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ABSTRACT In this paper, we consider a reconfigurable intelligent surface (RIS) aided millimeter
wave (mmWave) multiple-input multiple-output (MIMO) system. The system can obtain the huge gain via
joint active beamforming at the base station (BS) and passive beamforming at the RIS. However, due to
weather and atmospheric effects, outdoor RIS antenna elements are subject to full or partial blockages from
a plethora of particles like dirt, salt, ice, and water droplets. These blockages can cause an approximate
squared power/SNR loss for the system. Different from the conventional array diagnosis, the RIS has no
signal processing capability. Thus, we propose the joint array diagnosis and channel estimation techniques
containing two stages to solve the problem. At the first stage the channel parameters at user equipment (UE)
and BS are estimated using an iterative reweighted (IR) method. At the second stage, the array blockage
coefficient vector and the effective sparse channel parameters at RIS are jointly estimated via solving a
two-timescale non-convex optimization problem. We propose two algorithms, i.e., a batch algorithm (BA)
and a two-timescale online joint array diagnosis and channel estimation (TOJADCE) algorithm to solve the
problem and compare the performance of these two algorithms. Finally, to speed up the convergence of
long-term variable and improve estimation performance, we propose a noise reduction (NR) algorithm. The
simulations verify the effectiveness of our proposed algorithms.

INDEX TERMS mmWave MIMO system, reconfigurable intelligent surface, joint array diagnosis and
channel estimation, two-timescale non-convex optimization.

I. INTRODUCTION
Millimeter wave (mmWave) multiple-input multiple-output
(MIMO) system is a promising candidate technology for
5G communication system [1]. Reconfigurable intelligent
surface (RIS), as an innovative technology, is considered
to have great potential for cost-effectively improving the
performance of mmWave MIMO system recently. The RIS
is composed of reconfigurable and nearly passive reflecting
antennas which are made of newly developed metamaterials.
Different from traditional reflecting surfaces with only fixed
phase shifters, each element of RIS can independently reflect
incident signals with reconfigurable amplitudes and phase
shifts by control of a smart micro controller. In many previous
literatures, the passive beamforming has been recommended
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to enhance the performance of system. In [2], it is verified that
the proposed joint active and passive beamforming method
can offer significant performance improvement comparing to
the traditional massive MIMO. Considering the power con-
sumption of the RIS in practical systems, a self-sustainable
RIS system is proposed where the self-sustainability is real-
ized by harvesting wireless power with each RIS elements
in [3]. To fully harvest the benefit of RIS-assisted mas-
sive MIMO system with passive beamforming, knowledge
of channel state information (CSI) is an essential require-
ment [2], [3]. Though the CSI acquisition in the traditional
mmWave MIMO has been well studied by many articles,
such as [4], [5]. In [4], a common support is proposed to
improve performance of compressive sensing (CS) channel
estimation. In [5], a channel estimation algorithm is proposed
based on effective channel in hybrid mmWave system and a
performance analysis with hardware impairments for channel
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estimation is discussed. Unfortunately, channel estimation
is still challenging for the RIS-aided MIMO system since
there is no signal processing capability at the RIS. Channel
estimation for RIS-aided MIMO system has been recently
studied in many previous works. In [6], [7], they proposed
a least squares (LS) estimator based on/off method through
switching groups of RIS elements on and off. To reduce the
training overhead, CS techniques and deep learning meth-
ods were proposed in [8]. The parallel factor decomposi-
tion method was presented for RIS-aided multi-user MISO
system in [9]. Besides, The reference [10] has presented
a two-stage method, including sparse matrix factorization
and matrix completion stage, to complete channel estima-
tion. Recently, the channel estimation problem was divided
into two subproblems and the authors applied an iterative
reweighted (IR) method to find the estimates of the channel
parameters sequentially in [11].

In the above works, the ideal hardware is assumed. How-
ever, in practice, the hardware impairments such as phase
noise, quantization errors, In-phase/Quadrature imbalance,
amplifier non-linearities and antenna array blockages are
inevitable and lead to a serious degradation in signal pro-
cessing performance [5], [12]–[14]. Specially, due to weather
and atmospheric effects, outdoor mmWave antenna elements
are subject to blockages from flying debris or particles found
in the air [15]–[17]. It is noteworthy that the term block-
age here represents a physical object partially or completely
blocking a subset of antenna elements and is different from
the mmWave channel blockage obstructed by the obstacles
which will be appeared later. Partial or complete blockage of
some of the antenna elements reduces the amount of energy
incident on the antenna [18]. The water droplets, thin water
film, snowflakes, dry and damp sand particles, and ice stones
on the antenna array are reported to cause attenuation and a
phase shift on mmWave signals. Therefore it is important to
monitor the antenna array of mmWave MIMO system via the
array diagnosis techniques, which are capable of detecting
the blocked antennas and the corresponding signal power
loss and phase shifts caused by the blocking particles. Sev-
eral array diagnosis techniques, which are based on genetic
algorithms [19], exhaustive search [20], MUSIC [21] and
convex optimization [22], have been proposed in the liter-
atures to identify the locations of faulty antenna elements.
In the case of large antenna arrays, these techniques involve a
large number of samples to achieve reliable results. There-
fore, compressed sensing (CS) has recently been proposed
in [23]–[25] for diagnosing large antenna arrays using
reduced number of samples. The group CS approach in [26],
[27] was proposed to estimate the locations of the blocked
antennas and the induced the complex blockage coefficients
including attenuation and phase shifts jointly.

In the conventional mmWave MIMO system, all the array
diagnosis techniques are designed for array at the BS. How-
ever, in the RIS-aided mmWave MIMO system, we have to
pay attention to the RIS, since the RIS plays a more important
role and it is more likely to be blocked. Particularly, according

to the investigation of [28], an asymptotic receive signal
power or signal-to-noise ratio (SNR) gain in the order of the
squared of the number of antennas can be obtained via joint
active beamforming at the BS and passive beamforming at the
RIS due to the fact that the RIS combines the functionalities
of both receive and transmit arrays for energy harvesting
and reflect beamforming, respectively. Therefore, in the pres-
ence of complete blockages, the system can suffer a squared
power/SNR loss with the number of complete blockages
antennas. Moreover, considering that the outdoor RIS is usu-
ally deployed on the external wall of high buildings without
additional protection, the RIS would suffer the precipitation,
snowflakes, dry and damp sand particles, and ice stones, like
the external wall, and the blockage caused by them. Unfor-
tunately, to the best of our knowledge, no literature has been
proposed to study the array diagnosis for RIS. Meanwhile,
the conventional array diagnosis techniques, such as [26],
[27], which have to work in the array under test (AUT)model,
can not be applied to the RIS. The AUTmodel requirs that the
BS transmits a sequence of pilot to a reference array for array
diagnosis, where the perfect CSI between them is assumed.
However the RIS only reflects signals by a certain phase shift
and has no signal processing capability. Hence the pilot has
to transmit by the BS or the reference UE. Moreover, to apply
such array diagnosis techniques to RIS, the BS-RIS channel
andRIS-UE channel information need to be known.However,
in practice, the CSI acquisition for the BS-RIS-UE cascaded
channel is still a open and difficult issue, due to no signal
processing capability for RIS. Therefore, motivated by these
reasons, in this paper, comparing to existing works [26], [27],
we propose a new algorithm to avoid the AUT model and
complete the array diagnosis and channel estimation jointly.

In this paper, we focus on the joint array diagnosis
and channel estimation problem for RIS-aided mmWave
MIMO system. we divide the problem into two stages,
where a standard line spectrum estimation formulation and
a two-timescale line spectral estimation formulation are pro-
posed to the first stage and second stage, respectively. In the
first stage, an IR algorithm is proposed to estimation of
effective channel parameters for the BS-RIS-UE cascaded
channel. The two-timescale optimization approaches in the
second stage are proposed to jointly complete array diagnosis
and remaining channel parameters estimation jointly. Further,
we propose a noise reduction algorithm to speed up the con-
vergence of the two-timescale optimization approaches and
improve the estimation performance. The main contributions
of the paper can be summarized as follows:
• comparing with research about the hardware impair-
ments for mmWave system in the existing works, such
as [5], [12]–[14], We specially investigate the effects
of random blockages on the signal power/SNR gain at
the RIS and provide a metric to efficiently evaluate the
impact of the blockage probability and the maximum
amplitude absorption value on the RIS power/SNR gain.

• Different from the ideal hardware assumption for the
RIS-aided mmWave MIMO system in [2], [3], [6]–[11],
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we consider the RIS-aided mmWave MIMO system in
the presence of the blockages at the RIS. For channel
estimation problem in the system, we formulate it as
joint antenna diagnosis and channel estimation. The
new formulation, which is a two-timescale non-convex
optimization formulation, can eliminate the dependence
of traditional antenna diagnosis algorithms proposed
in [26], [27] on AUT model.

• We propose the batch algorithm (BA) to solve the
challenging two-timescale non-convex optimization
problem, which can identify the locations and the
induced attenuation and phase shifts caused by block-
ages and simultaneously implement channel estimation.
Next, a two-timescale online joint array diagnosis and
channel estimation (TOJADCE) algorithm is also pro-
posed to reduce the computational complexity andmem-
ory cost over the batch algorithm.

• We exploit the characteristic of blockage vector to
design a Noise Reduction (NR) algorithm, which speeds
up the convergence of long-term variable estimation and
improves estimation performance with a little additional
complexity.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and channel model.
In Section III, we formulate the joint array diagnosis
and channel estimation as a two-stage estimation problem.
In Section IV, we present IR algorithm for first stage. Then,
the BA and TOJADCE algorithm are proposed for second
stage, respectively. Finally, the NR algorithm is proposed.
The analysis and convergence proof of the all proposed algo-
rithms involved in this paper are discussed in Section V.
In SectionVI, we provide simulation results. And conclusions
are drawn in Section VII.
Notations: We use the following notations throughout this

paper: A is a matrix and a is a vector. |a|,‖a‖, a(k) are the
cardinality, 2-norm, k-th element of a, respectively. Whereas
AT , AH , A∗, [A]a,b are its transpose, Hermitian (conjugate
transpose), conjugate, entry at the a-th row and b-th column
respectively. |a| represents the absolute value of a. I is the
identity matrix. CN (m, n) is a complex Gaussian random
vector with mean m and covariance n. diag(a) is the diagonal
matrix created from vector a. d·e represents the ceiling func-
tion. a� b represents the element-wise product of a and b.

II. SYSTEM MODEL
A. TRANSMISSION WITH RIS BLOCKAGE
We consider a narrowband mmWave MIMO system as illus-
trated in Fig. 1 where the BS is equipped withM antennas to
serve the UE equipped with N antennas and one RF chain.
Due to the high cost and power consumption suffered by
the fully-digital beamformer/combiner, the fully-connected
hybrid digital is assumed to be equipped in the BS simi-
lar to [29]–[31]. Meanwhile since the high pathloss during
mmWave propagation, the mmWave MIMO system is con-
sidered to be sensitive to LoS-blocking obstacles [11]. Thus
in order to overcome this, the RIS consisting of L reflecting

FIGURE 1. RIS-aided mmWave MIMO system.

elements is deployed to assist communication between the
BS and UE in mmWave MIMO system. Specifically, it is
noted that the channel consists of two parts, direct link and
reflecting link, since the RIS is additionally installed at a
height to enhance the signal coverage and communication
quality by providing a tunable strong reflecting antenna array.
Noticeably, the direct link and reflecting link are independent
of each other. Therefore many previous works, such as [30],
[31], have handled issues related to the direct link, which can
be estimated via traditional channel estimationmethods when
the RIS is turned off. The direct link can be cancelled from the
channel model during reflecting link channel training stage.
Besides, the direct link often suffers from LoS-blocking
obstacles and the remaining NLoS components are too weak
to provide an effective communication path between BS and
UE. Hence due to the above two reasons, the reflecting link
will be the only focus in this paper.

For the reflecting link, each reflecting element of the RIS
can dynamically adjust the reflecting signal with a reconfig-
urable phase shift via a smart controller in a passive way.
Therefore the reflecting link channel is modelled as a cas-
caded channel and can be expressed as

H = FSG, (1)

where F ∈ CN×L and G ∈ CL×M denote the channel from
RIS to UE (RIS-UE) and the channel from BS to RIS (BS-
RIS), respectively. And S is defined as diag(s), where s ,
[β1ejθ1 , . . . , βLejθL ]T ∈ CL represents the phase-shift vector
of the RIS. In s, θl and βl ∈ {0, 1} denote the phase shift and
on/off state associated with the l-th passive element of the
RIS, respectively.

For an ideal RIS-aided wireless system with a single
user, an asymptotic receive signal power or signal-to-noise
ratio (SNR) gain in the order of O(L2) can be obtained
via joint active beamforming at the BS and passive beam-
forming at the RIS [28]. Such a squared power/SNR gain
is larger than that of massive MIMO, i.e., O(L), due to the
fact that the RIS combines the functionalities of both receive
and transmit arrays for energy harvesting and reflect beam-
forming, respectively. In addition, with conventional MIMO
relays (even assuming their full-duplex operation with perfect
self-interference cancellation), the SNR at the user receiver
increases with the number of active antennas, L, with O(L)
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FIGURE 2. An example of an outdoor millimeter wave RIS with different
suspended particles partially blocking the array.

due to the noise effect at the relay, which is also lower than
O(L2) of the RIS due to its full-duplex and noise-free signal
reflection [28].

However, due to weather and atmospheric effects, outdoor
elements of RIS are subject to blockages from flying debris
or particles found in the air as shown in Fig. 2. Meanwhile
a physical object partially or completely blocking a subset
of antenna elements can be caused by a thin water film,
snowflakes, ice stones, and dry and damp sand particles on
the antenna array [26]. In the presence blockages of RIS,
the reflecting link channel can be expressed as

H = FESG, (2)

whereE = diag(e) represents the blockage coefficient matrix
and the l-th entry of the blockage coefficient vector e is
defined as

el =

{
αl, if the l-th element is blocked
1, otherwise,

(3)

where αl = κlej8l , in which 0 ≤ κl ≤ κ and 0 ≤ 8l ≤ 2π ),
are the resultant complex blockage coefficients at the l-th ele-
ment. A value of κl represents amplitude absorption at the l-th
element, where κ is the possiblemaximumvalue of κl , and the
scattering coefficient 8l measures the phase-shift caused by
the particle suspended on the l-th element. Specially, κl = 0
represents the complete blockage at the l-th element. This
makes el a random variable, i.e. el = αl with probability Pb if
the l-th antenna is blocked and el = 1 with probability 1−Pb
otherwise.

For the RIS-aided mmWave MIMO system in the
azimuth/elevation direction with AOA of incident signal,
φA/ψA, and the azimuth/elevation AOD of reflected signal,
φD/ψD at the RIS, the practice signal power/SNR gain can be
defined as

γ = |aiH (φD, ψD)ESai(φA, ψA)|2 (4)

FIGURE 3. The RIS power/SNR gain versus blockage probability Pb with
different κ .

where ai denotes the antenna array response vector of the
RIS. It is assumed that the UPA is equipped at the RIS as
shown in Fig. 2. There are Lx equally spaced elements along
the x-axis and Ly equally spaced elements along the y-axis at
the RIS, BS and UE, respectively. Each antenna element is
described by its position along the x and y axis. Thus in the
case of the UPA, the array response vector can be written as

aUPA (φ, ψ)

=
1√
LxLy

[
1, · · ·, ej

2π
λ
d(lx sin(φ)cos(ψ)+ly sin(ψ)),

· · · , ej
2π
λ
d((Lx−1) sin(φ) cos(ψ)+(Ly−1) sin(ψ))

]T
. (5)

From Eq. (4), we can find that power/SNR gain is the func-
tion of maximum amplitude absorption and the probability
of blockages. From Fig. 3, we observe that power/SNR gain
decreases with the probability Pb under different maximum
amplitude absorption value. In Fig. 3, the RIS power/SNR
gain rate is defined as γ ∗/L2, where γ ∗ =

∑L
l=1 |el |

2

represents the maximum of γ under the optimal RIS configu-
ration proposed in [2]. Specially, in the presence of complete
blockages, the system can suffer a squared power/SNR loss
with the number of complete blockages antennas. Therefore,
it is important to continuously monitor the RIS, reveal any
abnormalities, and take corrective measures to maintain effi-
cient operation of the system. However, since the RIS has no
signal processing capability, the AUT model can not work
in the conventional diagnosis methods as mentioned in the
previous section. Hence, we propose a method for joint array
diagnosis and channel estimation in the RIS-aided mmWave
MIMO system.

Before we proceed with the proposed techniques, we list
the challenges and lay down some assumptions for the system
firstly. Themain challenges come from two aspects as follow:
• (i) compared with the conventional array diagnosis tech-
niques, such as [26], the AUT model can not be imple-
mented in the RIS-aided mmWave MIMO system since

VOLUME 8, 2020 193995



B. Li et al.: Joint Array Diagnosis and Channel Estimation for RIS-Aided mmWave MIMO System

the RIS only reflects signals by a certain phase shift and
has no basebandmodules to transmit and receive signals.

• (ii) Since a lot data are needed to deal with during
continuously monitoring the RIS, it can induce a huge
computational complexity and memory cost.

According to reference [26], [27], we make some assump-
tions as follow:
• (i) The number of blockages is assumed to be small
compared to the array size.

• (ii) the channel suffers from block fading, i.e., the chan-
nel changes independently per block.

• (iii) the blockage coefficient vector e remains constant
for B blocks, which is as large as dozens or even hun-
dreds, since the weather and atmospheric circumstance
at the RIS always vary in a much slower process com-
pared with the channel.

B. SPARSE CHANNEL MODEL
The narrowband geometric channel model is adopted to char-
acterize both the BS-RIS channel G and the RIS-UE channel
F similar to [11], [29], [32].

G =
Cg∑
c=0

αgcai(φ
g,i
c , ψ

g,i
c )aHb (φ

g,b
c , ψg,b

c ), (6)

where Cg is the total number of paths including the LOS
path. The αg0 , φ

g,i
0 /ψg,i

0 and φg,b0 /ψg,b
0 are the complex path

gain, azimuth/elevation AoD and AoA of the LOS path,
respectively. The αgc , φ

g,i
c /ψg,i

c and φg,bc /ψg,b
c are the com-

plex path gain, azimuth/elevation AoD and AoA of the c-th
NLOS path, respectively. Additionally, αg0 ∼ CN (0, 1) and
α
g
c ∼ CN (0, 10−µ), where µ is the power distribution ratio

of LoS to NLoSmultipath components. The ai(φ
g,i
c , ψ

g,i
c ) and

ab(φ
g,b
c , ψ

g,b
c ) denote the antenna array response vector of the

RIS and BS, respectively.
For the RIS-UE channel F, it can be similarly modeled as

F =
Df∑
d=0

α
f
dau(φ

f ,u
d , ψ

f ,u
d )aHi (φ

f ,i
d , ψ

f ,i
d ), (7)

where Df is the number of paths. The αf0 , φ
f ,i
0 /ψ f ,i

0 and
φ
f ,u
0 /ψ f ,u

0 are the complex path gain, azimuth/elevation AoD
and AoA of the LOS path, respectively. The αfd , φ

f ,i
d /ψ f ,i

d
and φf ,ud /ψ f ,u

d denote the complex gain, azimuth/elevation
AoD and AoA of the d-th path, respectively. Besides, αf0 ∼
CN (0, 1) and αfd ∼ CN (0, 10−µ), where µ is the power
distribution ratio of LoS to NLoS multipath components. The
au(φ

f ,u
d , ψ

f ,u
d ) and aHi (φ

f ,i
d , ψ

f ,i
d ) denote the antenna array

response vector of the UE and RIS, respectively.
Similar to the RIS, the BS and UE are assumed to equip

the UPAs. There are Mx ,Nx and My,Ny equally spaced ele-
ments along the x-axis and y-axis at BS and UE, respectively.
Therefore, their antenna array response vector can refer to the
UPA response vector as Eq. (5).

Meanwhile, since the LoS path is typically much stronger
than the NLoS paths according to the field measurements

in [11], we ignore the NLoS paths in the BS-RIS and RIS-UE
links. By substituting Eq. (6) and (7) into Eq.(2), we can
approximate the cascaded channel H as

H ≈ g0au(φ
f ,u
0 , ψ

f ,u
0 )abH (φ

g,b
0 , ψ

g,b
0 ), (8)

where g0 denotes the effective gain, which is defined as

g0 = α
g
0α

f
0ai

H (φf ,i0 , ψ
f ,i
0 )ESai(φ

g,i
0 , ψ

g,i
0 )

which is able to be configured via adjusting the phase-shift
vector of RIS s.

C. EFFECTS OF BLOCKAGES ON SYSTEM PERFORMANCE
Based on the channel model, during the downlink data trans-
mission, signal x ∈ CM×K is send by a beamforming vector
z ∈ CM×1 at the BS, where K denotes the data length. The
transmission signal is reflected by the RIS with configuring
the phase-shift vector S and received at the UE through a
combining vector W ∈ CN×1. Therefore the received signal
at the UE is given by

y = wHHzx+ wHn0
= wHg0au(φ

f ,u
0 , ψ

f ,u
0 )abH (φ

g,b
0 , ψ

g,b
0 )zx+ wHn0 (9)

where n0 ∈ CN×1 denotes the noise at the receiving antennas.
Based on the transmission expression, the ergodic achiev-

able downlink rate of system can be expressed as [2]

R̄ = E

{
log2

{
1+
|g0|2βBSβUEPs

σ 2
UE

}}
(10)

where βBS = |ab(φ
g,b
0 , ψ

g,b
0 )H z|2 and βUE =

|au(φ
f ,u
0 , ψ

f ,u
0 )Hw|2 denote the array gain at the BS and MS,

respectively. Besides, the Ps =
Es
M and σ 2

UE represents the
average transmitted power at the BS and the effictive noise
variance at the UE, where Es denotes the total transmitted
power. In the presence blockages of RIS and the large num-
bers of RIS antennas regime, i.e., L → ∞, a perfect CSI
including blockages matrix of RIS is assumed at the BS and
UE. Thus, βBS = M2 and βUE = N 2 can be obtained with
beamforming and combining vector z = ab(φ

g,b
0 , ψ

g,b
0 ) and

w = au(φ
f ,u
0 , ψ

f ,u
0 ), respectively [2]. Therefore, for the case

of optimal RIS configuration, the achievable downlink rate
can be obtained as

R̄1 = E

{
log2

{
1+
|α
g
0 |
2
|α
f
0|
2γβBSβUEPs
σ 2
UE

}}

= log2

{
1+

π2

16 |(1− Pb)L + PbLE {|αl |} |
2MN 2Es

σ 2
UE

}
,

(11)

where E {|αl |} denotes the expectation of |αl |, since |α
g
0 | and

|α
f
0| are statistically independent and both follow Rayleigh

distribution with mean values
√
π

2 .
Without the information of blockages matrix of RIS at the

BS, the phase of blockages element can not be corrected,
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FIGURE 4. A typical structure of the virtual angular domain
representation of the effective channel and its vectorization.

which can be viewed to suffer a random phase shifts configu-
ration as [2]. Therefore, the achievable downlink rate can be
obtained as

R̄2 = log2

{
1+

((1− Pb)L + PbLV {αl})MN 2Es
σ 2
UE

}
, (12)

where V {αl} denotes the variance of αl . By utilizing the
Lindeberg-Levy central limit theorem, similar derivation of
results can be found in [2] and are omitted for space limita-
tion. It is worthy to noticed that the achievable downlink rate
of system reduce significantly suffering to the blockage of
RIS.

Comparing between Eq. 11 and Eq. 12, it is worthy to
noticed that the achievable downlink rate of system reduce
significantly when the system suffer the blockage of RIS.
Specially, the system can suffer a squared power/SNR loss
with the number of complete blockages antennas. In addition,
it is worthy to noticed that power allocation is ignored during
the derivation the rate expression, since the elements of RIS
are passive devices which the energy of reflected signal is
restricted to be no more than the one of incident signal.
Therefore new calibration method design is required for the
RIS the RIS-aided mmWave MIMO system, which is not
discussed in this paper, but will be our the future work.

III. PROBLEM FORMULATION
Based on the system model and channel model above,
we consider a pilot-aid approach to simplify joint array diag-
nosis and channel estimation. In this process, one channel
coherence block is divided into two phases, the first one
for transmitting pilot to joint array diagnosis and channel
estimation and the second for data transmission as depicted
in Fig. 4. Besides, the first phase of block b is further divided
into T subblocks. In each subblock t = 1, . . .T , the BS sends
a training matrix Zb,t ∈ CM×Pz , which is reflected by the RIS
with configuring the phase-shift vector Sb,t and received at
the UE through a combining matrix Wb,t ∈ CN×Pw . The Pz
and Pw represent the sequence length for training matrix and
combining matrix, respectively. Thus, the received signal at
the UE is given as

Yb,t = WH
b,tH(Sb,t )Zb,t +WH

b,tNb,t (13)

where Nb,t denotes the noise in the receiving antenna and
H(Sb,t ) is considered as a function of Sb,t , which is defined

Algorithm 1 Two-Stage Algorithm for Joint Array Diagnosis
and Channel Estimation
1: First Stage:
2: Input: Received signals Yb,t , combining matrices Wb,t

and training matrices Zb,t , ∀t = 1, . . .T , b = 1, . . .B.
3: Run the Algorithm 2
4: Output: ĝb, φ

f ,u
b , ψ

f ,u
b , φ

g,b
b and ψg,b

b , ∀b = 1, . . .B.
5: Second Stage:
6: Input: the output of first stage ĝb and phase control

matrices Sb,t , ∀t = 1, . . .T , b = 1, . . .B.
7: Run the Algorithm 3 or Algorithm 4
8: Output: hb,∀b = 1, . . .B and e.

by Eq. (8) as

H(Sb,t ) = gb,tau(φ
f ,u
b , ψ

f ,u
b )abH (φ

g,b
b , ψ

g,b
b ), (14)

where

gb,t = α
g
bα

f
bai

H (φf ,ib , ψ
f ,i
b )ESb,tai(φ

g,i
b , ψ

g,i
b ), (15)

in which the subscript 0 is ignored for convenience.
Next, inspired by literature [11], we propose a two-stage

approach to complete both array diagnosis and channel esti-
mation, which is described in Algorithm 1. The details of the
algorithm will be provided in the following subsection.

A. FIRST STAGE
In the first stage, we estimate the azimuth/elevation AoD
of the BS-RIS link φg,bb /ψg,b

b , the azimuth/elevation AoA
of the RIS-UE link φf ,ub /ψ f ,u

b and the effective propagation
path gain of the reflection link gb,t based on the received
signals Yb,t . Thus the problem in the first stage is formulated
as

min
φ
g,b
b ,ψ

g,b
b ,φ

f ,u
b ,ψ

f ,u
b ,gb

G(φg,bb , ψ
g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) (16)

where

G = ||gb||0 +
T∑
t=1

λ||Yb,t −WH
b,tH(Sb,t )Zb,t ||2F

and gb = [gb,1, . . . , gb,T ]T , ||gb||0 denotes the 0-norm of
gb which is equal to the number of the nonzero components
of gb, λ controls the trade-off between the sparsity and data
fitting. For conventional CS techniques, the continuous angel
space has to be discretized into a finite set of grid points.
The unknown angle components are assumed to lie on some
of the discretized grid points. However, in practice, the true
parameters do not necessarily lie on the discretized grid.
Thus, the recovery signal suffers from the power leakage
originating from basis mismatching and interference from
neighboring paths. The accuracy recovery signals is very
useful for estimating the remaining parameters, which will
be explained in subsequent section. Thus, here we adopt
the same IR method as in [33], [34] to estimate all the
azimuth/elevation AoD/AoA and path gains.
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Using the IR method, Eq. (16) can be further formulated as

min
φ
g,b
b ,ψ

g,b
b ,φ

f ,u
b ,ψ

f ,u
b ,gb

G(φg,bb , ψ
g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) (17)

where

G =
T∑
t=1

ln(|gb,t |2 + ε)+ λ||Yb,t −WH
b,tH(Sb,t )Zb,t ||2F

and parameter ε is a positive parameter to ensure that the
argument of ln(·) is positive. In this step, the log-sum function
is used to relax the 0-norm function, which accounts for the
fact that due to the random generation of Sb,t , some elements
in gb may be much smaller than others. Besides, for sparse
signal recovery, the sparsity-inducing log-sum function term
has superiority over the 1-norm penalty function.

B. SECOND STAGE
In the second stage, we complete the array diagnosis and
remaining channel parameters estimation based on the final
estimate of gb obtained in the first stage, denoted as ĝb.
Obtaining a separate estimate of the azimuth/elevation AoA
for the BS-RIS link φ

g,i
b /ψg,i

b and the azimuth/elevation
AoD for the RIS-MS link φf ,ib /ψ f ,i

b seems infeasible. The
same holds for the propagation path gains in the BS-RIS
and RIS-MS links αgb and α

f
b . Thus, we will estimate

the product of the propagation path gains and the differ-
ence of azimuth/elevation directional trigonometric sines and
cosines.

According to Eq. (15), we rewrite gb,t as

gb,t = sTb,tEα
g
bα

f
b(ai
∗(φf ,ib , ψ

f ,i
b )� ai(φ

g,i
b , ψ

g,i
b )) (18)

where sb,t ∈ CL×1 is the phase-shift vector configuration
of the RIS at the subblock t of block b. By stacking the
T different sTb,t row-wise as 4b = [sb,1, . . . , sb,T ]T and

introducing αb = α
g
bα

f
b , φ

1
b = sin

(
φ
g,i
b

)
cos

(
ψ
g,i
b

)
−

sin
(
φ
f ,i
b

)
cos

(
ψ
f ,i
b

)
and ψ1b = sin

(
ψ
g,i
b

)
− sin

(
ψ
f ,i
b

)
,

the Eq. (18) can be further expressed as

gb = 4bEαb(ai∗(φ
f ,i
b , ψ

f ,i
b )� ai(φ

g,i
b , ψ

g,i
b ))

= 4bEαba(φ1b , ψ
1
b ) (19)

where a(φ1b , ψ
1
b ) follows the same form as Eq. (5).

Further, we assume that

ĝb = gb + nb
= 4bEαba(φ1b , ψ

1
b )+ nb

= 4bEhb + nb, (20)

where the estimation error nb from the first stage is modelled
as additive Gaussian noise, independent of hb. Besides hb =
αba(φ1b , ψ

1
b ), which can be considered as a channel with one

angular sparsity. For fixedE and treating4bE as the effective
observation matrix, Eq. (20) is similar to the problem formu-
lation with the line spectrum estimation. Besides, recalling
that the channel changes rapidly with time while the blockage

coefficient vector e varies in a slower process. Thus, Given the
observations of all B blocks ĝb,∀b = 1, . . . ,B, the estimation
problem can be formulated as a two-timescale line spectral
estimation formulation and expressed as

min
e,{hb}Bb=1

F(e, {hb}Bb=1)

s.t. ||e||∞ ≤ 1 (21)

where

F = min
e,{hb}Bb=1

B∑
b=1

ln(|αb|2 + ε)+ λ̄||ĝb −4bEhb||22

and λ̄ is a parameter that controls the trade-off between the
sparsity and data fitting. And ε is a positive parameter to
ensure that the argument of ln(·) is positive. Besides, E =
diag(e), and the value of e is constrained to Eq. (3).
Therefore our goal in the second stage is to recover the

short-term signal hb, and also learn the long-term unknown
parameter e, from the measurement vectors ĝb,∀b =

1, . . . ,B, at all the previous blocks. The two-timescale opti-
mization approach is proposed for the joint array diagnosis
and channel estimation.

IV. PROPOSED ALGORITHMS
A. IR ALGORITHM FOR FIRST STAGE
To solve (13), we resort to majorization-minimization (MM)
method as [33], [34]. Due to that ln(|gb,t |

2
+ ε) is concave

in |gb,t |
2, we take its first order Taylor expansion as the sur-

rogate function. Thus, the Eq. (17) can be further formulated
as

min
φ
g,b
b ,ψ

g,b
b ,φ

f ,u
b ,ψ

f ,u
b ,gb

Ḡ(φg,bb , ψ
g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) (22)

where

Ḡ = gHb G
(i)gb +

T∑
t=1

λ||Yb,t −WH
b,tH(Sb,t )Zb,t ||2F

and

Gi = diag([
1

|g(i)b,1|
2 + ε

, . . . ,
1

|g(i)b,T |
2 + ε

]T ),

g(i)b,t is an estimate of gb,t at the i-th iteration. For
∀t = 1, . . . ,T , setting the first-order partial derivative of
G(φg,bb , ψ

g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) in Eq. (22) with respect to gb,t

to zero yields

ĝ(i+1)b,t = (
1

λ(|g(i)b,t |
2 + ε)

+||Ab,tZb,t ||2F )
−1

Pz∑
pz=1

zHb,t,pzA
H
b,tyb,t,pz

(23)

where zb,t,pz and yb,t,pz is the pz-th column of Zb,t and Yb,t ,
respectively, and Ab,t = WH

b,ta(φ
g,b
b , ψ

g,b
b )a(φf ,ub , ψ

f ,u
b )H .
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Algorithm 2 Iterative Reweighted Algorithm
Input: Received signals Yb,t , combining matricesWb,t and

training matrices Zb,t , ∀t = 1, . . .T , b = 1, . . .B.
Output: ĝb, φ

f ,u
b , ψ

f ,u
b , φ

g,b
b and ψg,b

b , ∀b = 1, . . .B.
1: Initialize: φf ,ub , ψ

f ,u
b , φ

g,b
b and ψg,b

b for i = 0 by the
SVD.

2: repeat
3: Compute ĝ(i+1)b,t by Eq. (23).
4: Construct the function according to Eq. (24).
5: Search for new angle estimates using the gradient

descent method.
6: until The maximum number of iterations or stopping

criterion reached.

Thus, for given ĝ(i+1)b = [ĝ(i+1)b,1 , . . . , ĝ(i+1)b,T ]T , according to
Eq. (23), the Eq. (22) can be written as

min
φ
g,b
b ,ψ

g,b
b ,φ

f ,u
b ,ψ

f ,u
b ,gb

Ḡ(φg,bb , ψ
g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) (24)

where

Ḡ =
T∑
t=1

(−βb,txHb,txb,t +
Pz∑
pz=1

yHb,t,pzyb,t,pz ),

βb,t = ( 1
λ(|g(i)b,t |

2+ε)
+ ||Ab,tZb,t ||2F )

−1 and xb,t =∑Pz
pz=1

zHb,t,pzA
H
b,tyb,t,pz .

An analytical solution of the the above optimization prob-
lem (24) is difficult to obtain. Since Ḡ(φg,bb ,ψ

g,b
b ,φ

f ,u
b ,ψ

f ,u
b ,gb)

is differentiable for our case, we use a gradient descent
algorithm to find estimates for the angles. The calculation
of the required first-order partial derivatives associated with
the angles can be calculated according to Appendix A. The
initial values can be determined by the singular value decom-
position (SVD) based on approach in [33] and parameters
λ, ε can be adaptively updated according to [34]. To this end,
the proposed IR algorithm is summarized in Algorithm 2.

B. JOINT ARRAY DIAGNOSIS AND CHANNEL ESTIMATION
ALGORITHM FOR SECOND STAGE
In this section, to jointly estimate the long-term array block-
age coefficient vector and the short-term channel vectors
in the second stage, we propose a batch algorithm which
optimizes the current parameter based on all received signals
firstly. However, its computational complexity and memory
cost increase over time. Next, we propose a TOJADCE algo-
rithm, which can achieve a compromise between complexity
and estimation accuracy.

1) BATCH ALGORITHM
Recalling the two-timescale optimization Eq. (21), the batch
algorithm solve such a problem by optimizing hb,∀b =
1, . . . ,B and e alternately with all available observations.
Therefore, in the (i + 1)-th iteration, given the long-term
variable e(i) and the short-term variables h(i)b ,∀b = 1, . . . ,B,

the new estimate of short-term channel vectors can be
obtained by solving a sequence of subproblems, respectively.
Since each of the subproblems is similar to the line spectral
estimation, we can follow the IR method to find the new
estimate of hb. Thus, the objective function of subproblems
can be expressed as

min
hb

F̄(hb|e(i), ĝb)

= min
hb

αbα
H
b

(α̂(i)b )2 + ε
+ λ̄||ĝb −4bE(i)hb||22, ∀b = 1, . . . ,B

(25)

where α̂(i)b is an estimate of αb at the i-th iteration. Setting the
derivative of the objective function F̄(hb|e(i), ĝb) in Eq. (25)
with respect to αb to zero yields

α̂
(i+1)
b = ζba(φ1b , ψ

1
b )H (E(i))H4H

b ĝb (26)

where

ζb = (
1

λ̄(|α(i)b |
2 + ε)

+||a(φ1b , ψ
1
b )H (E(i))H4H

b 4bE(i)a(φ1b , ψ
1
b )||2F )

−1.

For given α̂(i+1)b and e(i), the objective function can be further
written as

F̄({hb} |e(i)) = −ζbτb + ĝ
H
b ĝb (27)

where τb = a(φ1b , ψ
1
b )H (E(i))H4H

b ĝbĝ
H
b 4bE(i)a(φ1b , ψ

1
b ).

Based on the first-order derivative in Appendix B, the gra-
dient descent algorithm is applied to obtain a suboptimal
φ1b , ψ

1
b via minimizing the objective function in Eq. (27).

Then the optimization of objective function associatedwith
long-term variable e(i+1) is given by

min
e

F̄(e|h(i+1)b , ĝb) = min
e

B∑
b=1

||ĝb −4bEh
(i+1)
b ||

2
2

s.t. ||e||∞ ≤ 1 (28)

The optimization problem (28) can be reformulated as

min
B∑
b=1

||ĝb − ϒ
(i+1)
b e||22

s.t. ||e||∞ ≤ 1 (29)

where ϒ (i+1)
b = 4bdiag(h

(i+1)
b ). It is obvious that the opti-

mization problem (28) is converted to a quadratic mini-
mization problem, which can be solve with standard convex
optimization methods. Hence, the overall batch algorithm is
summarized in Algorithm 3.

2) TOJADCE ALGORITHM
The batch algorithm requires to estimate all the previous
short term variables in each iteration, which leads that the
memory requirements and complexity become too high to
accept over the number of blocks. Therefore, a more efficient
online algorithm called TOJADCE is proposed in this section.
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Algorithm 3 Batch Algorithm
Input: the output of first stage ĝb and phase control matrices

Sb,t , ∀t = 1, . . .T , b = 1, . . .B.
Output: hb,∀b = 1, . . .B and e.
1: Initialize: φ1b , ψ

1
b and E = diag(e) = IL .

2: repeat
3: repeat
4: Compute α̂(i+1)b by Eq. (26).
5: Construct the function according to Eq. (27).
6: Search for new angle estimates using the gradient

descent method.
7: until The maximum number of iterations or stopping

criterion reached.
8: Update e by solving the quadratic minimization

problem Eq. (29) with standard convex optimization
method.

9: optional noise reduction algorithm: Update e
according to Eq. (41).

10: until The maximum number of iterations or stopping
criterion reached.

The key idea of TOJADCE algorithm is to find a stationary
point of the original objective function Eq. (25) as B → ∞
with much lower memory requirements and complexity. The
details about TOJADCE algorithm is provided as follows.

According to [35], For large b, the original objective func-
tion Eq. (25) can converges to the following two-timescale
stochastic non-convex optimization problem

P : min
e,�

F̃(e, �)

= min
e,�

E
{
ln(|α|2 + ε)+ λ̄||ĝ−4Eh||22

}
(30)

where E
{
·
}
term represents that the expectation is taken

w.r.t. h(ĝ). Besides � = (h(ĝ),∀ĝ) is the collection of the
short-term variables corresponding to all possible observa-
tions ĝwith known pilotmatrix4. ProblemP is a non-convex
stochastic optimization problem in which both short-term and
long-term variables require to estimate.

At first, using primal decomposition [35], the Problem P
can be divided into a sequence of short-term subproblems
and a long-term master problem. In the short-term subprob-
lem, given the ĝ and the estimation of long-term variable e,
the effective line spectral estimation can be expressed as

min
h

F̃(h|e, ĝ) = min
h

ln(|α|2 + ε)+ λ̄||ĝ−4Eh||22 (31)

Besides, long-term master problem focuses on the array
diagnosis problem based on the stochastic optimal of h, and
can be expressed as

min
e

F̃(e|�∗(e))

s.t. ||e||∞ ≤ 1 (32)

where �∗(e) = (h∗(e, ĝ),∀ĝ) and h∗(e, ĝ) is the solution of
Eq. (31) for the different blocks.

It can be observed that the short-term subproblem is similar
to Eq. (25). Thus using the iterative reweighted algorithm,
we can achieve an online and estimation of hb for each block b
based on the current observations ĝb and the estimation of the
long-term variable e(b−1) at block b − 1. Therefore Eq. (31)
is further formulated as

min
hb

F̃(hb|e(b−1), ĝb)

= min
hb

αbα
H
b

(α̂(i)b )2 + ε
+ λ̄||ĝb −4bE(b−1)hb||22 (33)

where α̂(i)b is an estimate of the i-th inner iteration at b-th
outer iteration. The inner iteration and outer iteration rep-
resent iterative process in the IR algorithm and TOJADCE
algorithm. Thus, we can follow the IR algorithm to find the
estimate of hb. Setting the derivative of the objective function
F̃(hb|E(b−1), ĝb) in Eq. (33) with respect to αb to zero yields

α̂
(i+1)
b = ζba(φ1b , ψ

1
b )HEH(b−1)4

H
b ĝb (34)

where ζb is defined as

(
1

λ̄(|α(i)b |
2 + ε)

+ ||a(φ1b , ψ
1
b )H

(E(b−1))H4H
b 4bE(b−1)a(φ1b , ψ

1
b )||2F )

−1.

For fixed α̂(i+1)b , the objective function can be further written
as

F̃(hb|e(b−1), ĝb) = −ζbτb + ĝ
H
b ĝb (35)

where τb=a(φ1b , ψ
1
b )HEH(b−1)4

H
b ĝbĝ

H
b 4bE(b−1)a(φ1b , ψ

1
b ).

Based on the first-order derivative in Appendix B, gradient
descent method is applied to find a suboptimal φ1b , ψ

1
b via

minimizing the objective function in Eq. (35).
For a long-term subproblem, at the b-th block, we design a

recursive convex approximationHb of the objective function
in Eq. (32), which is updated by

Hb = (1− ρb)H(b−1) + ρbF̃(e|hb, ĝb), (36)

where H−1 = 0, ρb → 0,
∑

b→∞ ρb = ∞,
∑

b→∞(ρb)
2 <

∞. Besides, F̃(e|hb, ĝb) is defined as ||ĝb − ϒbe||
2
2, where

ϒb = 4bdiag(hb). Then we obtain an intermediate variable
ẽb by solving the problem:

min
e

Hb(e)

s.t. ||e||∞ ≤ 1 (37)

Specifically, define

Qb = (1− ρb)Q(b−1) + ρb(ϒ
H
b ϒb),

pb = (1− ρb)p(b−1) + ρb(ϒ
H
b ĝb),

rb = (1− ρb)r(b−1) + ρb(ĝ
H
b ĝb), (38)

then,the objective function in Eq. (37) can be further formu-
lated as

Hb(e) = eHQbe− p
H
b e− e

Hpb + rb
= ēH Q̄bē
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where ē = [e; 1] and

Q̄b =
[
Qb −pb
−pHb rb.

]
Thus Problem (37) is equivalent to the following real-valued
optimization problem:

min
c
cT Q̃bc

s.t. cTRlc ≤ 1,∀l = 1, . . . ,L (39)

where

c = [<(ē); =(ē)],

Q̃b =
[
<(Q̄b) −=(Q̄b)
=(Q̄b) <(Q̄b)

]
and Rl is a 2L × 2L matrix given by

Rl(i, j) =


1, if i = j = l
1, if i = j = l + L
0, otherwise.

Therefore, problem (39) is a convex quadratically constrained
quadratic program (QCQP), which can be solved efficiently
using standard convex optimization methods. After that the
intermediate variable ẽb = c∗(1 : L)+ jc∗(L + 1 : 2L + 1) is
obtained, where c∗ is the optimum of problem (39). And then
the long-term variable eb is updated according to

eb = (1− τb)e(b−1) + τbẽb, (40)

where τb satisfies τb → 0,
∑

b→∞ τb = ∞,∑
b→∞(τb)

2 <∞.
The overall TOJADCE algorithm is summarized in

Algorithm 4. In the next section, we will propose an improve-
ment algorithm for long-term variable estimation problem.

C. NOISE REDUCTION ALGORITHM
For the two-timescale optimization approaches, how to speed
up the convergence of long-term variable and estimation
performance is one of the core problems. Due to the impact
of noise, the estimated value of e deviates from the true one.
Therefore the noise reduction algorithm is proposed. Base
on the fact that the number of blockages is usually small
compared to the array size, which implys that there are parts
of the elements in e being equal to 1 and others being complex
numbers with amplitude less than 1. However, the elements
in the solutions of Eq. (29) and (40) are corrupted by the
noise. Specilly, many elements in e whose true values are
equal to 1 is reduced by a perturbation caused by the noise.
Hence we propose a noise reduction algorithm based on the
hard threshold to corrects the estimated value as

eb(l) =

{
1, if eb(l) > ι

eb(l), otherwise.
(41)

where ι is the hard threshold value and can be equal to the
dηLe-th largest amplitude of elements in e. The proposed
noise reduction algorithm can improve the performance of

Algorithm 4 TOJADCE Algorithm
Input: the output of first stage ĝb and phase control matrices

Sb,t , ∀t = 1, . . .T at block b.
Output: hb and eb at block b.
1: Initialize: φ1b , ψ

1
b and E = diag(e) = IL .

2: repeat
3: Compute α̂(i+1)b by Eq. (34).
4: Construct the function according to Eq. (35).
5: Search for new angle estimates using the gradient

descent method.
6: until The maximum number of iterations or stopping

criterion reached.
7: Construct the recursive convex approximation function

according to Eq. (36).
8: Update the intermediate variable ẽb by solving the prob-

lem Eq. (39) with standard convex optimization methods

9: Compute the long-term variable eb according to Eq. (40)

10: optional noise reduction algorithm: Update e accord-
ing to Eq. (41).

the two-timescale optimization approaches for joint array
diagnosis and channel estimation with a little complexity.
Therefore it is embedded in the step 9 of algorithm 3 and the
step 10 of algorithm 4.

V. CONVERGENCE ANALYSIS AND DISCUSSION
A. CONVERGENCE ANALYSIS
The IR algorithm is adopted to complete the line spectral
estimation in the first stage and second stage. As mentioned
in the previous section, since the original estimation problem
is a non-convex problem, the IR algorithm resorts to MM
approach to iteratively approximate the non-convex objective
function as a convex function with reweighted coefficients
and solve the approximated convex problem. Specifically,
in the i-th iteration of IR algorithm, the approximated func-
tion can be proved to be an upper bound to the original
objective function according to [34]. Besides, for the process
of estimating angles, a gradient descent algorithm can guar-
antee a monotonically decreasing objective function value.
However, the convergence property of the IR algorithm still
remains an open issue.

In the second stage, the batch algorithm is proposed to
solve the the two-timescale optimization problem Eq. (25)
firstly. According to [12], the batch algorithm can be con-
sidered as a special case of the block successive upper-bound
minimization (BSUM) algorithm proposed in [36] to solve
the original non-convex and non-differentiable objective
function in Eq. (25). Besides, it can be proved that the local
approximation satisfies all the conditions of Assumption 2
in [36]. Then using the conclusion of Theorem 2 in [36], every
limit point of the iterates generated by the batch algorithm is
a stationary point of Eq. (25).

VOLUME 8, 2020 194001



B. Li et al.: Joint Array Diagnosis and Channel Estimation for RIS-Aided mmWave MIMO System

We propose the TOJADCE algorithm to reduce the high
computational complexity and memory cost of batch algo-
rithm. The convergence of the TOJADCE algorithm has been
established in the works in [35]. This subsection is to ensure
the completeness, state the properties of the step sizes, and
check whether the surrogate functions in this paper satisfy
the convergence condition or not. For the short-term problem,
the iterative reweighted algorithm is adopted to solve the line
spectral estimation with a fixed e. It is required to satisfy the
Assumption 2 in [35], i.e.

1) The initial point is h0b(e) Lipschitz continuous on e.
2) the iterative reweighted algorithm is Lipschitz contin-

uous on h for any inner iteration number.
3) For any fixed feasible e, the solution h∗b(e)∀b =

1, . . . ,B converges to a stationary point of short-term
problem.

Fortunately, the iterative reweighted algorithm can be con-
sider as a extension to the MM Algorithm, which is verified
as a typical example to satisfy Assumption 2. Therefore,
for clarification, the proof procedure is omitted here. And
readers who are interested in it can refer to [35]. Besides, for
the long-term problem, we set the recursive step parameters
according to the Assumption 5 in [35] to satisfy the following
conditions:

1) H−1 = 0, ρb → 0,
∑

b→∞ ρb = ∞,
∑

b→∞(ρb)
2 <

∞,
2) τb→ 0,

∑
b→∞ τb = ∞,

∑
b→∞(τb)

2 <∞,
3) limb→∞ τb/ρb = 0.
With the recursive step parameters setting like this, the con-

vergence and properties of long-term surrogate functions can
be guaranteed according to [35], i.e.,

lim
t→∞
|Hb(eb)− F̃(eb|�∗(eb))| = 0,

lim
t→∞
||∇eHb(eb)−∇eF̃(eb|�∗(eb))|| = 0. (42)

Meanwhile, for all b = 1, . . . ,B, Hb(e) satisfies the
following properties.

1) Hb(e) is uniformly strongly convex in e.
2) Hb(e) is Lipschitz continuous on e, and |Hb1 (e) −

Hb2 (e)| ≤ Bf ||eb1 − eb2 || + δ(b1, b2),∀||e||∞ ≤ 1 for
some constant Bf > 0, where limb1,b2→∞ δ(b1, b2) =
0.

3) The derivative and second-order derivative ofHb(e) are
uniformly bounded.

Proof: See Appendix C.
Based on the above conditions, for the large b, the solu-

tions of short-term algorithm and long-term algorithm in
Algorithm 4 converge to the stationary point of subproblems
almost surely, respectively.

B. COMPUTATIONAL COMPLEXITY
Without loss of generality, we discuss the computational
complexity of the proposed IR algorithm in first stage, batch
algorithm and TOJADCE algorithm in second stage.

For the IR algorithm in first stage, the computational com-
plexity in each iteration lies in calculating the gradient, which
is equal to O(PzPw(M + N )).
For the short-term problem in second stage, the batch

algorithm solves {h1, . . . ,hb} according to the iterative
reweighted algorithm with b observations

{
ĝ1, . . . , ĝb

}
,

while the TOJADCE algorithm only needs to solve one
short-term problem with the current observation at b block.
Since both the batch and TOJADCE algorithms utilize the
same the IR algorithm to solve the short-term variables,
it is reasonably assumed that they converge with the same
iteration number. The computational complexity of the batch
algorithm for short-term variables is O(bTL) per iteration,
which is b times that of TOJADCE. For the long-term prob-
lem, the complexity of the batch algorithm isO(bT 2L), where
the standard QCQP problem is solved by the CVXMATLAB
tools. With the same MATLAB tools, the complexity of the
TOJADCE algorithms isO(T 2L), since it only need to utilize
the current observation at b block. It is worthy to noticed that
there is b times relationship for the memory cost between the
batch algorithm and TOJADCE algorithm.

VI. SIMULATION RESULTS
In this section, we conduct numerical simulations to evaluate
the performance of the proposed techniques. The NMSE
performance of IR algorithm in the first stage stage is similar
to the first stage stage in [11]. Besides, it only provides the
estimation of gb for second stage and can be consider as an
intermediate process independent of the second stage. Hence
we will not show simulation and evaluation about IR algo-
rithm in first stage and focus on the the NMSE performance
in the second stage. And readers interested in IR algorithm
can refer to the literature [11]. We let L = 128, Lx = 16 and
Lx = 8 at the RIS. All of the AoA, AoD and the phase
of elements of Sb,t are randomly and uniformly distributed
between 0 and 2π . Besides, the path gains αl and ρd are
drawn from distribution CN (0, 1). The product of the prop-
agation path gains αb follows CN (0, 1) and each element
of nb follows CN (0, δ2). The SNR is defined as 1

δ2
. For

the random blockages, we set its probability and maximum
absorption as Pb = 0.4 and κ = 1, respectively. ρb = 1

b0.4

and τb = 1
b0.65

is adopted as an example in our simulation.
However, an arbitrary ρb and τb meeting the conditions men-
tioned in the previous section can make the algorithm work
well. Themetric used for short-term subproblem performance
comparison is the normalized mean square error (NMSE) of
channel estimation which is defined as

NMSE = 10 log10 ||hb − ĥb||
2/||hb||2, (43)

and the metric used for long-term subproblem is NMSE of
blockage coefficient vector estimation which is defined as

NMSE = 10 log10 ||e− ê||
2/||e||2. (44)

In Fig. 5, we plot the performance for BA and TOJADCE
algorithm with or without NR algorithm against SNR, where
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FIGURE 5. NMSE versus SNR with T = 60 and B = 60.

FIGURE 6. NMSE versus pilot with SNR = 10dB and B = 60.

the number of pilot is T = 60 and the number of blocks
is B = 60. Meanwhile the lower bound (ideal estimation)
for short-term subproblem is obtained with the assumption
that perfect information of blockage coefficient vector is
known. Correspondingly, the lower bound (ideal estimation)
for long-term subproblem can obtained under the condition
that perfect information of channel all blocks is known. It is
observed that the NMSE of short-term h and long-term e in
the proposed BA and TOJADCE algorithm with or without
NR algorithm decrease with the increase of SNR. Mean-
while we observe that the performance gap between BA and
TOJADCE algorithm decreases as SNR increasing. Besides,
the NR algorithm can improve the performance of BA and
TOJADCE algorithm obviously. Specially, the BA-NR and
TOJADCE-NR algorithm for long-term variable estimation
can approach the lower bound at the high SNR.

In Fig. 6, we plot the performance against the number of
pilot under the condition SNR = 10dB and B = 60 with
different algorithms. As the number of pilot increase, a better
performance can be obtained by all proposed algorithms. And
a obvious performance gap exits between BA and BA-NR and
between TOJADCE and TOJADCE-NR for different number
of pilot. However, the performance gap decrease as the num-
ber of pilot increase.

FIGURE 7. NMSE versus block with SNR = 10dB and T = 60.

Fig. 7 investigates the NMSE of short-term and long-term
variable estimation for BA, BA-NR, TOJADCE and
TOJADCE-NR algorithms against the number of blocks. The
number of pilot is fixed to T = 60 and the SNR is chosen
as SNR = 10dB. It can be observed that compared with
TOJADCE and BA, TOJADCE-NR and BA-NR algorithms
can converge to a stationary solution with a lower NMSE,
respectively. The performances of all proposed algorithms are
similar before the B = 15. when the number of block is larger
than 15, the convergence rate of TOJADCE is lower than that
of other algorithms. And the performance of TOJADCE-NR
algorithm can approach or exceed that of batch algorithmwith
increase of blocks. Besides, it can be observed that perfor-
mance of all the algorithms for the short-term variable suffers
a subtle ups and downs. We infer that this is because in the
inner iteration algorithm (IR algorithm), a gradient descent
algorithm only guarantee a suboptimal angle estimation and
its maximum number of iterations is fixed to 300.

VII. CONCLUSION
In this paper, we considered the effects of blockages on
RIS in the RIS-aided mmWave MIMO system. We showed
that the blockages of RIS can distort the power/SNR gain
more heavily than the ones of BS array. Specially, in the
presence of blockages, the system can suffer a squared
power/SNR loss with the number of complete blockages
antennas. Meanwhile, since the RIS only reflect signals by
a certain phase shift and has no signal processing capabil-
ity, the conventional array diagnosis methods can not work.
Therefore we proposed a two-stage joint array diagnosis and
channel estimation algorithm to simplify this problem. In the
first stage, the iterative reweighted algorithm is adopted to
estimate effective channel parameters for the cascaded chan-
nel. And then, we convert the remaining estimation prob-
lem to a two-timescale problem. The batch algorithm and
TOJADCE algorithm is proposed to solve this problem based
on the final estimate value of first stage. Specially, the batch
algorithm solves both short-term and long-term problems
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involving all the available samples in each iteration higher
computational complexity and memory cost. For handling
the shortcoming of the batch algorithm, TOJADCE algorithm
is proposed to run a short-term algorithm only associated
with the current observation, and updates the long-term vari-
able according to the constructed surrogate function and the
solution of the short-term problem. Simulations verify that
our proposed algorithms can achieve preferable NMSE over
various baselines. Besides, in order to speed up the conver-
gence of long-term and estimation performance, we propose
a NR algorithm, which is verified to improve the estimate
performance with a little additional complexity by simulation
results. Finally, base on the estimated CSI and array diag-
nosis results of RIS, the existing compensation methods for
RIS-aided mmWave MIMO system can be investigated in
future.

APPENDIX A
DERIVATIVES IN THE FIRST STAGE
The first-order partial derivative of Ḡ(φg,bb , ψ

g,b
b , φ

f ,u
b , ψ

f ,u
b ,

gb) in Eq. (24) with respect to φ
g,b
b is written as

∂Ḡ
∂φ

g,b
b

=

T∑
t=1

−
∂βb,t

∂φ
g,b
b

xHb,txb,t−βb,t
∂xHb,t

∂φ
g,b
b

xb,t−βb,txHb,t
∂xb,t

∂φ
g,b
b

where

∂βb,t

∂φ
g,b
b

= −β2b,t

Px∑
px=1

zHb,t,px
∂AHb,t
∂φ

g,b
b

Ab,tzb,t,px

+ zHb,t,pxA
H
b,t
∂Ab,t

∂φ
g,b
b

zb,t,px ,

∂xHb,t

∂φ
g,b
b

=

Px∑
px=1

yHb,t,px
∂Ab,t

∂φ
g,b
b

zb,t,px ,

∂xb,t

∂φ
g,b
b

=

Px∑
px=1

zb,t,px
∂AHb,t
∂φ

g,b
b

yHb,t,px .

and

∂Ab,t

∂φ
g,b
b

= Ab,tDφg,bb
,

where

D
φ
g,b
b
= diag(0, . . . , e

j 2π
λ
d
(
mx cos

(
φ
g,b
b

)
cos
(
ψ
g,b
b

)
+my sin

(
ψ
g,b
b

))
,

. . . , e
j 2π
λ
d
(
Mx cos

(
φ
g,b
b

)
cos
(
ψ
g,b
b

)
+My sin

(
ψ
g,b
b

))
).

Similarly, we can write the first-order partial derivative of
Ḡ(φg,bb , ψ

g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) in Eq. (24) with respect to ψg,b

b
is written as

∂Ḡ
∂φ

g,b
b

=

T∑
t=1

−
∂βb,t

∂ψ
g,b
b

xHb,txb,t−βb,t
∂xHb,t

∂ψ
g,b
b

xb,t−βb,txHb,t
∂xb,t

∂ψ
g,b
b

where

∂Ab,t

∂ψ
g,b
b

= Ab,tDψg,b
b
,

where

D
ψ
g,b
b
= diag(0, . . . , e

j 2π
λ
d
(
mx sin

(
φ
g,b
b

)
sin
(
ψ
g,b
b

)
+my cos

(
ψ
g,b
b

))
,

. . . , e
j 2π
λ
d
(
Mx sin

(
φ
g,b
b

)
sin
(
ψ
g,b
b

)
+My cos

(
ψ
g,b
b

))
).

Besides, for Ḡ(φg,bb , ψ
g,b
b , φ

f ,u
b , ψ

f ,u
b , gb) in Eq. (24), its

first-order partial derivative with respect to φf ,ub and ψ f ,u
b

can be written similar to the above process replacing the
corresponding variables.

APPENDIX B
DERIVATIVES IN THE SECOND STAGE
The first-order partial derivative of F̄({hb} |e(i)) in Eq. (27)
with respect to φ1b is written as

∂F̄({hb} |e(i))
∂φ1b

= −
∂ζb

∂φ1b
τb − ζb

∂τb

∂φ1b

where

∂ζb

∂φ1b
= −ζ 2b (a(φ

1
b , ψ

1
b )HDH

φ1b
(E(i))H4H

b 4bE(i)a(φ1b , ψ
1
b )

+ a(φ1b , ψ
1
b )H (E(i))H4H

b 4bE(i)Dφ1b a(φ
1
b , ψ

1
b )),

∂τb

∂φ1b
= a(φ1b , ψ

1
b )HDH

φ1b
(E(i))H4H

b ĝbĝ
H
b 4bE(i)a(φ1b , ψ

1
b )

+ a(φ1b ,ψ
1
b )H (E(i))H4H

b ĝbĝ
H
b4bE(i)Dφ1b a(φ

1
b ,ψ

1
b ),

and Dφ1b is defined as

Dφ1b = diag(0, . . . , ej
2π
λ
d
(
lx cos

(
φ1b

)
cos
(
ψ1b

)
+ly sin

(
ψ1b

))
,

. . . , ej
2π
λ
d
(
Lx cos

(
φ1b

)
cos
(
ψ1b

)
+Ly sin

(
ψ1b

))
).

Similarly, we can write the first-order partial derivative of
F̄({hb} |e(i)) in Eq. (27) with respect to ψ1b is written as

∂F̄({hb} |e(i))
∂ψ1b

= −
∂ζb

∂ψ1b
τb − ζb

∂τb

∂ψ1b

where

∂ζb

∂ψ1b
= −ζ 2b (a(φ

1
b , ψ

1
b )HDH

ψ1b
(E(i))H4H

b 4bE(i)a(φ1b , ψ
1
b )

+ a(φ1b , ψ
1
b )H (E(i))H4H

b 4bE(i)Dψ1b a(φ
1
b , ψ

1
b )),

∂τb

∂φ1b
= a(φ1b , ψ

1
b )HDH

ψ1b
(E(i))H4H

b ĝbĝ
H
b 4bE(i)a(φ1b , ψ

1
b )

+ a(φ1b ,ψ
1
b )H(E(i))H4H

b ĝbĝ
H
b 4bE(i)Dψ1b a(φ

1
b ,ψ

1
b ),
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and Dψ1b is defined as

Dψ1b = diag(0, . . . , ej
2π
λ
d
(
lx cos

(
φ1b

)
cos
(
ψ1b

)
+ly sin

(
ψ1b

))
,

. . . , ej
2π
λ
d
(
Lx cos

(
φ1b

)
cos
(
ψ1b

)
+Ly sin

(
ψ1b

))
).

Here, all the first-order partial derivatives of objective func-
tion are completed.

APPENDIX C
PROOF OF PROPERTY 1
Since the update term of the recursive long-term function
F̃(e|hb, ĝb) is a quadratic function on e, it is convex in e and
the first property can be satisfied.

Then, for the second property, we define a function

Ḟ(e|hb, ĝb) = E
{
F̃(e|hb, ĝb)

}
.

following a similar analysis to Appendix A in [35],

lim
b→∞
|Hb(e)− Ḟ(e|hb, ĝb)| = 0.

Beside, Ḟ(e|hb, ĝb) Lipschitz continuous in e according to
[35], i.e.

|Ḟ(eb1 |hb, ĝb)− Ḟ(eb2 |hb, ĝb)| ≤ Bf ||eb1 − eb2 ||

for some constant Bf . Combining the above two equations,
it is obvious that |Hb1 (e) − Hb2 (e)| ≤ Bf ||eb1 − eb2 || +
δ(b1, b2),∀||e||∞ ≤ 1 for some constant Bf > 0, where
limb1,b2→∞ δ(b1, b2) = 0.

For the third property, according to the lemma 2 in [10],
the derivative and second-order derivative ofmine F̃(e|�∗(e))
w.r.t. e are bounded. Considering Eq. (42), The derivative and
second-order derivative ofHb(e) are also uniformly bounded.
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