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ABSTRACT With the development of the Internet of things (IoT) and wearable devices, the sensor-
based human activity recognition (HAR) has attracted more and more attentions from researchers due
to its outstanding characteristics of convenience and privacy. Meanwhile, deep learning algorithms can
extract high-dimensional features automatically, which makes it possible to achieve the end-to-end learning.
Especially the convolutional neural network (CNN) has been widely used in the field of computer vision,
while the influence of environmental background, camera shielding, and other factors are the biggest
challenges to it. However, the sensor-based HAR can circumvent these problems well. Two improved HAR
methods based on Gramian angular field (GAF) and deep CNN are proposed in this paper. Firstly, the GAF
algorithm is used to transform the one-dimensional sensor data into the two-dimensional images. Then,
through the multi-dilated kernel residual (Mdk-Res) module, a new improved deep CNN network Mdk-
ResNet is proposed, which extracts the features among sampling points with different intervals. Furthermore,
the Fusion-Mdk-ResNet is adopted to process and fuse data collected by different sensors automatically. The
comparative experiments are conducted on three public activity datasets, which are WISDM, UCI HAR and
OPPORTUNITY. The optimal results are obtained by using the indexes such as accuracy, precision, recall
and F-measure, which verifies the effectiveness of the proposed methods.

INDEX TERMS Deep convolutional neural network, Gramian angular field, human activity recognition,
multi-source sensor data fusion.

I. INTRODUCTION
With the rapid development of the 5th generation (5G)mobile
networks, Internet of things (IoT) and artificial intelligence
(AI), the technology of human activity recognition (HAR)
is becoming more and more important in people’s daily
lives because of its ability to analyze and recognize human
activities by the raw sensor data. It has been widely used
in many aspects, such as daily activity analysis [1], video
surveillance [2], gait analysis [3] and gesture recognition
[4]. At present, HAR is mainly divided into two categories:
sensor-based activity recognition [5]–[7] and video-based
activity recognition [8]–[10]. Video-based activity recogni-
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tion mainly processes the video and image data collected
by cameras, while sensor-based activity recognition is used
to analyze and process the data collected by sensors such
as accelerometers and gyroscopes. The sensor-based activity
recognition has become the research focus due to its merits
of good privacy and convenience.

The recognition models used in the HAR system can be
roughly divided into two categories: one is based on classical
machine learning algorithms; the other is based on deep
learning algorithms. The commonly used classical machine
learning algorithms include decision tree (DT) [19], [20],
random forests (RF) [21], [22], and support vector machine
(SVM) [23], [24]. Researchers all over the world have
done a lot of studies on the sensor-based HAR using these
algorithms. Zhou et al. proposed a two-layer classification
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and recognition method based on DT [11]. Firstly, time-
frequency domain features were extracted from the raw data
of accelerometers and gyroscopes. After that, eight types
of daily activities could be identified through the two-layer
decision tree.

However, these classical algorithms all require complex
and time-consuming feature engineering, which requires not
only manual design of extracted features, but also feature
selection or dimensionality reduction to screen out highly
representative features. The method based on deep learning
avoids the step of feature engineering, enabling researchers
to pay more attention to other aspects of HAR, such as
power consumption in practical applications. Chen et al. used
an improved one-dimensional convolutional neural network
(CNN) to classify the collected activity data [12], and com-
paredwith traditional methods such as DT and logistic regres-
sion, the recognition accuracies of various activities were
improved, but the accuracies of going downstairs and going
upstairs were still less than 70%. Kuang et al. compared the
recognition performance of deep CNN and long short-term
memory (LSTM) network on public datasets [13]. The results
showed that the deep CNN using dropout got better recog-
nition performance, and the training time of deep CNN was
much less than that of LSTM. Deng et al. proposed twometh-
ods for activity images construction, transforming the sensor
data into activity images by matrix rearrangement. And then,
the CNNwas applied to extract features and identify the types
of activities [14]. Ravi et al. proposed an improved deep
learning model, in which the deep features were extracted
from the time-frequency graph of the original data by CNN.
Meanwhile, the shallow features such as amplitude, mean,
and variance of the original data were extracted in the time-
frequency domain. After the combination of the deep features
and the shallow features, the types of activities were identified
[15]. Ordonez et al. proposed a new deep learning model that
combined CNN and LSTM units, which was a significant
improvement for traditional machine learning methods [16].
Xu et al. combined the CNN and the gated recurrent unit
(GRU) to identify human activities, and verified the effec-
tiveness of the proposed method on three public datasets
[17]. Uddin et al. proposed a multi-sensors data fusion net-
work based on recurrent neural network (RNN) [18]. Firstly,
the time-frequency domain features were extracted from the
original sensor data. Secondly, the effective features were
selected by principal component analysis (PCA), and finally
the human activities were recognized through RNN after
processing the effective features.

Although deep learning method has many advantages,
it also has some unavoidable problems and disadvantages.
The recognition methods based on RNN [25], [26] can only
be carried out in sequence because the calculation of the
next step in the training process depends on the results of
the previous step, and the training process consumes a long
time. Recognition methods based on CNN mostly use one-
dimensional convolution kernel [27], [28], which is diffi-
cult to fully exploit the rich high-dimensional data features.

Many methods are used to convert the one-dimensional sen-
sor data into the two-dimensional data through the matrix
rearrangement [14], [29], [30], which is the simple listing and
superposition of the data, but lacks interpretability. In [15],
[31], [32], the one-dimensional time series were converted
to the two-dimensional time-frequency images by Fourier
transform, which led to a sharp increase in the amount of
computations. Due to the requirements of portability and
real-time property of wearable sensor devices, it is inevitable
that sensor-based activity recognition methods require fewer
computing resources and faster calculation speed.

To solve the above problems, a new HAR method based
on Gramian angular field (GAF) [34] and deep CNN is pro-
posed in this paper. Because of the weight sharingmechanism
[33] of CNN, the training speed of CNN is much faster
than the other networks. At the same time, the GAF algo-
rithm increases the interpretability of transforming from one-
dimensional time series to two-dimensional images and also
lays a foundation for the effectiveness of feature extraction.
The experimental results show that the new HAR method
proposed in this paper can effectively improve the multi-
scale feature extraction capability and the accuracy of activity
recognition by combining the characteristics of GAF algo-
rithm, the structure and advantages of CNN, residual learning
and dilated convolution.

The main contributions of this paper are as follows:

(1) The GAF algorithm is used to quickly transform one-
dimensional time series into two-dimensional images
similar to the real image data, which makes it more
effective to the application of two-dimensional CNN.

(2) A new improved deep CNN network Mdk-ResNet
based on the multi-dilated kernel residual (Mdk-Res)
modules is proposed in this paper, which makes it
possible to extract rich features among the sampling
points with different time intervals, thereby improving
the recognition accuracy.

(3) The Fusion-Mdk-ResNet, a multi-source sensor data
fusion network, can automatically fuse data collected
by different sensors is proposed. The effectiveness of
the proposed method is verified by comparison experi-
ments on three public datasets, and better experimental
results are obtained on both single sensor datasets and
multi-sensors datasets.

The rest of the paper is arranged as follows. In section 2, the
principles of residual block structure in ResNet, the inception
module in GoogLeNet and the dilated convolution are intro-
duced. In section 3, the proposed models of HAR based on
deepCNN andGAF algorithm is presented. The experimental
environments and the results of the simulations are demon-
strated in section 4, and the conclusion is drawn in section 5.

II. RELATED WORK
A. THE PRINCIPLE OF THE RESIDUAL BLOCK
He et al. proposed the ResNet, in which the residual learning
suppressed the problem of gradient disappearance in deep
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FIGURE 1. The residual block structure in ResNet [37].

FIGURE 2. The inception module in GoogLeNet.

neural networks (DNN), improved its learning ability and
increased the recognition accuracy significantly [35]. The
residual block structure diagram is shown in Fig. 1. The
input data X is the image data, F (X) is the mapping of X
obtained through multi-layer calculations, and the output of
the residual block is F (X)+ X .

B. THE PRINCIPLE OF THE INCEPTION MOUDULE
The GoogLeNet, a 22-layer neural network proposed by
Szegedy et al., won the first place in the ImageNet large scale
visual recognition challenge 2014 (ILSVRC 2014) [36]. The
inception module, as the core building block of the network,
played an important role and its initial structure is shown
in Fig. 2.

The inception module consists of four main components,
namely 1 × 1 convolutions, 3 × 3 convolutions, 5 × 5 con-
volutions, and 3 × 3 max pooling. After being processed by
these four parts, the feature maps of the upper layer will be
combined into a new feature map to be transmitted to the
next inception module. Such a structural design increases
the width of the network, extracts information of different
scales of images through multiple convolution kernels with
different sizes, improves the feature extraction capability of
the network, and can obtain better images representation.

C. THE PRINCIPLE OF THE DILATED CONVOLUTION
However, using large-scale convolution kernels greatly
increases the amount of network parameters and the com-
putation. In order to solve the above problems, Yu et al.

FIGURE 3. Dilated convolution of different dilation rates [37].

FIGURE 4. Sliding window segmentation of data collected by a triaxial
accelerometer.

proposed the dilated convolution, which increased the recep-
tive field without losing information. Thus, the convolution
output could contain a larger range of the information and
the network can extract features from a larger scale without
increasing the number of parameters of the convolution ker-
nels [37]. The schematic diagram of dilated convolution is
shown in Fig. 3. The basic idea is to add interspaces to the
standard convolution operation so as to increase the receptive
field. Compared with the original normal convolution pro-
cess, the dilated convolution has a super parameter called the
dilation rate, which refers to the pixel value of the interval on
the feature map during convolution.

III. THE PROPOSED MODELS OF HAR BASED ON DEEP
CNN
A. THE GAF ALGORITHM
In the sensor-based HAR, the accelerometer is one of the
most commonly used sensors in current research, which can
directly collect movement information by wearing it on body.
The data collected by the sensor is continuous time series and
can be segmented by the sliding window. In order to ensure
a complete motion can be contained in a sliding window,
the length of the sliding window is determined according to
the sampling rate of the sensor and the type of human activity.
In addition, the sliding window generally selects 50% overlap
to ensure the integrity of the information. Fig. 4 is a diagram
of the sliding window segmentation of the data collected by
a triaxial accelerometer, in which a sliding window starts at
t = t0, the length of window is T and the window overlap is
50%. In Fig. 4, the graphs from top to bottom represent the
x, y, and z axes of the raw data collected by the acceleration
sensor, respectively.
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Most of the original data collected by the sensor is one-
dimensional time series. And it is usually necessary to convert
one-dimensional time series into a format similar to two-
dimensional images in the application of two-dimensional
CNN.

Wang et al. proposed the GAF algorithm to convert the
one-dimensional time series into the two-dimensional images
which is one of the commonly used time series imaging
algorithms [34]. The specific implementation steps are as
follows:

Suppose a time series is X = {x1, x2, . . . , xi, . . . , xN },
containing N observations. Firstly, X is normalized so that
all values of X can be in the range of [−1, 1] or [0, 1], which
can be expressed as follows, respectively:

x̃ i
−1 =

(xi −max(X ))+ (xi −min(X ))
max(X )−min(X )

, (1)

x̃ i0 =
xi −min(X )

max(X )−min(X )
. (2)

Next, convert the one-dimensional time series from carte-
sian coordinate system to polar coordinate system, which can
be expressed asφi = arccos(x̃i), −1 ≤ x̃i ≤ 1, x̃i ∈ X̃

ri =
i
N
, i ∈ N

(3)

where the inverse cosine of the normalized observation x̃i
is taken as the angle φi in the polar coordinate system, and
the time label i/N is taken as the radius. The data processes
by the two types of normalization operations has different
angle ranges when converted to the polar coordinate system.
The angle range of the cosine function corresponding to
the data within the range [0, 1] is [0, π/2], and the angle
corresponding to the data in the range of [−1, 1] is [0, π].
This representation method based on the polar coordinate

system provides a new view for understanding time series.
That is, as time goes by, the sequence value varies from
the original amplitude change to the angular change in the
polar coordinate system. By calculating the sum/difference
of the trigonometric function among sampling points, the
time correlation among them is identified from the perspec-
tive of angle. Gramian angular summation field (GASF) and
Gramian angular difference field (GADF) are defined as
follows, respectively:

GASF =


cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

· · ·
. . . · · ·

cos(φn + φ1) · · · cos(φn + φn)

 , (4)

GADF =


sin(φ1 − φ1) · · · sin(φ1 − φn)
sin(φ2 − φ1) · · · sin(φ2 − φn)

· · ·
. . . · · ·

sin(φn − φ1) · · · sin(φn − φn)

 . (5)

The GAF algorithm is adopted to transform the one-
dimensional time series into the two-dimensional images

FIGURE 5. One-dimensional time series converted to two-dimensional
images in polar coordinate system.

FIGURE 6. The structure diagram of Mdk-Res module.

through three steps of scaling, coordinate axis transformation
and trigonometric function, so as to apply the computer vision
technology to the study of time. Fig. 5 shows the mapping
relationship between one-dimensional time series and two-
dimensional images. The time series is transformed into a
polar coordinate system according to (3). The GASF and
GADF images can be obtained by (4) and (5), respectively.

B. THE PROPOSED MDK-RES MODULE
Based on the advantages of the above networks, a multi-
dilated kernel residual (Mdk-Res) module is proposed in this
paper, and its structure is shown in Fig. 6.

It can be seen that the feature maps of the previous layer are
input into theMdk-Res model and processed through the four
convolution channels. And then the results of the four parts
and the input feature maps are added as the output. In the
model, the convolution hyper-parameters for all four parts
are set to ‘‘padding = same, stride = 1’’ to ensure that the
dimensions of the output and input are the same.
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FIGURE 7. HAR network Mdk-ResNet for single sensor.

The green block represents the previous layer of the net-
work, the yellow block represents the convolution whose
kernel size is 1 × 1, the blue blocks represent the normal
convolution whose kernel size is 3 × 3, the light orange
blocks represent the dilated convolution whose kernel size is
3 × 3 and the dilation rate is 2, and the dark orange blocks
represent the dilated convolution whose kernel size is 3 × 3
and the dilation rate is 4. The Mdk-Res module uses multiple
normal convolution kernels and dilated convolution kernels
at the same time, which improves the ability of the network
to extract features of different scales. In addition, the residual
learning is added into theMdk-Resmodule, which suppresses
the common gradient disappearance phenomenon in DNN
and improves the fitting ability of the models.

The use of the dilated convolution allows the Mdk-Res
module to extract the feature relationship among the sam-
pling points with longer intervals. For example, the normal
3 × 3 convolution kernel extracts the feature relationships
in a receptive field of 3 × 3. The 3 × 3 convolution kernel
with a dilation rate of 2 extracts the feature relationships in
a receptive field of 7 × 7, and the 3 × 3 convolution kernel
with a dilation rate of 4 extracts the feature relationships in a
receptive field of 15× 15.

C. HAR NETWORK MDK-RESNET FOR SINGLE SENSOR
For the HAR with a single sensor, Mdk-ResNet is proposed
in this paper, which is an improved HAR network based on
Mdk-Res modules. The structure of Mdk-ResNet is shown
in Fig. 7.

The time series data obtained by the sensor is converted
from the rectangular coordinate axis system to the polar
coordinate system, and then the two-dimensional images are
obtained by the GAF algorithm. The GAF algorithm is used
to convert each sliding window segmentation from the one-
dimensional time series to the two-dimensional image for-
mat. Taking the data collected by triaxial acceleration as an
example, assuming that the length of the sliding window is
T , since the data contains three channels, the dimension of
each sample is T× 3. The GAF algorithm can transform the
one-dimensional series of each channel into two-dimensional
matrixes of GASF and GADF, and the dimension of each
sample will become the form as same as the common RGB

image. After that, the two-dimensional matrixes will be pro-
cessed by the HAR network Mdk-ResNet which is the deep
CNN network proposed in this section.

The two-dimensional matrixes are processed by multiple
Mdk-Res modules and then transmitted to the fully connected
(FC) layers after being flattened into one-dimensional data,
and finally output by the Softmax layer. The corresponding
highest probability of the labels is the result of the clas-
sification. In the model, the number of Mdk-Res modules
can be selected according to the size of the dataset and the
complexity of the activities to be identified, rather than being
limited to the four modules listed in Fig. 7.

D. HAR NETWORK FUSION-MDK-RESNET FOR
MULTI-SOURCE SENSOR DATA FUSION
For the HAR system using multi-source sensor, a multi-
source sensor fusion network Fusion-Mdk-ResNet is pro-
posed in this paper, as shown in Fig. 8. For the proposed
Fusion-Mdk-ResNet, firstly, the one-dimensional time series
collected by multiple sensors is transformed into the two-
dimensional images through the GAF algorithm, and then
features are extracted by multiple Mdk-Res modules, respec-
tively. After that, the obtained feature data is merged by
the feature fusion layer and processed by multiple Mdk-Res
modules again. Finally, the feature data is input into the FC
layers and the Softmax layer to obtain the result of activity
recognition.

The number of the Mdk-Res modules can be increased or
decreased according to the application scenarios. The net-
work structure shown in Fig. 8 is adopted here. The fusion
processing of the input feature maps of each sensor can be
expressed as

Y =
N∑
i=1

wi × Xi (6)

where Y is the output of feature fusion layer, Xi is the feature
maps input by the i-th sensor to the feature fusion layer, wi
is the weight or confidence coefficient of the i-th sensor in
the feature fusion layer, and N is the number of sensors. The
feature fusion layer has two working methods. One is to set
the corresponding confidence or coefficient according to the
type and deployment position of each sensor, and perform
weighted stitching according to the specified coefficient dur-
ing fusion.While for the other fusion method, the coefficients
are not specified. The coefficients of each feature map are the
same initially, and then learned by the Fusion-Mdk-ResNet
automatically.

IV. EXPERIMENTS AND EVALUATIONS
A. EVALUATION INDEXES
For the binary classification problem, the samples can be
classified into four categories based on the true category and
the prediction results:
• true positive (TP): The true category is positive, and the
predicted category is positive.
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FIGURE 8. HAR network fusion-Mdk-ResNet for multi-source sensor data fusion.

• false positive (FP): The true category is negative, and
the predicted category is positive.

• false negative (FN): The true category is positive, and
the predicted category is negative.

• true negative (TN): The true category is negative, and the
predicted category is negative.

The commonly used evaluation measures include accu-
racy, precision, recall, and F-measure. The accuracy can be
expressed as

accuracy =
TP+ TN

TP+ TN + FP+ FN
. (7)

The precision can be expressed as

precision =
TP

TP+ FP
. (8)

The recall can be expressed as

recall =
TP

TP+ FN
. (9)

The F-measure is the harmonic average of precision rate
and recall rate, which can be expressed as

Fβ =
(1+ β2)× precision× recall
(β2 × precision)+ recall

. (10)

When β = 1, the commonly used variant F1 can be
expressed as

F1 =
2× precision× recall
precision+ recall

. (11)

For multi-classification problems, we need to use macro
average and micro average. The former one is to calculate
the accuracy, recall rate and F-measure of each category
firstly, and then, the arithmetic average is calculated, which
is equivalent to giving each category the same weight, thus
distribute more attention to categories of small sample size in
the unbalanced dataset. The latter one is to count the TP, FP,
FN, and TN of each category, and then calculate the corre-
sponding the accuracy, recall, and F-measure, that is, giving

each sample the same weight. For the unbalance dataset,
the categories with a large number of samples will get more
attentions. In particular, when the statistical range includes all
categories, the precision, recall, and F-measure calculated by
the micro average will be the same as the accuracy. Assuming
that the number of categories is N , the macro average and
micro average can be expressed as follows:

Macro−Precision =
1
N

N∑
i=1

precisioni, (12)

Macro−Recall =
1
N

N∑
i=1

recalli, (13)

Macro−F1 =
1
N

N∑
i=1

F1i, (14)

Micro−Precision =

N∑
i=1

TPi

N∑
i=1

TPi +
N∑
i=1

FPi

, (15)

Micro−Recall =

N∑
i=1

TPi

N∑
i=1

TPi +
N∑
i=1

FNi

, (16)

Micro−F1 =
2×Micro−Precision×Micro−Recall
Micro−Precision+Micro−Recall

. (17)

B. DATASETS
1) WISDM DATASET
The WISDM dataset [39] was released by the Laboratory
for Wireless Sensor Data Mining at Fordham University in
the United States. The data was collected from 36 volunteers
who had smartphones in their front trouser pockets. The
smartphone contains a three-axis accelerometer with a sam-
pling rate of 20Hz and the dataset contains a total of
1098207 sampling points. The types of the collected activities
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FIGURE 9. Seven network structures adopted in this paper.

TABLE 1. Experimental hardware and software configurations.

include walking, jogging, going upstairs, going downstairs,
sitting, and standing. Among them, the walking accounts for
38.6%, the jogging accounts for 31.2%, the going upstairs
accounts for 11.2%, the going downstairs accounts for 9.1%,
the sitting accounts for 5.5%, and the standing accounts for
4.4%. It is observed that the number of each activity is quite
different, therefore the WISDM dataset is an unbalanced
dataset.

2) UCI HAR DATASET
The UCI HAR dataset [40] was released by the Laboratory
for Nonlinear Complex Systems at the University of Genoa
in Italy. The experiment involved 30 volunteers aged between
19 and 48. Each person attached the smartphone to the
waist and used the embedded accelerometer and gyroscope
in the smartphone to collect 6 kinds of activity data (walk-
ing, going upstairs, going downstairs, sitting, standing, and
lying). The sampling rate is 50Hz, and the number of samples
is 10929.

TABLE 2. Experimental parameter settings on the WISDM dataset.

3) OPPORTUNITY DATASET
The OPPORTUNITY dataset [41] was released by the Lab-
oratory for Wearable Computing of the Federal Institute
of Technology in Zurich, which mainly collected various
activities in the kitchen environment. There are three types
of sensors: body-worn sensors, object sensors, and ambient
sensors. The experiment involved four volunteers, each of
whom collected six types of data, five of which are activities
of daily living (ADL) and the other is Drill. The ADL is a
collection of daily activities that volunteers collected under
natural conditions, including activities such as walking in the
room, preparing coffee, cleaning and rest. Drill refers to a
collection that contains a series of specific actions performed
by volunteers in a preset order, including opening and closing
the refrigerator, opening and closing the door, and turning on
and off the lights.

C. EXPERIMENTAL MODELS AND ENVIRONMENT
SETTING
GoogLeNet proposed by Google researchers and ResNet pro-
posed by Microsoft researchers are aimed at the ImageNet
dataset [38], which is an extremely large dataset with nearly
15 million images. In order to achieve accurate classification
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FIGURE 10. Accuracies and losses of training and testing on the WISDM dataset.

results, GoogLeNet and ResNet have been set to 22 layers
[36] and 34 layers [35], respectively. The size and complexity
of the public datasets used in this paper are smaller than the
ImageNet dataset, so the original GoogLeNet and ResNet
networks are not used in the comparative experiments. The
GoogLeNet and ResNet have been retained in their original
structural characteristics of the networks, but reduce the num-
ber of layers of the networks to avoid overfitting. As shown
in Fig. 9, the Mdk-ResNet contains 4 Mdk-Res modules,
the GoogLeNet and ResNet used in the comparative experi-
ments also contain 4 inceptionmodules and residual modules,
respectively, and the other networks contain the same number
of corresponding modules. Due to the training difficulties of
LSTM, the number of LSTM layers is generally set to be 1 to
3. And the general optional parameter is the number of hidden
units which is set to the length of the sliding window here.

The specific hardware and software configurations of the
experiments are shown in Table 1.

D. EXPERIMENTAL RESULTS AND ANALYSES
1) EXPERIMENTAL RESULTS AND ANALYSES ON THE WISDM
DATASET
The sampling rate of data in WISDM dataset is 20Hz,
the length of sliding window is set to 64. The coverage time
of such a sliding window is 3.2 seconds, which can meet the
time length requirements of six behaviors in the dataset. The
other parameter settings on the WISDM dataset are shown
in Table 2.

TABLE 3. Experimental parameter settings on the UCI HAR dataset.

TABLE 4. Experimental parameter settings on the OPPORTUNITY dataset.

The comparative experiments are conducted on the
WISDM dataset. Seven models are used for the comparative
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FIGURE 11. Accuracies and losses of training and testing on the UCI HAR dataset.

TABLE 5. Evaluation indexes of each model on the WISDM dataset.

experiments, which are MLP, Conv_1D, LSTM, Conv_2D,
ResNet, GoogLeNet, and Mdk-ResNet. Fig. 10 shows the
model training accuracy, model test accuracy, the value of
model training loss function, and the value of model test
loss function of different models, respectively. It can be seen
that the proposed model is slightly improved in the accuracy
and the convergence speed compared with the other models.
Table 5 lists the evaluation indexes on the test set after each
model is trained 100 times. Since all categories of activi-
ties to be identified are included, the precision, recall, and
F-measure calculated by themicro average are the same as the
accuracy, theywill not be listed separately, and the accuracy is
only listed here. As can be seen from the Table 5, the indexes

of the Mdk-ResNet have been improved compared to the
other methods. The accuracy of GAF + Mdk-ResNet is
96.83%, which is 9.88% higher than that of MLP and 2.56%
higher than that of GAF+GoogLeNet. The accuracy of GAF
+Mdk-ResNet is not much higher than GAF + ResNet, just
0.75%, but the other indexes are higher.

2) EXPERIMENTAL RESULTS AND ANALYSES ON THE UCI
HAR DATASET
The sampling rate of the UCI HAR dataset is 50Hz, the
sliding window size is 128, the window overlap is 50%, and
the number of samples is 10929. The original dataset has been
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FIGURE 12. Accuracies and losses of training and testing on the OPPORTUNITY dataset.

TABLE 6. Evaluation indexes of each model on the UCI HAR dataset.

randomly divided, 60% as training data, 10% as validation set
and 30% as test data. The other parameter settings on the UCI
HAR dataset are shown in Table 3.

The UCI HAR dataset contains data from two types of sen-
sors, accelerometer and gyroscope. The UCI HAR dataset are
classified and identified by using the Fusion-Mdk-ResNet,
which is proposed in this paper for multi-source sensor of
HAR. The other comparative experimental models include
MLP, Conv_1D, LSTM, Conv_2D, ResNet, and GoogLeNet.
Fig. 11 shows the model training accuracy, model test accu-
racy, the value of model training loss function, and the value

of model test loss function of different models, respectively.
It can be seen that the train accuracy and test accuracy of
the proposed Fusion-Mdk-ResNet are higher than that of the
other methods. At the same time, Table 6 lists the evaluation
indexes on the test set after each model is trained 100 times.
It can be seen that the results obtained by the Fusion-Mdk-
ResNet are superior to that of the other methods. The accu-
racy, Macro_Precision, Macro_Recall andMacro_F1 of GAF
+ ResNet and GAF + GoogLeNet are ranges from 87.61%
to 88.31%, while the indexes of GAF+ Fusion-Mdk-ResNet
are all higher, which are more than 89%.
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TABLE 7. Evaluation indexes of each model on the OPPORTUNITY dataset.

3) EXPERIMENTAL RESULTS AND ANALYSES ON THE
OPPORTUNITY DATASET
The sampling rate of the OPPORTUNITY dataset is 30Hz,
and the length of the sliding window selected is 90. One
window contains data of 3 seconds, and the other parameters
are shown in Table 4. Considering that there are more types of
sensor data in the OPPORTUNITY dataset, which is slightly
different from the previous experiments, the batch size of this
experiment is changed from 32 to 16.

The OPPORTUNITY dataset contains data collected by
multiple sensors, which are classified by using the Fusion-
Mdk-ResNet. The models for comparison include MLP,
Conv_1D, LSTM, Conv_2D, ResNet, and GoogLeNet. The
accuracy curves and the loss function curves of different
methods on the train set and the test set are shown in Fig. 12.
It can be seen from Fig. 12 that although the proposed Fusion-
Mdk-ResNet is not much different from the other methods in
the accuracy, the convergence speed of the proposed method
is faster than the other ones. At the same time, the evaluation
indexes on the test set after each model is trained 100 times
are listed in Table 7. As can be seen from Table 7, the results
obtained by the Fusion-Mdk-ResNet are also superior to that
of the other methods. The accuracy of GAF + Fusion-Mdk-
ResNet is 2.24% higher than that of GAF + GoogLeNet and
the other indexes are also higher.

V. CONCLUSION
In this paper, we propose two improved deep CNN models
for sensor-based HAR and use the GAF algorithm to process
time series. Firstly, the one-dimensional time series collected
by the sensor is converted into two-dimensional images by the
GAF algorithm, and then the improved deep CNN is adopted
to identify the types of human activities. The Mdk-ResNet
extracts the features of sampling points with different time
intervals to form a more representative feature map. At the
same time, a multi-sensor data fusion network Fusion-Mdk-
ResNet is proposed, which can process data collected by
different sensors and fuse data automatically. The proposed
methods are validated on three public activity datasets, and
the comparative experiments with seven different models are

conducted under the same experimental conditions on each
dataset. The experimental results show that the proposed
methods are superior to the other methods in accuracy and
convergence speed. The accuracy of GAF + Mdk-ResNet
is 96.83% on the WISDM dataset, which is 9.88% higher
than that of MLP and 2.56% higher than that of GAF +
GoogLeNet. The indexes of GAF+ Fusion-Mdk-ResNet are
all more than 89% and 96% on the UCI HAR dataset and the
OPPORTUNITY dataset, respectively, which are higher than
the other methods.

The research in this paper is currently carried out on public
activity datasets, and the follow-up plan is to perform real-
time HAR by using wearable devices such as smart bracelets.
The research directions of future research include model
compression and miniaturization, so that the model can be
transplanted to wearable devices and becomesmore practical.
In addition, reduce the computation, save hardware resources
and increase equipment stand-by time are also the directions
of future research.
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