (xt)

∥∥∥∥∥
2 ,

combining with (10), we have

Et [f (zt+1)] ≤ f (zt)−
η

c(1− µ)
〈∇f (zt),∇f (xt)〉

+
Lη2

2c2(1− µ)2
Et‖∇f (xt)‖2

+
Lη2

2c2(1−µ)2
Et

∥∥∥∥∥ 1
M

M∑
i=1

gt,i−∇f (xt)

∥∥∥∥∥
2 .

By (5), we obtain

Et [f (zt+1)] ≤ f (zt)−
η

c(1− µ)
〈∇f (zt),∇f (xt)〉

+
Lη2

2c2(1− µ)2
Et‖∇f (xt)‖2+

Lη2σ 2

2c2(1− µ)2M
.

(11)

In addition, we have

−〈∇f (zt),∇f (xt)〉
= 〈∇f (xt)−∇f (zt),∇f (xt)〉 − 〈∇f (xt),∇f (xt)〉
= 〈∇f (xt)−∇f (zt),∇f (xt)〉 − ‖∇f (xt)‖2

≤
1
2
‖∇f (xt)‖2 +

1
2
‖∇f (xt)−∇f (zt)‖2

−‖∇f (xt)‖2

= −

(
1−

1
2

)
‖∇f (xt)‖2 +

1
2
‖∇f (xt)−∇f (zt)‖2

≤ −
1
2
‖∇f (xt)‖2 +

L2

2
‖xt − zt‖2, (12)

where the last inequality is by Assumption 1. Using Lemma 7
and Lemma 8, we obtain

‖xt − zt‖2

≤ 2‖xt − x̃t‖2 + 2‖x̃t − zt‖2

= 2
η2

c2

∥∥∥∥∥ẽt + 1
M

M∑
i=1

et,i

∥∥∥∥∥
2

+
2η2µ4

c2(1− µ)2

∥∥∥∥∥ 1
M

M∑
i=1

mt−1,i

∥∥∥∥∥
2

.

Applying Lemma 6 and Lemma 2, we get

‖xt − zt‖2 ≤
2η2G2U
c2(1− µ)2

+
2η2µ4

c2(1− µ)3

t−1∑
k=0

µt−1−k

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2

.

(13)

Substituting (13) into (12) gives us

−〈∇f (zt),∇f (xt)〉

≤ −
1
2
‖∇f (xt)‖2 +

η2 G2 L2 U
c2(1− µ)2

+
η2µ4L2

c2(1− µ)3

t−1∑
k=0

µt−1−k

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2

.

Therefore, by (11), we have

Et [f (zt+1)]

≤ f (zt)−
(

η

2c(1− µ)
−

Lη2

2c2(1− µ)2

)
Et‖∇f (xt)‖2

+
Lη2σ 2

2c2(1− µ)2M
+
η3 G2 L2 U
c3(1− µ)3

+
η3µ4L2

c3(1− µ)4

t−1∑
k=0

µt−1−k

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2

.

Rearranging the terms, taking total expectation give us(
η

2c(1− µ)
−

Lη2

2c2(1− µ)2

)
E[‖∇f (xt)‖2]

≤ E[f (zt)− f (zt+1)]+
Lη2σ 2

2c2(1− µ)2M
+
η3 G2 L2 U
c3(1− µ)3

+
η3µ4L2

c3(1− µ)4

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2 .

Because
T−1∑
t=0

E[f (zt)− f (zt+1)] = f (z0)− f (zT)

= f (x0)− f (zT) ≤ f (x0)− f ?,

we have(
η

2c(1− µ)
−

Lη2

2c2(1− µ)2

) T−1∑
t=0

E[‖∇f (xt)‖2]

≤ f (x0)− f ? +
Lη2σ 2T

2c2(1− µ)2M
+
η3 G2 L2 UT
c3(1− µ)3

+
η3µ4L2

c3(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2 .

VOLUME 8, 2020 191843

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

= f (x0)− f ? +
Lη2σ 2T

2c2(1− µ)2M
+
η3 G2 L2 UT
c3(1− µ)3

+
η3µ4L2

c3(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE
[
‖∇f (xk)‖2

]

+
η3µ4L2

c3(1− µ)4

T−1∑
t=0

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1
M

M∑
i=1

gk,i−∇f (xk)

∥∥∥∥∥
2

.

By (5), we obtain

t−1∑
k=0

µt−1−kE

∥∥∥∥∥ 1
M

M∑
i=1

gk,i −∇f (xk)

∥∥∥∥∥
2 ≤ σ 2

M

t−1∑
k=0

µt−1−k

≤
σ 2

M (1− µ)
.

Moreover, we have

T−1∑
t=0

t−1∑
k=0

µt−1−kE
[
‖∇f (xk)‖2

]
=

T−2∑
k=0

T−1∑
t=k+1

µt−1−kE
[
‖∇f (xk)‖2

]

=

T−2∑
k=0

E
[
‖∇f (xk)‖2

] T∑
t=k+1

µt−1−k

≤
1

1− µ

T−2∑
k=0

E
[
‖∇f (xk)‖2

]
≤

1
1− µ

T−1∑
k=0

E
[
‖∇f (xk)‖2

]
.

Therefore(
η

2c(1− µ)
−

Lη2

2c2(1− µ)2

) T−1∑
t=0

E[‖∇f (xt)‖2]

≤ f (x0)− f ? +
Lη2σ 2T

2c2(1− µ)2M
+
η3 G2 L2 UT
c3(1− µ)3

+
η3µ4L2

c3(1− µ)5

T−1∑
k=0

E
[
‖∇f (xk)‖2

]
+
η3µ4L2σ 2 T
c3(1− µ)5M

.

Let

V =
η

2c(1− µ)
−

Lη2

2c2(1− µ)2
−

η3µ4L2

c3(1− µ)5
,

we obtain

V
T−1∑
t=0

E[‖∇f (xt)‖2]

≤ f (x0)− f ? +
Lη2σ 2T

2c2(1− µ)2M
+
η3 G2 L2 UT
c3(1− µ)3

+
η3µ4L2σ 2T
c3(1− µ)5M

.

Let η ≤ c(1−µ)2
2L . Then

V =
η

2c(1− µ)
−

Lη2

2c2(1− µ)2
−

η3µ4L2

c3(1− µ)5

=
η

2c(1− µ)

(
1−

Lη
c(1− µ)

−
2η2µ4L2

c2(1− µ)4

)
≥

η

2c(1− µ)

(
1−

1− µ
2
−
µ4

2

)
≥

η

4c(1− µ)
.

Therefore

η

4c(1− µ)

T−1∑
t=0

E[‖∇f (xt)‖2]

≤ f (x0)− f ? +
Lη2σ 2T

2c2(1− µ)2M
+
η3 G2 L2 UT
c3(1− µ)3

+
η3µ4L2σ 2T
c3(1− µ)5M

.

Multiplying both sides with 4c(1−µ)
ηT , we get

1
T

T−1∑
t=0

E[‖∇f (xt)‖2] ≤
4c(1− µ)(f (x0)− f ?)

ηT
+

2Lησ 2

c(1− µ)M

+
4η2µ4L2σ 2

c2(1− µ)4M
+
4η2G2 L2 U
c2(1− µ)2

,

which implies

mintE[‖∇f (xt)‖2] ≤
4c(1− µ)(f (x0)− f ?)

ηT
+

2Lησ 2

c(1− µ)M

+
4η2µ4L2σ 2

c2(1− µ)4M
+
4η2G2 L2 U
c2(1− µ)2

,

and thereby the theorem statement is obtained by simply
selecting η =

√
M/
√
T .

IV. EXPERIMENTS
We conduct experiments using ResNet-50 [34], trained with
the large-scale ImageNet dataset [35]. We slightly change the
PyTorch codes given in [11], [36] with necessary adaptation
to DROPSIGNSGD.

A. TOLERANCE OF RESCALING ADVERSARY
A rescaling adversary captures the network faults in which
the vector 1 in communication between any worker and the
server is multiplied element-wise with an adversarial vector
v of positive components, written as v > 0 for short. Given
1 as in lines 8 and 16 of DROPSIGNSGD, it can be seen that
the algorithm tolerates this type of adversary almost for free,
because1 = sign(1) = sign(1 ·v) in which ‘‘·’’ is element-
wise multiplication. Practically, the server and any worker
can detect the faults by inspecting the component values, and
then fix them just by taking the sign of the communicated
vector if necessary. Experimental results with respect to this
type of network fault are given in Table 1 and Figure 2.

191844 VOLUME 8, 2020

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

TABLE 2. Network-fault (sign inversion) tolerance. The number of network parameters d = 25, 557, 032.

FIGURE 4. Comparisons on ImageNet top-1 testing accuracies with those in Bernstein et al. [11], when a
fraction (respectively 0%, 14%, 29%, 43%) of workers behave adversarially, inverting their gradient signs.

B. TOLERANCE OF SIGN-INVERTING ADVERSARY
A sign-inverting adversary, as the name suggested, inverts the
signs of the vector in communication. That is, the vector 1
before transmission becomes −1 after transmission. This is
the most devastating adversary considered in [11], intuitively
because it forces the learning algorithm to move the weight
parameters sharply against the minimum of the loss function.
In Table 2 and Figure 4, we provide the experimental results
with respect to the tolerance of this adversary type, for both
DROPSIGNSGD and signSGD with majority vote [11]. When
there is no sign-inverting adversary, DROPSIGNSGD obtains
the top-1 accuracy of 76.64% (and top-5 of 92.91%), which
is higher than those of signSGD with majority vote [11].
When the number of adversaries is 1, 2, 3, the top-1 accu-
racies (75.93%, 75.01%, 70.41%) are given in comparison
with those in [11], and additionally the top-5 accuracies of
DROPSIGNSGD are 92.65%, 92.20%, 89.66%, respectively.
Among M = 7 workers, in each iteration, we consider
scenarios in which at most 3 (i.e., 43%) workers have faulty
communication. The choice of faulty communication link
is random at every iteration, capturing the idea that the

network fault is unforeseen. We simply select the error-
learning rates ct = c̃t = 6 × 10−3 for all workers and the
server. For all iteration t and worker i, the rate βt,i is set
to 0.3, meaning 30% of gradient signs are transmitted from
each worker to the server. The rate β̃t is set to 0.5, meaning
50% of aggregated gradient signs are transmitted from the
server to the workers. These rates make DROPSIGNSGD more
communication-efficient than the counterpart in [11], and we
intentionally set the rates small to reduce the bad effects of
sign inversion. Indeed, the fact that 70% of worker gradients
are zeroedmakes sign inversion fault less severe as confirmed
in the experiments. Putting it all together, DROPSIGNSGD is
able to achieve better testing accuracy than the counterpart
in [11]. The use of communication rates in DROPSIGNSGD
is perhaps similar to the well-known technique of dropouts
in deep neural networks: training with fewer and randomly-
selected neural nodes (cf., with less and randomly-selected
communication in DROPSIGNSGD) may give better results
than with all and fixed neural nodes (cf., with all and
fixed communication from the server and the workers
in DROPSIGNSGD).

VOLUME 8, 2020 191845

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

V. CONCLUSION
We design and evaluate DROPSIGNSGD as a variant of
signSGD with majority vote, with better tolerance of
network faults while having less communication for both
workers and server. Under standard assumptions on the
non-convex loss function, we show that DROPSIGNSGD con-
verges mathematically. In addition, compared with state-
of-the-art, DROPSIGNSGD experimentally exhibits superior
performance with respect to rescaling and sign-inverting
adversaries which models network faults. We believe that
communication efficiency and robustness such as network-
fault tolerance in distributed systems are important in order
to scale the system, and suggest pushing the state-of-the-art
to a new stage as a future research direction.

AUXILIARY LEMMAS
Below are necessary lemmas for proving the convergence of
DROPSIGNSGD. Some are borrowed from [10] repeated here
for completeness and thus without proofs, while the others
are dedicated to DROPSIGNSGD.
Lemma 3 (Lemma 1 of [10]): Let {at } is a non-negative

sequence in R such that a0 = 0 and, for all t ≥ 0, and non-
negative numbers α, β ∈ R such that at+1 ≤ αat + β. Then
at+1 ≤ β

∑t
j=0 α

j.

Lemma 4 (Lemma 3 of [10]): Let 0 < M ∈ N and xi ∈
Rd . Then ∥∥∥∥∥ 1

M

M∑
i=1

xi

∥∥∥∥∥
2

≤
1
M

M∑
i=1

‖xi‖2 .

Lemma 5 (Lemma 4 of [10]): For any 1 ≤ i ≤ M,

E[‖µmt,i + gt,i‖2] ≤
G2

(1− µ)2
.

Lemma 6 (Lemma 5 of [10]):∥∥∥∥∥ 1
M

M∑
i=1

mt−1,i

∥∥∥∥∥
2

≤
1

1− µ

 t−1∑
k=0

µt−1−k

∥∥∥∥∥ 1
M

M∑
i=1

gk,i

∥∥∥∥∥
2 .

Lemma 7: Let ηt = η > 0, ct = c̃t = c > 0. The error-
corected iterate

x̃t = xt −
η

c

(
ẽt +

1
M

M∑
i=1

et,i

)
,

where xt , ẽt and et,i are generated from Algorithm 1, satisfies

x̃t+1 = x̃t −
η

cM

M∑
i=1

(µmt,i + gt,i).

Proof: The following equations are by definition

x̃t+1 = xt+1 −
η

c

(
ẽt+1 +

1
M

M∑
i=1

et+1,i

)
= xt − η · signβ̃t (p̃t)

−
η

c
(p̃t − c · signβ̃t (p̃t))−

η

c
1
M

M∑
i=1

et+1,i

= xt −
η

c

(
c
M

M∑
i=1

signβt,i (pt,i)+ ẽt

)

−
η

c
1
M

M∑
i=1

et+1,i

= xt −
η

c
1
M

M∑
i=1

(c · signβt,i (pt,i)+ et+1,i)−
η

c
ẽt

= xt −
η

c
1
M

M∑
i=1

pt,i −
η

c
ẽt

= xt −
η

c
ẽt −

η

c
1
M

M∑
i=1

(
µmt,i + gt,i + et,i

)
= xt −

η

c

(
ẽt +

1
M

M∑
i=1

et,i

)

−
η

c
1
M

M∑
i=1

(µmt,i + gt,i)

= x̃t −
η

c
1
M

M∑
i=1

(µmt,i + gt,i)

which ends the proof.
Lemma 8: Let ηt = η > 0, ct = c̃t = c > 0. With the

sequence {x̃t } in Lemma 7, consider the following iterate

zt = x̃t −
ηµ2

c(1− µ)
1
M

M∑
i=1

mt−1,i.

Then

zt+1 = zt −
η

c(1− µ)
1
M

M∑
i=1

gt,i.

Proof: We have

zt+1 = x̃t+1 −
ηµ2

c(1− µ)
1
M

M∑
i=1

mt,i

= x̃t −
η

cM

M∑
i=1

(µmt,i + gt,i)−
ηµ2

c(1− µ)
1
M

M∑
i=1

mt,i

= x̃t −
ηµ

c(1− µ)
1
M

M∑
i=1

mt,i −
η

cM

M∑
i=1

gt,i

= x̃t −
ηµ2

c(1− µ)
1
M

M∑
i=1

mt−1,i

−
ηµ

c(1− µ)
1
M

M∑
i=1

gt,i −
η

cM

M∑
i=1

gt,i

= zt −
η

c(1− µ)
1
M

M∑
i=1

gt,i

as claimed in the lemma statement.

191846 VOLUME 8, 2020

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

PROOF OF LEMMA 2
Proof: We have∥∥∥∥∥ẽt+1 + 1

M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤ 2‖ẽt+1‖2 + 2‖
1
M

M∑
i=1

et+1,i‖2

≤ 2‖ẽt+1‖2 +
2
M

M∑
i=1

‖et+1,i‖2, (14)

where the first inequality is by the fact that (a+ b)2 ≤ 2a2+
2b2,∀a, b, and the second inequality is by Lemma 4. We will
separately bound the two terms of (14). We have

1
M

M∑
i=1

‖et+1,i‖2

=
1
M

M∑
i=1

‖ctsignβt,i (pt,i)− pt,i‖
2 (15)

≤
1
M

M∑
i=1

(1− δβt,i)‖pt,i‖
2 (16)

≤
1− δ
M

M∑
i=1

‖pt,i‖2 (17)

=
1− δ
M

M∑
i=1

‖et,i + µmt,i + gt,i‖2 (18)

≤
(1− δ)(1+ γ)

M

M∑
i=1

‖et,i‖2 (19)

+
(1− δ)(1+ 1/γ)

M

M∑
i=1

‖µmt,i + gt,i‖2

≤ (1− δ)(1+ γ)

(
1
M

M∑
i=1

‖et,i‖2
)

+ (1− δ)(1+ 1/γ)
G2

(1− µ)2
, (20)

where equality (15) and (18) is by the setting of et+1,i and pt,i
in Algorithm 1; (17) is by δ = min{δβt,i}; (16) is by Lemma 1;
(19) is by Young inequality with any γ > 0; and (20) is by
Lemma 5. Note that inequality (20) is of the form

at+1 ≤ αat + β, (21)

where

at+1 =
1
M

M∑
i=1

‖et+1,i‖2

α = (1− δ)(1+ γ)

β = (1− δ)(1+ 1/γ)
G2

(1− µ)2
.

Applying Lemma 3, we obtain

at+1 ≤ β
t∑
j=0

αj, (22)

By choosing γ = δ
2(1−δ) , we get β =

(1−δ)(2−δ)G2

δ(1−µ)2
and α =

1− δ
2 . Since 0 < α < 1, we have

∑t
j=0 α

j
≤
∑

j≥0 α
j
=

1
1−α .

Therefore (22) becomes

1
M

M∑
i=1

‖et+1,i‖2 ≤
β

1− α

=
2(1− δ)(2− δ)G2

δ2(1− µ)2
. (23)

Next, we consider the term ‖ẽt+1‖2 of (14). By definition,
we have

‖ẽt+1‖2 = ‖c̃tsignβ̃t (p̃t)− p̃t‖
2

≤ (1− δβ̃t)‖p̃t‖
2

= (1− δβ̃t)

∥∥∥∥∥ 1
M

M∑
i=1

ctsignβt,i (pt,i)+ ẽt

∥∥∥∥∥
2

≤ (1− δ̃)(1+ λ)‖ẽt‖2

+ (1− δ̃)(1+ 1/λ)

∥∥∥∥∥ 1
M

M∑
i=1

ctsignβt,i (pt,i)

∥∥∥∥∥
2

where the last inequality is by Young inequality for any λ >
0, and the fact that δ̃ = min{δβ̃t }. We have∥∥∥∥∥ 1
M

M∑
i=1

ctsignβt,i (pt,i)

∥∥∥∥∥
2

≤
1
M

M∑
i=1

‖ctsignβt,i (pt,i)‖
2 (24)

≤
1
M

M∑
i=1

(
2‖ctsignβt,i (pt,i)− pt,i‖

2
+ 2‖pt,i‖2

)
(25)

≤
1
M

M∑
i=1

(
2(1− δβt,i)‖pt,i‖

2
+ 2‖pt,i‖2

)
(26)

=
1
M

M∑
i=1

2(2− δβt,i)‖pt,i‖
2

≤ 2(2− δ)
1
M

M∑
i=1

‖pt,i‖2, (27)

where (24) is by Lemma 4; (25) is by the Young inequality;
(26) is by Lemma 1; and (27) is by δ = min{δβt,i}. Therefore

‖ẽt+1‖2 ≤ (1− δ̃)(1+ λ)‖ẽt‖2

+ 2(2− δ)(1− δ̃)(1+ 1/λ)
1
M

M∑
i=1

‖pt,i‖2

VOLUME 8, 2020 191847

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

Moreover, (17), (20), and (23) yield

1− δ
M

M∑
i=1

‖pt,i‖2 ≤ (1− δ)(1+ γ)

(
1
M

M∑
i=1

‖et,i‖2
)

+ (1− δ)(1+ 1/γ)
G2

(1− µ)2

≤ (1− δ)(1+ γ)
2(1− δ)(2− δ)G2

δ2(1− µ)2

+ (1− δ)(1+ 1/γ)
G2

(1− µ)2

which reduces to the following inequality, because γ =
δ

2(1−δ) :

1
M

M∑
i=1

‖pt,i‖2 ≤
2(2− δ)G2

δ2(1− µ)2
.

Therefore

‖ẽt+1‖2 ≤ (1− δ̃)(1+ λ)‖ẽt‖2

+
4(2− δ)2(1− δ̃)(1+ 1/λ)G2

δ2(1− µ)2
.

Choosing λ = δ̃

2(1−δ̃)
, we obtain

(1− δ̃)(1+ λ) = 1−
δ̃

2

1+ 1/λ =
2− δ̃

δ̃
.

Therefore

‖ẽt+1‖2≤

(
1−

δ̃

2

)
‖ẽt‖2 +

4(1− δ̃)(2− δ̃)(2− δ)2G2

δ̃δ2(1− µ)2
.

(28)

Note that inequality (28) is of the form

at+1 ≤ αat + β, (29)

where

at+1 = ‖ẽt+1‖2

α = 1−
δ̃

2

β =
4(1− δ̃)(2− δ̃)(2− δ)2G2

δ̃δ2(1− µ)2
.

Applying Lemma 3, we obtain

‖ẽt+1‖2 ≤ β
t∑
j=0

αj

≤
8(1− δ̃)(2− δ̃)(2− δ)2G2

(δ̃)2δ2(1− µ)2
(30)

where (30) is by the fact that
t∑
j=0

αj ≤
∑
j≥0

αj =
1

1− α
=

2

δ̃
.

Substituting (23) and (30) into (14) gives us∥∥∥∥∥ẽt+1 + 1
M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤
4(1− δ)(2− δ)G2

δ2(1− µ)2
+

16(1− δ̃)(2− δ̃)(2− δ)2G2

(δ̃)2δ2(1− µ)2

=
4(2− δ)G2

δ2(1− µ)2

(
1− δ +

4(1− δ̃)(2− δ̃)(2− δ)

(δ̃)2

)
.

Let

U =
4(2− δ)
δ2

(
1− δ +

4(1− δ̃)(2− δ̃)(2− δ)

(δ̃)2

)
we have ∥∥∥∥∥ẽt+1 + 1

M

M∑
i=1

et+1,i

∥∥∥∥∥
2

≤
G2 U

(1− µ)2

and the claim follows.

ACKNOWLEDGMENT
The authors are grateful to the anonymous reviewers
whose comprehensive comments greatly help improve this
manuscript.

REFERENCES
[1] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, V. Q. Le, Z. M. Mao,

M. Ranzato, W. A. Senior, A. P. Tucker, K. Yang, and Y. A. Ng, ‘‘Large
scale distributed deep networks,’’ in Proc. 26th Annu. Conf. Neural Inf.
Process. Syst., 2012, pp. 1232–1240.

[2] B. Recht, C. Re, S. Wright, and F. Niu, ‘‘Hogwild: A lock-free approach
to parallelizing stochastic gradient descent,’’ in Proc. Adv. Neural Inf.
Process. Syst., J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira,
K. Q. Weinberger, Eds. New York, NY, USA: Curran Associates, 2011,
pp. 693–701.

[3] J. Dean and L. A. Barroso, ‘‘The tail at scale,’’ Commun. ACM, vol. 56,
no. 2, pp. 74–80, Feb. 2013.

[4] S. Zheng, Z. Huang, and T. James Kwok, ‘‘Communication-efficient
distributed blockwise momentum SGDwith error-feedback,’’ in Proc. Adv.
Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst., NeurIPS,
2019, pp. 11446–11456. [Online]. Available: https://arxiv.org/abs/
1905.10936

[5] H. Tang, C. Yu, X. Lian, T. Zhang, and J. Liu, ‘‘DoubleSqueeze:
Parallel stochastic gradient descent with double-pass error-compensated
compression,’’ in Proc. 36th Int. Conf. Mach. Learn., vol. 97, K. Chaudhuri
and R. Salakhutdinov, Eds. 2019, pp. 6155–6165.

[6] D. Basu, D. Data, C. Karakus, and N. Suhas Diggavi, ‘‘Qsparse-local-
SGB: Distributed SGD with quantization, sparsification and local compu-
tations,’’ in Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf.
Process. Syst., NeurIPS, 2019, pp. 14668–14679.

[7] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, ‘‘Redundancy techniques for
straggler mitigation in distributed optimization and learning,’’ J. Mach.
Learn. Res., vol. 20, no. 72, pp. 1–47, 2019.

[8] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, ‘‘Byzantine-Robust distributed
learning: Towards optimal statistical rates,’’ in Proc. 35th Int. Conf. Mach.
Learn. (ICML), vol. 80, Jul. 2018, pp. 5650–5659.

[9] E. M. E. Mhamdi, R. Guerraoui, and S. Rouault, ‘‘The hidden vulnerability
of distributed learning in Byzantium,’’ in Proc. 35th Int. Conf. Mach.
Learn., J. Dy and A. Krause, Eds. Stockholm Sweden: Stockholmsmässan,
vol. 80, Jul. 2018, pp. 3521–3530.

[10] T. T. Phuong and L. T. Phong, ‘‘Distributed SGD with flexible gradient
compression,’’ IEEE Access, vol. 8, pp. 64707–64717, 2020.

[11] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, ‘‘signSGD
with majority vote is communication efficient and fault tolerant,’’ in Proc.
7th Int. Conf. Learn. Represent., ICLR, 2019, pp. 1–20.

191848 VOLUME 8, 2020

L. T. Phong, T. T. Phuong: Distributed SignSGD With Improved Accuracy and Network-Fault Tolerance

[12] S. P. Karimireddy, Q. Rebjock, U. Sebastian Stich, and M. Jaggi, ‘‘Error
feedback fixes signSGD and other gradient compression schemes,’’ in
Proc. 36th Int. Conf. Mach. Learn., ICML, 2019, pp. 3252–3261. [Online].
Available: https://arxiv.org/abs/1901.09847

[13] P. Blanchard, E. M. E. Mhamdi, R. Guerraoui, and J. Stainer, ‘‘Machine
learning with adversaries: Byzantine tolerant Gradien descent,’’ in Proc.
Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf. Process. Syst.,
I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus,
S. V. N. Vishwanathan, and R. Garnett, Eds. Long Beach, CA, USA,
Dec. 2017, pp. 119–129.

[14] D. Yin, Y. Chen, K. Ramchandran, and L. Peter Bartlett, ‘‘Byzantine-
robust distributed learning: Towards optimal statistical rates,’’ inProc. 35th
Int. Conf. Mach. Learn., ICML, vol. 80, J. G. Dy and A. Krause, Eds.
Stockholm, Sweden: Stockholmsmässan, Jul. 2018, pp. 5636–5645.

[15] D. Alistarh, Z. Allen-Zhu, and J. Li, ‘‘Byzantine stochastic gradient
descent,’’ in Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural
Inf. Process. Syst., NeurIPS, S. Bengio, H. M. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Ed. Montreal, QC, Canada,
Dec. 2018, pp. 4618–4628.

[16] U. Sebastian Stich, J. Cordonnier, and M. Jaggi, ‘‘Sparsified SGD with
memory,’’ in Proc. Adv. Neural Inf. Process. Syst., Annu. Conf. Neural Inf.
Process. Syst., 2018, pp. 4452–4463.

[17] T. Vogels, S. P. Karimireddy, and M. Jaggi, ‘‘PowerSGD: Practical low-
rank gradient compression for distributed optimization,’’ in Proc. Adv.
Neural Inf. Process. Syst., H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett, Eds. New York, NY, USA: Curran
Associates, 2019, pp. 14236–14245.

[18] X. Liu, Y. Li, J. Tang, and M. Yan, ‘‘A double residual compression
algorithm for efficient distributed learning,’’ in Proc. 23rd Int. Conf. Artif.
Intell. Statist., AISTATS, S. Chiappa and R. Calandra, Eds. Palermo, Italy,
vol. 108, Aug. 2020, pp. 133–143.

[19] T. T. Phuong and L. T. Phong, ‘‘Communication-efficient distributed SGD
with error-feedback, revisited,’’ 2020, arXiv:2003.04706. [Online]. Avail-
able: https://arxiv.org/abs/2003.04706

[20] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
‘‘Reducing latency via redundant requests: Exact analysis,’’ in Proc. ACM
SIGMETRICS Int. Conf. Meas. Modeling Comput. Syst. SIGMETRICS,
2015, pp. 347–360.

[21] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, ‘‘Effective
straggler mitigation: Attack of the clones,’’ in Proc. 10th USENIX Symp.
Netw. Syst. Design Implement., NSDI, N. Feamster and J. C. Mogul, Eds.
Lombard, IL, USA: USENIX Association, Apr. 2013, pp. 185–198.

[22] N. B. Shah, K. Lee, and K. Ramchandran, ‘‘When do redundant requests
reduce latency?’’ IEEE Trans. Commun., vol. 64, no. 2, pp. 715–722,
Feb. 2016.

[23] D. Wang, G. Joshi, and G. Wornell, ‘‘Using straggler replication to reduce
latency in large-scale parallel computing,’’ ACM SIGMETRICS Perform.
Eval. Rev., vol. 43, no. 3, pp. 7–11, Nov. 2015.

[24] N. J. Yadwadkar, B. Hariharan, E. Joseph Gonzalez, and R. H. Katz,
‘‘Multi-task learning for straggler avoiding predictive job scheduling,’’
J. Mach. Learn. Res., vol. 17, pp. 106:1–106:37, Jan. 2016.

[25] A. Agarwal and J. C. Duchi, ‘‘Distributed delayed stochastic optimiza-
tion,’’ in Proc. IEEE 51st IEEE Conf. Decis. Control (CDC), Dec. 2012,
pp. 873–881.

[26] M. Li, G. D. Andersen, J. W. Park, J. A. Smola, A. Ahmed, V. Josifovski,
J. Long, J. E. Shekita, and B. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ in Proc. 11th USENIX Symp. Operating Syst.
Design Implement., OSDI, J. F. H. Levy, Ed. Broomfield, CO, USA:
USENIX Association, Oct. 2014, pp. 583–598.

[27] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz, ‘‘Revisiting distributed
synchronous SGD,’’ in Proc. Int. Conf. Learn. Represent. Workshop Track,
2016, pp. 1–10

[28] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, ‘‘Slow and stale
gradients can win the race: Error-runtime trade-offs in distributed SGD,’’
in Proc. Int. Conf. Artif. Intell. Statist., AISTATS, Apr. 2018, pp. 803–812.

[29] R. Tandon, Q. Lei, G. Alexandros Dimakis, and N. Karampatziakis, ‘‘Gra-
dient coding: Avoiding stragglers in distributed learning,’’ in Proc. 34th
Int. Conf. Mach. Learn., ICML, vol. 70, D. P. Y. W. Teh, Ed. Sydney, NSW,
Australia, Aug. 2017, pp. 3368–3376.

[30] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
‘‘Speeding up distributed machine learning using codes,’’ IEEE Trans. Inf.
Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[31] W. Halbawi, N. Azizan, F. Salehi, and B. Hassibi, ‘‘Improving distributed
gradient descent using Reed–Solomon codes,’’ in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2018, pp. 2027–2031.

[32] J. Sohn, D. Han, B. Choi, and J. Moon, ‘‘Election coding for dis-
tributed learning: Protecting SignSGD against Byzantine attacks,’’ 2019,
arXiv:1910.06093. [Online]. Available: https://arxiv.org/abs/1910.06093

[33] C. Torres-Huitzil and B. Girau, ‘‘Fault and error tolerance in neural net-
works: A review,’’ IEEE Access, vol. 5, pp. 17322–17341, 2017.

[34] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[35] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[36] Z. Huang. Source Code for Dist-Ef-SGDM. Accessed: Jul. 1, 2020.
[Online]. Available: https://github.com/ZiyueHuang/dist-ef-sgdm/tree/
master/imagenet

LE TRIEU PHONG received the Ph.D. degree
from the Tokyo Institute of Technology, in 2009.
He was an expert and the editor of multiple
ISO/IEC information security standard and docu-
ments. He is currently a Senior Researcher with
the National Institute of Information and Com-
munications Technology (NICT), Japan. He has
(co) authored more than 30 scientific articles,
including several published by the IEEE. His cur-
rent research interests include deep learning and
computer science in general.

TRAN THI PHUONG received the Ph.D. degree
in mathematics from Meiji University, in 2012.
She has (co) authored more than ten scientific
articles, including several published by the IEEE.
Her current research interests include mathematics
and deep learning, especially mathematical foun-
dations of deep leaning and mathematical conver-
gence of learning algorithms.

VOLUME 8, 2020 191849

