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ABSTRACT Cloud storage as service is the mainstream technology used to retain digital data. However,
there are significant risks for confidentiality, integrity, and availability violation associated with the loss of
information, denial of access, technical failures, etc. In this article, we propose a two-level 2Lbp-RRNS
scheme based on a Redundant Residue Number System with a backpropagation and hamming distance
mechanisms for increasing reliability of a configurable and secure multi-cloud data storage. We provide
a theoretical analysis of the 2Lbp-RRNS solution as an extension of the classical 2L-RRNS and a variant
of fully homomorphic encryption for privacy-preserving, parallel processing, and scalability. We formulate,
explain, and prove its main properties to extend existing knowledge within the limits of the critical bounding
RRNS assumptions. We show that 2Lbp-RRNS can identify and recover more errors than traditional
2L-RRNS. We provide the upper bounds of the traditional threshold 2L-RRNS and our solution to estimate
the number of detectable and correctable errors. We study various data access scenarios and show that
it detects 1.58x and corrects 3.37x more errors than 2L-RRNS, on average. We also provide efficient
implementations of encoding and decoding algorithms MRC8, and MRC16 based on the Mixed-Radix
system, Finite Ring Neuronal Network, and signed binary window method. We evaluate encoding/decoding
speeds using three algorithms:Mignotte,MRC8, andMRC16. The experimental system includes seven cloud
storages: DropBox, GoogleDrive, OneDrive, Sharefile, Box, Egnyte, and Salesforce. To assess the efficiency
of the system on real data, we vary scenarios of the first and second levels. The results show that our solution
outperforms MRC8 by 2.53x (1.78x), and Mignotte by 4.83x (11.43x) for the encoding (decoding) speed,
respectively.

INDEX TERMS Cloud storage, reliability, residue number system, secret sharing scheme, uncertainty,
security.

I. INTRODUCTION
A secure and fault-tolerant multi-cloud storage has to pre-
vent information from unauthorized access, use, disclosure,
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disruption, modification, etc. Confidentiality, integrity, and
availabilitymust be preserved even in the presence of failures,
deliberate, as well as accidental threats.

To this end, data encryption systems, homomorphic
encryption, error correction codes, secured sharing schemes,
etc. are widely used.
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The multi-cloud environment has a dynamic nature with
risks of the loss of information, denial of access, information
leakage, collusion, and data security breaches that are diffi-
cult to predict and anticipate in advance. These types of non-
stationarity are one of the main issues in the design of reliable
storage capable of mitigating their consequences.

Many potential users are not eager to employ cloud stor-
age services because of the risk of data disclosure. Data
encryptionmechanisms are not sufficient to deal with security
and privacy protection. When the data must be processed,
decryption is necessary, which falls on the initial problem of
data vulnerability.

Recent developments in the theoretical cryptography
address a set of techniques such as Homomorphic Encryption
(HE), Fully Homomorphic Encryption (FHE), Some-what
Homomorphic Encryption (SHE), and Secure Multi-Party
Computation (MPC). These cryptosystems allow applying
certain mathematical operations directly to the ciphertext and
safely delegate the processing of data to an untrusted remote
party. It guarantees that the remote party learns neither the
input nor output of the computation.

In the last decade, there is considerable interest in using a
widely known and studied number theory system such as the
Redundant Residue Number System (RRNS) as a variant of
FHE. The study of error correction codes based on RRNS is
related to three main issues.

The first goal is to increase the data encoding and decoding
speeds from a weighted number system to RRNS and vice
versa [14], [16], [39], [46]. The second aim is related to
the reduction in the computational complexity of the error
correction algorithm [17], [37], [38]. The third objective is
associated with an increase in the number of correctable
errors in RRNS [23], [37], [38].

In this article, we propose a two-level RRNS backpropa-
gation scheme (2Lbp-RRNS) with increased reliability for a
configurable, reliable, and secure multi-clouds data storage.
It has a scalable data access structure. In contrast to the classi-
cal solutions, it can restore the data with less available shares
than the state-of-the-art approaches and provide privacy and
security preserving.

This paper is organized as follows. Section II reviews
distributed storage systems, error correction codes, and secu-
rity. Section III discusses one level and two-level residue
number systems and their properties. Section IV presents the
theoretical support of the 2Lbp-RRNS solution. Section V
describes three algorithms for encoding-decoding. Section VI
focuses on the access speed of cloud systems and provides
performance analysis of encoding/decoding speeds. The con-
clusions and future work are discussed in the last Section VII.

II. RELATED WORK
In this section, we discuss the distributed data management
technologies.

A. DISTRIBUTED STORAGE SYSTEM
A variety of approaches can be used to construct a dis-
tributed system for storage and processing. Several of them

are based on the cloud and grid computing paradigms [1].
These infrastructures have common characteristics but also
principal differences.

The use of clouds for data storing requires several factors,
such as security, reliability, and scalability, under limited
Internet connection bandwidth [2], [3].

To provide quick access to distributed data and ensure
a high degree of reliability, availability, and scalability.
Chang et al. [4] proposed Bigtable system based on the
replication of not encrypted data without providing privacy
and data security.

An alternative mechanism is Hadoop and MapReduce
based on splitting the data set into independent chunks that
are processed in parallel and reducing them [5]. However,
as shown in [6], its main drawback is the low efficiency.

Not relational databases (NoSQL) that take into account
the heterogeneity of unstructured data become popular [7].
However, the two most popular NoSQL databases, Cassan-
dra and MongoDB, have problems with data security and
privacy [8].

Distributed Data Base (DDB) stores data on various sites
of a computer network and uses logic to organize the set of
data [9]. There are two ways to construct DDBs. The top-
down approach takes a database and distributes it over various
sites, while the bottom-up approach unites distinct databases
with one interface.

The main field of application of DDBs is structured data
storage. Therefore, it is not applicable to arbitrary data sets,
such as Big data.

Content Delivery Network (CDN) [10] is a set of servers
that cache the data, satisfy the client requests to the database,
and reduce the workload of origin servers. We can state
the following principles of CDN: load balancing, bandwidth
conservation, and time efficiency. However, CDNs are not
widely used in practice since they are not flexible.

The main principles of P2P Network [11] are scalability
and reliability achieved by decentralized structure and redun-
dancy, resource sharing, and anonymity. P2P networks are
efficient in providing fast access to files to a group of peers.
Nevertheless, most P2P networks do not allow integrated
computations and serve as data distribution environment.

B. ERROR CORRECTION CODE
The basis of the error correction codes is Hamming’s idea
of adding additional data that helps to detect and cor-
rect errors [12]. Depending on the areas of application,
approaches to building error correction systems are varying.

For storage systems, the balance between reliability
and data redundancy is important since data redundancy
affects the amount of stored data, and, therefore, costs. The
most expensive mechanism for ensuring reliability is data
replication.

From another perspective, error correction codes and their
modifications, such as erase codes and regeneration codes,
can provide greater reliability with the same redundancy than
replication [13]. An important issue when choosing an error
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correction code is what is the maximum number of errors that
it can detect and correct for given data redundancy [14].

From the data processing technology point of view, error
correction codes consider blocks [13]. The advantages of
block codes are the ability to correct errors located in one
block. The disadvantage is the smaller number of free-
standing errors that can be corrected compared to ultra-
precise ones.

An alternative solution is modular error correction codes
constructed using the RRNS [15]. An additional advantage
of RRNS for the design of distributed storage systems is that
it is a secret sharing scheme that provides data security [16].

However, there are two main problems: the computational
and memory complexity of the data decoding algorithm.

For the decoding phase, there are two widely used meth-
ods: the projection and syndrome. The projection method is
a universal method that allows us to detect and correct an
error with any RNSmoduli [17]. Its disadvantage is the expo-
nential computational complexity depending on the number
of correctable errors [14]. The syndrome method reduces
computational complexity to quadratic, but it requires storing
large tables of constants in memory [18].

Two approaches are used to reduce the required memory.
The first one is the use of auxiliary functions as an error syn-
drome; for example, the rank of a number [14]. The second
approach involves the imposition of additional restrictions on
RNS modules when other error correction codes provide the
reliability of the storage of individual modules.

The second problem is related to increasing the number of
correctable errors with the same encoding parameters [18].
For this problem, the next solutions are applied. The first one
is to unbalance RNS moduli when one or more RNS moduli
are several times larger than the rest of the moduli [19]. The
disadvantage of this approach is related to the case when
errors occurred in the largest RNSmodulus so that the amount
of incorrect data is significant and may exceed the threshold.

An alternative approach is to use 2L-RRNS. Given that the
second-level modules act as an independent error correction
code, this approach allows you to correct a larger number
of errors [20], [21], as well as reduce the computational
complexity of decoding [22], [23].

C. DISTRIBUTED STORAGE SECURITY
One of the main goals of cloud technologies is to provide
access to data at any time. Users get the opportunity to use
cloud services without involving specialists with fairly simple
and intuitive interfaces. Classical approaches to ensuring the
integrity of data are based on methods of identical or non-
identical redundancy (storing copies or storing histories,
respectively). Strategies for ensuring reliable data storage are
usually chosen for each particular system based on a multiple
factor analysis [24].

The task of ensuring data integrity is complex. It includes
not only data integrity control but also its maintenance and
the data recovery if it is violated for any reason.

There are various ways to solve the problem of monitoring
and ensuring data integrity. One of them is calculating the
checksums and comparing them with the reference check-
sums [25], [26]. Other methods are based on the use of cryp-
tographic techniques, key and keyless hashing, and electronic
signature [27]–[29]. The disadvantage of these methods is the
inability to ensure integrity without extra data for recovery
mechanisms.

The redundancy is a widespread solution for ensuring
data integrity. Hardware and software implementations of the
Redundant Array of Independent Disks (RAID) [30], [31],
duplication methods, encoding [32], etc. The disadvantage of
these methods is the inability to control data as information-
theoretically secure and high redundancy.

Some methods can control integrity by comparing the ref-
erence values and calculated hash codes (checksums) when
requesting the data. However, the lack of mechanisms for
their recovering does not allow ensuring integrity.

On the contrary, other methods ensure data integrity by
restoring it, for example, from a backup copy. However, their
practical implementation without the possibility of prelimi-
nary data integrity control is ineffective.

Separate methods allow monitoring and ensuring data
integrity, however, at the cost of high redundancy. One of
the solutions is to consistent use of cryptographic transfor-
mations and backup technology.

An alternative way is to use RRNS, which on the one
hand, is the error correction code, which allows restoring
the result when an error occurs, and on the other hand,
is a secret sharing scheme that ensures data security [14].
Tchernykh et al. [33] show how the security of stored data
depends on the RRNS parameters. 2L-RRNS can increase
the number of detected and correctable errors compared to
1L-RRNS [23]. Therefore, 2L-RRNS can ensure the relia-
bility and integrity of stored data better than 1L-RRNS (see
Sections III, IV).

D. PRIVACY-PRESERVING FOR CLOUD COMPUTING
RNS, as a version of Homomorphic Encryption (HE), can
be used for privacy-preserving in cloud computing. It allows
calculating functions over encrypted data without knowing
the moduli set. The owner can restore the real result from the
outcome of the calculations on the corresponding encrypted
data. This characteristic makes RNS a promising solution for
securely delegating cloud computing servers over sensitive
client data.

After Rivest et al. [49] introduce the concept of HE, cryp-
tographers proposed and analyzed many different homomor-
phic cryptosystems

Brickell and Yacobi [50] and Paillier [51] proposed a
partially HE with one arithmetic operation (addition or
multiplication).

Gentry [52] developed the first FHE circuitry based on
ideal lattices. It performs arbitrary calculations on encrypted
data with an unlimited number of homomorphic multiplica-
tions and additions.
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All these cryptosystems can be divided into two categories.
The first one contains public-key FHE schemes based on
noise input [52]–[55]. These cryptosystems are based on the
Gentry C technique improving its performance [52].

TheGentry C Cryptosystem is safe and resistant to various
attacks but has high computational complexity, which does
not allow it to be used in practical applications. To reduce
the computational complexity, [33] proposed an analog of the
Gentry C scheme based on the RNS. Tchernykh et al. [16]
showed that RNS provides the necessary level of security
and reduces the computational complexity of encoding and
decoding.

The second category includes symmetrical FHE cryptosys-
tems that do not use noise. Examples of such cryptographic
algorithms are [56], [57], and others based on diagonal
matrices.

The use of diagonal matrices reduces the computational
complexity of coding and decoding algorithms but reducing
data security. Yagisawa [58], [59] present FHE based on octo-
nion algebra; however, as shown in [60] is unsafe. An alter-
native mechanism is the use of RNS. As demonstrated by
[14], [16], RNS can reduce the computational complexity of
encoding and decoding algorithms and provide the necessary
security level.

In the next sections, we show how to improve the technical
characteristics of RNS through the use of 2Lbp-RRNS and
backpropagation.

III. TWO-LEVEL RRNS
Let us introduce the following notations.

A. 1L-RRNS
Let p1,1, p1,2, . . . , p1,n1 are pairwise coprime numbers used
as moduli set of 1L-RRNS, n1 = k1 + r1. 1L-RRNS legal
dynamic range is defined as P =

∏k1
i=1 p1,i.

Data S is a number in the Binary-Weighted Number Sys-
tem, where S ∈ [0,P). S is represented in RRNS as a
tuple

S
RNS
−→ (S1, S2, . . . , Sn),

where Si = |S|p1,i represents the remainder of the division of
S by p1,i.
In 1L-RRNS settings (k1, n1), if the number of control

moduli is r1, then, according to 1L-RRNS property, the sys-
tem can detect r1 = n1 − k1 and correct br1/2c errors.
For error isolation and correction, projection methods are

used, where the number of calculated projections grows expo-
nentially depending on the r1. As a consequence, 1L-RRNS
is impractical without significant optimization.

Celesti et al. [15] proposed 1L-RRNS for reliable and
scalable cloud storage systems. Operations on residues can
be accomplished separately and concurrently, which makes
the computations simpler and faster. Redundancy of residues
allows the building system with multiple error detection and
correction.

Since the representation of numbers in 1L-RRNS can be
seen as a secret sharing scheme, we can obtain computation-
ally secure data storage.
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Gomathisankaran et al. [34] studied fully homomorphic
cipher systems based on secret sharing in RNS. However,
it should be noted that it is not practical to use RNSmoduli set
as the secret keys. It leads to high redundancy and resource-
intensive decoding that can bemore complex than the original
problem.

Cheon et al. [35] offered an alternative way of constructing
a homomorphic encryption system in RNS. They proposed a
generalization of DGHV (Dijk, Gentry, Halevi, and Vaikun-
tanathan) algorithm, which improves characteristics of com-
putational complexity and redundancy. This scheme is based
on the ideas of the secret sharing scheme in 1L-RRNS [36].
The proposed algorithm has high redundancy compared with
schemes in the classic 1L-RRNS.

To determine the problems in the data storage and data pro-
cessing, we use properties of error detection and correction
in 1L-RRNS, considered by [37]. Modification and improve-
ments of detection and error correction in the 1L-RRNS are
discussed in [14], [38].

The common issue for the majority of the proposed works
is to detect and correct one error. When reliability is provided
for a single computer, the detection and correction of a single
error are sufficient. However, when we consider big data,
it is necessary to have efficient algorithms for detecting and
correcting several errors.

The 1L-RRNS scheme for big data storage provides secu-
rity, reliability, and scalability. It has properties of error
correction codes and two cryptographic primitives: secret
sharing schemes and homomorphic encryption, which makes
it useful for data processing in the encrypted form.

B. 2L-RRNS DATA ENCODING AND DECODING
The constructive version of the Chinese Remainder Theo-
rem (CRT) gives a method to recover S from RRNS repre-
sentation. In RRNS settings (k1, n1), S can be recovered from
any k1 remainders from n1.
To guarantee the required dynamic range, we can use either

a large number of small moduli or several large moduli. For
small moduli, converting numbers fromRNS to a binary num-
ber system is more computationally complex. They should
have effective software and hardware implementations of the
basic modular operations.

2L-RRNS is a recursive extension of the classical
1L-RRNS. On the first level, n1 moduli p1,1, p1,2, . . . , p1,n1
are used to calculate shares S1, S2, . . . , Sn1 . On the sec-
ond level, each Si is transformed into the set of residuals
Si,j = |Si|p2,i,j by its own moduli set p2,i,1, p2,i,2, . . . , p2,i,n2,i
(Fig.1).

Mi =

k2,i∏
j=1

p2,i,j ≥ p1,i

Si satisfies the condition Si < p1,i, for all i = 1, n1.
From the CRT, it follows that for a one-to-one mapping

between Si ∈ [0, p1,i) and S̃i =
(
Si,1, Si,2, . . . , Si,n2,i

)
, it is

necessary and sufficient thatMi ≥ p1,i for each i = 1, n1.

FIGURE 1. 2L-RRNS encoding.

FIGURE 2. 2L-RRNS decoding.

Figure 2 shows a data decoding scheme. Si for i = 1, n1 are
restored from the corresponding Si,j, then S is restored from
S1, S2, . . . , Sn1 .
Multi-Operand Modulo Addition (MOMA) is an algorith-

mic primitive that accepts n1 operands S1, S2, . . . , Sn1 , with
0 ≤ Si < p1,i for each i = 1, n1 and computes the residue of
their sum taken modulo P. That is, it computes original data
S as

S =
∣∣wiS1 + w2S2 + . . .+ wn1Sn1

∣∣
P ,

where wi = Pi ·
∣∣∣P−1i ∣∣∣

p1,i
and Pi = P/p1,i, for all

i = 1, n1 [39].

IV. TWO-LEVELS RRNS WITH BACKPROPAGATION
In this section, we present the 2Lbp-RRNS solution as an
extension of the classical 2L-RRNS. We provide its theoreti-
cal analysis, formulate, explain, and prove its main properties.
We show how the reliability and performance of the system
depend on the (k, n) parameters on each level.

We discuss the backpropagation and Hamming Distance
mechanisms that allow to increase the number of detected and
corrected errors.

We provide and compare the upper bounds of detectable
and correctable errors for both schemes to estimate the bene-
fits of the proposed solution.

A. 2L-RRNS
2L-RRNS uses the error correction code of the classical
1L-RRNS on each level. It can correct the value of Si, if and
only if, the number of errors is less or equal to

⌊
r2,i/2

⌋
.

In all other cases, it can detect that Si is incorrect (similar
to 1L-RRNS), but it cannot recover it.
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Algorithm 1 2L-RRNS Error Corrections

Input: (k1n1) (k1, n1) ,
(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S1
RNS
−→

(
S1,1, S1,2, . . . , S1,n2,1

)
, S2

RNS
−→

(S2,1, S2,2, . . . , S2,n2,2), · · · ,

Sn1
RNS
−→ (Sn1,1, Sn1,2, . . . , Sn1,,n2,n1 )(

p1,1, . . . , p1,n1
)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, . . . ,

(p2,n1,1, . . . , p2,n1,n2,n1 )
Output: S, flag,

(
S1, S2, . . . , Sn1

)
.

flag = 0, if there are no errors, flag = 1 if errors are
detected and corrected, flag = −1, if errors are detected but
not corrected.
1. flag = 0
2. For i = 1 to n1 do:

2.1. S ′i = CRTtoBin((Si,1, Si,2, . . . , Si,n2,i ))
2.2. If S′i ≥ P2,i then:

2.2.1. temp = ProRRNS
(
S ′i ,
(
p2,i,1, p2,i,2, . . . , ,

p2,i,n2,i
)
k2,i, val

)
2.2.2. flag = flag+ temp;
2.2.3. If temp == 0 then Si = val else Si = −1

3. If flag == 0 then:
3.1. S = CRTtoBin((S1S2, . . . ,Sn1 ))

4. else
4.1 If flag ≤ b(n1 − k1) /2c then:

4.4.1. flag = 1
4.4.2. S = CRTtoBin((S1S2, . . . ,Sn1 ))

4.2 else flag = −1
5. return S,flag, (S1, S2, . . . , Sn1 )

Let us consider Algorithm 1. ‘‘2L-RRNS error correc-
tions’’ that applies the general projection method of the
1L-RRNS on each level.We do not use the syndromemethod.
The amount of memory required by the syndrome method
in 1L-RRNS is increased exponentially, depending on the
number of errors to be corrected [14]. Thus, to store in
memory a table of constants for the second level requires
increasing the memory by n1 times, which is not reasonable.

The CRTtoBin function converts numbers from RRNS to
a binary number system using CRT. The ProRRNS function
calculates the projection value of RRNS.

Let us show the number of detected N2L
D and corrected N2L

E
errors of 2L-RRNS.
Theorem 1: 2L-RRNS can detect N 2L

D errors and correct
N 2L
E errors, where

N2L
D =

n1∑
i=1

(
n2,i − k2,i

)
, N2L

E =

n1∑
i=1

⌊
n2,i − k2,i

2

⌋
.

Proof: The theorem is proved in Barati et al. [23].
For a better understanding of the 2Lbp-RRNS properties,

let us first consider special cases of 1L-RRNS and 2L-RRNS,
when we know the localization of errors. We use special

subscripts for detection Dl and correction El cases with error
localization.
Lemma 1: For (k1, n1) 1L-RRNS, if we know the localiza-

tion of k1 correct Si, 1L-RRNS can restore S.
Proof: Without loss of generality, let the cor-

rect values be Si1 , Si2 , . . . , Sik1 , then using the CRT,
1L-RRNS can restore S using the formula: S =∣∣∣w1Si1 + w2Si2 + . . .+ wk1Sik1

∣∣∣
PI
, where PI =

∏k1
j pij and

wj =
PI
pij
·

∣∣∣ pijPI ∣∣∣pij . The lemma is proved.

Corollary 1: For (k1, n1) 1L-RRNS, if we know the local-
ization of k1 correct Si, 1L-RRNS can correct N1L

El ≤ r1 =
n1 − k1 errors.

Proof:
(a) When we know Si1 , Si2 , . . . , Sik1 with no errors, then

the condition of Lemma 1 is satisfied. Therefore,
we can restore the result by correcting r1 = n1 − k1
errors.

(b) When there exist k1−1 values with no errors, given that
(k1, n1) is a threshold secret sharing scheme, it follows
that we cannot restore the true value of S.

Hence, if there is an algorithm that can determine which of
Si is correct, we can correct no more than r1 = n1−k1 errors.
The corollary is proved.
Lemma 2: If there is an algorithm that can determine

which of Si,j is correct, then the 2L-RRNS can correct

N2L
El ≤

∑n1

i=1
n2,i −

∑k1

i=1
k2,i

errors.
Proof: Without loss of generality, let us assume that

k2,1 ≤ k2,2 ≤ . . . ≤ k2,n1 .
Case 1: Let us assume that r2,i errors occurred in S̃ i, for all

i ∈ 1, k1, with total errors
∑k1

i=1 r2,i =
∑k1

i=1 (n2,i − k2,i), and
n2,i errors for all i ∈ k1 + 1, n1, with total errors

∑n1
i=k1+1

n2,i
Following Lemma 1, we can restore the true value of Si for
all i ∈ 1, k1. Therefore, the condition of Lemma 1 is satisfied,
and we can restore the true value of S correcting N2L

El errors.

N2L
El ≤

k1∑
i=1

(
n2,i − k2,i

)
+

n1∑
i=k1+1

n2,i

=

k1∑
i=1

n2,i−
k1∑
i=1

k2,i +
n1∑

i=k1+1

n2,i

=

n1∑
i=1

n2,i −
k1∑
i=1

k2,i

Case 2: If we add one error more to S̃ i (without loss
of generality, we will consider that the error is added
to Sj representations), for i ∈ 1, k1, then, according to
Corollary 1, we cannot restore the actual value of Si for
all i ∈ {k1 + 1, k1 + 2, . . . , n1} ∪ {j}, and according to
Lemma 1, we can restore the true value of Si for all
i ∈ {1, 2, . . . , k1}\{j}, therefore, we cannot restore the real
value of S.
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From the first and second cases, it follows that the number
of errors that we can correct is

N2L
El ≤

n1∑
i=1

n2,i −
k1∑
i=1

k2,i

Lemma 2 is proved.

B. 2Lbp-RRNS
To increase the number of detected and corrected errors,
2Lbp-RRNS uses the backpropagation and Hamming
Distance (HD) mechanisms.

Let us discuss the Algorithm 2. ‘‘2Lbp-RRNS error
corrections.’’

Algorithm 2 2Lbp-RRNS Error Corrections

Input: (k1, n1) ,
(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S1
RNS
−→

(
S1,1, S1,2, . . . , S1,n2,1

)
,

S2
RNS
−→ (S2,1, S2,2, . . . , S2,n2,2), · · · ,

Sn1
RNS
−→ (Sn1,1, Sn1,2, . . . , Sn1,,n2,n1 )(

p1,1, . . . , p1,n1
)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, . . . ,

(p2,n1,1, . . . , p2,n1,n2,n1 )
Output: S,flag
Step 1. 2L-RRNS calculates S and flag. If flag 6= −1, S is

recovered, otherwise S is not recovered.
Step 2. Based on S1,1,S1,2 . . . .Sn1,,n2,n1 , choosing an

(unordered) subset of k2,i elements from a fixed set
of n2,i elements, we calculate possible values S li for
each of Si.

Step 3. Choosing an (unordered) subset of k1 elements Sli
from a fixed set of n1 elements, we calculate possible
values S li and restore S j by the function CRTtoBin.

Step 4. Using the backpropagation concept, we encode each
Sj to 2L-RRNS representation S̃ j and compute the
HD between S̃ j and S.

Step 5. We choose S̃ j for which the HD is minimal. If min-
imal HD between S̃ j and S is more than N 2Lbp

E =∑n1
i=1 n2,i −

∑k1
i=1 k2,i − 1, then return flag = −1;

otherwise, S = S j and flag = 1.
end.

Consider an example when on the first and the second level
the scheme is (2,3). Hence, k1 = k2,1 = k2,2 = k2,3 = 2,
n1 = n2,1 = n2,2 = n2,3 = 3.
On the first level, we have a tuple with three elements

(S1, S2, S3). On the second level, we have three tuples

(S1,1, S1,2, S1,3), (S2,1, S2,2, S2,3), and (S3,1, S3,2, S3,3).

Let assume errors in S1,3, S2,3, S3,3. Then traditional
2L-RRNS detects errors but cannot correct them because we
do not know the position of errors.

In the first step, 2Lbp-RRNS trying to restore S1 uses three
possible tuples for recovering S11 , S

2
1 , and S

3
1 .

S11
RNS
←− S̃11 =

(
S1,1, S1,2

)
, S21

RNS
←− S̃21 =

(
S1,1, S1,3

)
, and

S31
RNS
←− S̃31 =

(
S1,2, S1,3

)
.

We do the same for S2 denoting possible tuples as S12
RNS
←−

S̃12 =
(
S2,1, S2,2

)
, S22

RNS
←− S̃22 = (S2,1, S2,3), and S32

RNS
←−

S̃32 = (S2,2, S2,3).
To recover S, we analyze nine possible candidate tuples of

the first level denoted as:

S1
RNS
←− S̃1 = (S11 , S

1
2 ), S2

RNS
←− S̃2 = (S11 , S

2
2 ),

S3
RNS
←− S̃3 = (S11 , S

3
2 )

S4
RNS
←− S̃4 = (S21 , S

1
2 ), S5

RNS
←− S̃5 = (S21 , S

2
2 ),

S6
RNS
←− S̃6 = (S21 , S

3
2 )

S7
RNS
←− S̃7 = (S31 , S

1
2 ), S8

RNS
←− S̃8 = (S31 , S

2
2 ),

S9
RNS
←− S̃9 = (S31 , S

3
2 ).

Backpropagation converts each of nine S j values back to
2L-RRNS denoting S̃ j.
For each S̃ j, we calculate the HD between S and S̃ j, for

all j = 1, 9. In our example, the HD equals to three, for all
j = 2, 9, and equals to two between S for S̃1. We note that
k = 2, hence, S = S1. We restore data.
Now, let us calculate the number of errors detected and

corrected by 2Lbp-RRNS in the general case.
The basic idea of this method is in the backpropagation of

the restored variant that cannot be proved as correct or incor-
rect. This restored variant is encoded, so the data is moved in
the direction reverse to restoring.

This new encoded variant S̃ j is compared with the initially
encoded value S by calculating the HD. If HD is less than a
given threshold, S̃ j is considered as a correct restored S
Thus, the error correction includes two additional pro-

cesses: 2L-RRNS encoding and HD calculation.
The number of possible variants S̃ j depends on the number

of errors in S. Due to a large number of possible combina-
tions, the time can grow significantly.

Backpropagation, on the one hand, increases the com-
putational complexity of the error detection and correction
algorithm, similar to the base extension. On the other hand,
it allows to identify and recover more errors.

Here, we discuss the HD properties for the error localiza-
tion in 2L-RRNS in more detail. Let we have two 2L-RRNS
representation of SS: without errors S̃ and with errors S.
Property 1: If HD

(̃
S, S

)
= 0 then S does not contain

errors, i.e. S̃ = S.
Proof: Evidence from the contrary. Assume that S con-

tains errors andHD
(̃
S, S

)
= 0. Since S contains errors, there

exists a representation S
2L−RRNS
←− S + E , where 0 < E < P,

therefore

S =
((
S ′1,1, . . . , S

′

1,n2,1

)
, . . . ,

((
S ′n1,1, . . . , S

′
n1,n2,n1

)))
E =

((
E ′1,1, . . . ,E

′

1,n2,1

)
, . . . ,

((
E ′n1,1, . . . ,E

′
n1,n2,n1

)))
,

S̃ =
((
S1,1, . . . , S1,n2,1

)
, . . . ,

((
Sn1,1, . . . , Sn1,n2,n1

)))
,

where for all i, j:S ′i,j = Si,j + Ei,j.

199430 VOLUME 8, 2020



V. Miranda-López et al.: 2Lbp-RRNS: Two-Levels RRNS With Backpropagation for Increased Reliability and Privacy-Preserving

Considering that 0 <E < P then there exists at least one
pair (i, j), such that Ei,j 6= 0, therefore there is at least one
value Si,j 6= S ′i,j, then HD

(̃
S, S

)
> 0. Thus, we have a

contradiction. Therefore, if HD
(̃
S, S

)
= 0 then S does not

contain errors. The property is proven.
Corollary 2: The number of errors that has 2L-RRNS rep-

resentation of S is equal to HD
(̃
S, S

)
.

Property 2: Let S1 6= S2 6= . . . 6= S t , for which
HD

(
S̃1,S

)
= HD

(
S̃2, S

)
= . . . = HD

(
S̃ t , S

)
, then

the number of errors in each of the representations S̃ j is
equal.

Proof: Since the number of errors in the 2L-RRNS
representation of S j by the Corollary 2 is determined
by HD

(
S̃ j, S

)
, from the condition HD

(
S̃1,S

)
=

HD
(
S̃2, S

)
= . . . = HD

(
S̃ t , S

)
, it follows that the number

of errors in each S̃ j is equal, for all j = 1, t . The property is
proven.
Corollary 3: Let S1 6= S2 6= . . . 6= S t , for which

HD
(
S̃1, S

)
< HD

(
S̃2, S

)
< . . . < HD

(
S̃ t , S

)
, then the

S1 representation in 2L-RRNS contains the least errors.
It follows from Corollary 3 and Property 2. If there are

at least two S j values such that S1 6= S2, HD
(
S̃1, S

)
=

HD
(
S̃2, S

)
= d and d ≤ HD

(
S̃ j, S

)
for all j = 1, t , then it

is impossible to correct S since we cannot determine which
value from two S1, S2 is true.
Theorem 2: 2Lbp-RRNS can detect N2Lbp

D and correct
N2Lbp
E errors, where

N2Lbp
D =

n1∑
i=1

n2,i −
k1∑
i=1

k2,i,

N2Lbp
E ≤

n1∑
i=1

n2,i −
k1∑
i=1

k2,i − 1

Proof: From Corollary 2, it follows that the maximum
number of errors that we can determine using HD is equal to
the maximum number of errors that can be corrected if we
know them, therefore

N2Lbp
D =

n1∑
i=1

n2,i −
k1∑
i=1

k2,i.

To estimate the number of correctable errors of
2Lbp-RRNS, we consider their upper bound.

As in traditional threshold 2L-RRNS, no more than
br2,i/2c errors are localized in each S̃ i. Hence, there are
k1 + dr2,i/2e values of Si, the correctness of which can be
confirmed. Thus, the correct value can be corrected.

Without loss of generality, we assume that in each of the
representations in 1L-RRNS Siq ∈ {Si1 , Si2 , . . . , Sil } contains
no more than r2,iq errors, where l ≥ k1. We denote I =
{i1, . . . , il} and there exists u /∈ I for which the representation
in 1L-RRNS Su contains less than n2,u errors, then using

Corollary 3, we can restore S based on backpropagation
mechanism. Backpropagation encodes each S j candidate of
S back to RRNS representation denoting S̃ j.
Consider the number of errors that the upper bound

case can correct. The maximum number of errors is less
than or equal to

N2Lbp
E ≤

k1∑
i=1

(
n2,i − k2,i

)
+

n1∑
i=k1+1

n2,i − 1

=

n1∑
i=1

n2,i −
k1∑
i=1

k2,i − 1.

The theorem is proved.

C. 2Lbp-RRNS PROPERTIES
In this section, we compare the properties of 2Lbp-RRNS
and 2L-RRNS schemes for the example settings described
in Table 1.

TABLE 1. Scheme settings.

Here, (k1, n1) =
(
k2,i, n2,i

)
, hence, each storage has the

same number of shares with the same threshold.
Figures 3-4 show the number of detected and corrected

errors. We observe that 2Lbp-RRNS can detect and correct
more errors than 2L-RRNS for all test cases. For the given
experiments, 2bp-RRNS can detect 1.58x (see, Fig. 3) and
correct 3.37x (see, Fig.4) times more errors than 2L-RRNS,
on average.

Table 2 presents the average encoding/decoding speeds for
settings described in Table 1 varying data size.
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FIGURE 3. Error detection in 2L-RRNS and 2Lbp-RRNS.

FIGURE 4. Error correction in 2L-RRNS and 2Lbp-RRNS.

TABLE 2. The average data encoding and decoding speed (MB/s).

V. ENCODING AND DECODING ALGORITHMS
In this section, we describe three algorithms: Mignotte,
Mixed Radix Conversion based MRC8, and MRC16 used for
encoding and decoding. Their pseudocodes are presented in
Appendix.

A. ENCODING ALGORITHMS
Mignotte [43] is a classical secret sharing scheme with a
CRT projectionmechanism for error detecting and correcting.
Mignotte represents an integer S by a tuple (S1, . . . , Sn1 ),
where Si = |S|p1,i , Pi =

P
p1,i

and recovers S with classic CRT:

S =

∣∣∣∣∑n

i=1
SiPi

∣∣∣P−1i ∣∣∣
p1,i

∣∣∣∣
P

MRC8 and MRC16 [16], [41] are based on a weighted
system called Mixed-Radix Systems (MRS) - a non-standard
positional numeral system in which the numerical base varies
from position to position. The basic implementations based

FIGURE 5. FRNN architecture (a) and its symbolic mapping (b).

on a neural-like network architecture named Finite Ring Neu-
ronal Network (FRNN) are presented in [42].

Figure 5 shows the general interpretation of this architec-
ture: a parallel, interconnected network of simple elements.
It consists of two important components: 1) the neuronal
processing elements capable of performing basic operations
and 2) weights, which represent the knowledge of the system.
All finite ring arithmetic like addition, multiplication, and
their combination can be reduced to this architecture.

The simple FRNN architecture is based on the Pascal
method of finding the division remainder and on the signed
binary window method [61].

Original data S is represented as S = sl |sl−1| ..|s0, where
‘‘|’’ is L-bits string concatenation of si. L defines the window
size L ∈ {8, 16}. wi,j =

∣∣2L·j∣∣p1,i are synaptic weights.
FRNN consists of two layers: the first one is the prefabri-

cated layer on which the product si is calculated by the synap-
tic weight wi,j. On the second computational layer, the sum
of the values and remainder of the division is calculated by
modulo p1,i. Thus, FRNN is described using the following
formula:

Si =

∣∣∣∣∑l

j=0
sj · wi,j

∣∣∣∣
p1,i

B. DECODING ALGORITHMS
To convert numbers from RNS to a binary, various algorithms
are used: CRT [44], Wang method [45], MRS [41], Diag-
onal function [46], Core Function [47], and Approximate
method [48].

The Diagonal function and Core Function are not advisable
to use for such conversions [46].

CRT uses the computationally complex operation of find-
ing the remainder of the division by the RNS range to convert
numbers.

An approximate method reduces its complexity. It is based
on replacing absolute values by relative values and replacing
the operation of the division with the remainder of the general
form by trial division. However, to obtain the correct value
in the approximate method, it is necessary to increase the

199432 VOLUME 8, 2020



V. Miranda-López et al.: 2Lbp-RRNS: Two-Levels RRNS With Backpropagation for Increased Reliability and Privacy-Preserving

size of the coefficients from dlog2 Pe to dlog2 (P · ρ)e, where
ρ = −n1 +

∑n1
i p1,i, which eliminates the resulting gain.

The recursive doubling Wang method is used to reduce its
computational complexity. It reduces the size of the divisor
from P to

√
P. But at the same time, the number of reminders

of the division is increased from one to dlog2 n1e.
Alternative solutions for converting from RNS to binary

are MRS-based algorithms. The decoding consists of two-
stages. In the first stage, the number is converted from RNS
to MRS, then from MRS to binary.

FIGURE 6. DNN architecture for decoding from 1L-RRNS to binary.

To reduce the computational complexity of the first stage,
we propose a modification of the converting from RNS to
binary by using CRT and the Neural Network of the Finite
Ring (FRNN). The second stage of the transition from MRS
to binary is implemented using the Convolutional Neural
Network (CNN) (Fig. 6).

The RRNS residues are converted to MRS and then to
binary S

MRS
←− Ŝ = [̂s1, . . . , ŝn1 ] by:

S =
∑n1

i=1
ŝiŵ1,i,

where ŵ1,i are the radices and ŝ1,i are the MRS digits,
0 ≤ ŝ1,i < p1,i and ŵ1,i =

∏i−1
j=1 p1,j.

To recover S, the classic MRC is formulated as follows:

S = ŝ1 + ŝ2p1,1 + ŝ3p1,1p1,2 + . . .+ ŝnp1,1p1,2 . . . p1,n1−1

The MRC digits can be computed as:

ŝ1 = S1

ŝ2 =

∣∣∣∣(S2 − ŝ1) ∣∣∣p−11,1

∣∣∣
p1,2

∣∣∣∣
p1,2

ŝ3 =

∣∣∣∣((S3 − ŝ1) ∣∣∣p−11,1

∣∣∣
p1,3
− ŝ2

) ∣∣∣p−11,2

∣∣∣
p1,3

∣∣∣∣
p1,3

ŝn =

∣∣∣∣((.. (Sn − ŝ1) ∣∣∣p−11,1

∣∣∣
p1,n1
− ŝ2

) ∣∣∣p−11,2

∣∣∣
p1,n

− . . .− ŝ1,n1−1)
∣∣∣p−11,n1−1

∣∣∣
p1,n1

∣∣∣∣
p1,n1

TABLE 3. Access speeds of seven clouds (MB/s).

A positive number in the interval [0,P− 1] can be uniquely
represented.

MRS reduces the computational complexity of 1L-RRNS
to binary conversion by eliminating the operation of find-
ing the remainder of division by P, by calculating ŝi. The
computational complexity of the ŝi is quadratic of n1. The
simultaneous use of the ideas of MRS and CRT to translate
from 1L-RRNS to the binary number system allows speeding
up the algorithm.

Let Bi =
∣∣∣P−1i ∣∣∣

p1,i
·Pi is the orthogonal basis of 1L-RRNS,

where for all i = 1, n1 : Pi = P/p1,i. For any i = 1, n1 : Bi is

represented in theMRS asBi
MRS
←− B̂i = [̂bi,1, . . . , b̂i,n1 ], Ti =

(̂b1,i, . . . , b̂i,i) is a tuple of coefficients in MRS representa-
tion, Ai = (Si, Si, . . . , Si︸ ︷︷ ︸

i times

) and σi =
⌊

1
p1,i
·
∑i

j=1 Sj · bj,i
⌋
is

the bias.
Figure 6 shows the architecture of a Decoding Neural

Network (DNN) for conversion from 1L-RRNS to binary
consisting of two layers: FRNN and CNN.

VI. PERFORMANCE ANALYSIS
In this section, we evaluate the 2Lbp-RRNS performance in
terms of encoding/decoding speeds using three algorithms:
Mignotte,MRC8, andMRC16, and uploading and download-
ing speed to real cloud storages.

Our software platform is based on JMetal 5.6 and JDK
11.0.1 (64-bits). The hardware platform has Dell Precision
T3610, Intel Xeon CPU E5-1606 @ 2.80 GHz, 16 GB
DDR3 RAM with Windows 10 Enterprise 64-bits.

The experimental scenario includes seven cloud storages:
DropBox, OneDrive, Box, Salesforce, GoogleDrive, Share-
file, and Egnyte. To access the public REST API of the CSPs,
we used a Java wrapper for Google Drive, Dropbox, Box, and
Sharefile. For OneDrive, Egnyte, and Salesforce, we used the
Apache HttpClient library [40].

Table 3 shows low, high, and average access speeds of
seven CSPs. We see that, in most cases, the access speeds
are less than encoding/decoding speeds (Table 2 ).

For MRC16, the average uploading speed is 5.023/2.98 =
1.67 times less than average encoding speed. The average
downloading speed is 14.74/ 3.25 = 4.53 times less than
decoding speed (Table 2 ).
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FIGURE 7. Encoding speeds for setting (3,4) on Level 1.

FIGURE 8. Decoding speeds for settings (3,4) on Level 1.

A. 2Lbp-RRNS ENCODING AND DECODING SPEED
To draw all aspects of the proposed system, we run all settings
(k1, n1) of Level 1 and all settings

(
k2,i, n2,i

)
of Level 2, where

1 ≤ i ≤ n1.
Figures 7-8 show examples of the encoding/decoding

speeds, respectively, for up to eight clouds. On the first level,
the access structure is limited to (k1, n1) = (3, 4). On the sec-
ond level, we consider 27 variants of

(
k2,i, n2,i

)
, from n2,i = 3

to n2,i = 8.
Due to the share size is decreasing while k2 is increasing,

the highest encoding speeds are obtained when k2 = n2
(Fig. 7).

On the other hand, the lowest decoding speeds are obtained
for k2 = n2 (Fig. 8) because it is necessary to decode all n2
shares to recover the original data.

Obtained data shows that encoding speed is in the
range 0.505-6.685 MB/s, decoding speed is in the range
0.529-16.30 MB/s. The access speed is in the range
of 0.11-3.32 MB/s.

Mignotte is the slowest of the considered algorithms with
speeds no higher than 1.23 MB/s for encoding and 1.3 MB/s
for decoding.

MRC8 has a maximum decoding speed of 10.02 MB/s in
(2.5) of Level 2 and encoding speed of 3 MB/s for settings
where k2 = n2 of Level 2.

We can see that MRC16 outperforms two other algorithms
in all the experiments. For example, MRC16 achieves a max-
imum encoding speed of 6.68 MB/s for a setting (3,4) in
Level 1 and (6,6) in Level 2 (Fig. 7).

Finally, MRC16 is 2.53 times faster than MRC8, and
4.83 times faster than Mignotte in the encoding phase. In the
decoding phase, MRC16 is 1.78 times faster than MRC8, and
11.43 times faster than Mignotte.

MRC16 decoding speed is 15.04 MB/s, and Mignotte is
0.8019 MB/s (Fig.8).

We focus on the performance of a serial and parallel
execution of 2Lbp-RRNS.

Figures 9-10 show the boxplots for encoding/decoding
speed, respectively for both versions.

FIGURE 9. Boxplot encoding speeds for all combinations of settings.

FIGURE 10. Boxplot decoding speeds for all combinations of settings.

Boxplot conveniently displays the median, lower, and
upper quartiles, minimum and maximum sample values, and
outliers.

For each setting of Level 1, from n1 = 3 to n1 = 8, we
execute all combinations of Level 2 settings.

We run the experiments 30 times to have statistically sig-
nificant results.

MRC8 algorithm has outliers that show that there is a large
gap between the minimum and maximum speeds. Most of the
values are in the vicinity of the low-speed highlands.

MRC16 algorithm is more balanced, and it is faster than
MRC8 and Mignotte reaching a maximum speed higher than
30 MB/s for parallel execution.

The decoding speed of MRC16 is higher than MRC8 and
Mignotte (Fig. 10). MRC16 and MRC8 have no outliers.
Therefore, we can conclude that there are no speeds that stand
out from the general sample.
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FIGURE 11. Uploading velocity for Level 1 setting (3,4).

FIGURE 12. Downloading velocity for Level 1 setting (3,4).

Mignotte has outliers, i.e., values that exceed the possible
values of the total sample, given that they are more than the
median. Overall, MRC16 shows the best performance for all
combinations of settings of the 2L-RRNS.

B. VELOCITY
Since encoding and decoding speeds are similar order to the
downloading and uploading speeds, we consider the complete
cycle of the data: encoding plus uploading and downloading
plus decoding. We name them uploading and downloading
velocities.

The uploading velocity Vu =
size(D)
TE+tup

includes encoding
from binary to RNS and uploading time. The downloading
velocity Vd =

size(D)
TD+tdow

includes downloading time from the
cloud storage and decoding fromRNS to binary (see Sec III.).

We are focusing on a multi-cloud environment. It has
a dynamic nature with parameters changing over time and
difficult to predict and anticipate in advance. These types of
non-stationarity are one of the main issues in the design of
efficient algorithms capable ofmitigating their consequences.

To determine the practical applicability of the proposed
scheme and study its properties, we consider the best and
worst scenarios. In the best one, clouds with the best access
speeds are selected for data storage. In the worst one,
the slowest clouds are chosen.

We calculate the upload time tup =
∑n2,i

j=1
size

(
Si,j
)/
up (j)

and download time tdow =
∑k2,i

j=1
size(Si,j)

/
down(j), where

i ≤ n1, up(j) and down(j) are the upload and download access
speeds to/from j-th cloud.

Let us consider Level 1 setting (3,4) and Level 2 with (5,5)
setting and the access speeds of Table 3 .

Figure 11 shows that MRC16 has an uploading velocity
Vu = 0.837 MB/s, in the best case, and Vu = 0.406 MB/s,
in the worst-case. Mignotte has an uploading velocity Vu =
0.257 MB/s, in the best case, and Vu = 0.130 MB/s, in the
worst case.

We note that for the same settings, MRC16 encoding
speed is 6.583 MB/s (Fig. 7) and Mignotte encoding speed
is 1.317 MB/s.

Figure 12 shows thatMRC16 has the downloading velocity
Vd = 1.093 MB/s, in the best case, and Vd = 0.540 MB/s,
in the worst case. Mignotte has Vd = 0.292 MB/s, in the best
case, and Vd = 0.160 MB/s, in the worst case.

VII. CONCLUSION
We present a two-level secret sharing scheme based on
a Redundant Residue Number System named 2Lbp-RRNS
designed as a configurable, reliable, and secure multi-clouds
data storage mechanism, and a variant of fully homomorphic
encryption for privacy-preserving, parallel processing, and
scalability. It is based on backpropagation and Hamming
distance mechanisms.

Our contribution is multi-fold.
• We provide a theoretical analysis of the 2Lbp-RRNS
solution as an extension of the classical 2L-RRNS.
We formulate, explain, and prove its main properties to
extend existing knowledge within the limits of RRNS
assumptions.

• We show how the reliability and performance of the
system depend on the 2Lbp-RRNS parameters.

• We show how the backpropagation and Hamming Dis-
tance mechanisms allow to increase the number of
detected and corrected errors.

• We provide the upper bounds of traditional threshold
2L-RRNS and 2Lbp-RRNS to estimate the number of
detectable and correctable errors.

• We study various data access scenarios exploring the
properties of 2Lbp-RRNS and show that it restores data
inmore cases than traditional 2L-RRNS. It detects errors
up to 1.58 and corrects 3.37 times more than 2L-RRNS,
on average.

• We provide an efficient implementation of two data
encoding and decoding algorithms based on the Mixed-
Radix system, Finite Ring Neuronal Network (FRNN),
and Pascal method named MRC8 and MRC16.

• We evaluate the 2Lbp-RRNS performance consider-
ing the complete cycle of the data storage: encoding-
uploading and downloading-decoding with real cloud
storage parameters.

• We compare 2Lbp-RRNS performance with three algo-
rithms: Mignotte, MRC8, and MRC16. Results show
that MRC16 is a more balanced and faster algorithm
outperforming MRC8 and Mignotte. We also evaluate
the performance of their serial and parallel execution for
up to eight real cloud storages.
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2L-RRNS Encoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S−Input data;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, · · · ,

(p2,n1,1, . . . , p2,n1,n2,n1 ). W1,i = (w1,i,0, . . . ,w1,i,l) and
W2,i,j = (w2,i,j,0, . . . ,w2,i,j,l) is synaptic weights FRNN,
algo – Mignotte, MRC8, MRC16
Output: S̃
1. Case algo == Mignotte:
1.1 S̃ = Mignotte(settings, S, p̂, encoding)

2. Case algo == MRC8:
2.1 S̃ = MRC8

(
settings, S, p̂,W1,i,W2,i,j, encoding

)
3. Case algo == MRC16:
3.1 S̃ = MRC16

(
settings,S, p̂,W1,i,W2,i,j, encoding

)
4. return S̃

2L-RRNS decoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S−Representation of S in 2L-RRNS;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, . . . ,

(p2,n1,1, . . . , p2,n1,n2,n1 )

;ID; Ŵ1 = (ŵ1,1, . . . , ŵ1,n1 ) and Ŵ2,i = (ŵ2,i,1, . . . , ŵ2,i,n2,i )
is synaptic weights DNN; algo – Mignotte, MRC8, MRC16
Output: S
1 Case algo ==Mignotte:

1.1 S = Mignotte
(
settings, ID, S̃, p̂, decoding

)
2 Case algo == MRC8:

2.1 S = MRC8
(
settings, ID, S̃, p̂, Ŵ1, Ŵ2,i, decoding

)
3 Case algo ==MRC16:

3.1 S=MRC16
(
settings, ID, S̃, p̂, Ŵ1, Ŵ2,i, decoding

)
4 return S

Mignotte Encoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S−Input data;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, · · · ,

(p2,n1,1, . . . , p2,n1,n2,n1 ).
Output: Si,j - RNS encoded shares
1. For i = 1 to n1 do:
1.1 Si = |S|p1,i

2. For i = 1 to n1 do:
2.1 For j = 1 to n2,i do:

2.1.2 S2 = |Si|p2,i,j
3. return S̃

It is important to provide a multi-objective comparison with
known approaches based on erasure codes, regeneration
codes, and secret sharing schemes. It is the subject of future
work for complex improving the technical characteristics of
security, redundancy, and reliability of the cloud storage.

Mignotte Decoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S− Representation of S in 2L-RRNS;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, · · · ,

(p2,n1,1, . . . , p2,n1,n2,n1 ).
Output: S
1. Slist = []; plist = []; // auxiliary lists
2. For i = 1 to k1 do:
2.1. j = ID[i];
2.2. Sj = CRTtoBin((Sj,1, . . . , Sj,n2,i ),

(p2,j,1, . . . , p2,j,n2,i ));
2.3. Slist .append(Sj); plist .append(p1,j);

3. S = CRTtoBin (Slist , plist)
4. return S

MRC Encoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S−Input data;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, . . . ,

(p2,n1,1, . . . , p2,n1,n2,n1 )
W1,i = (w1,i,0, . . . ,w1,i,l) and W2,i,j = (w2,i,j,0, . . . ,w2,i,j,l)
is synaptic weights FRNN,
Output: Si,j
1. For i = 1 to n1 do:
1.1 Si = FRNN (S, p1,i,W1,i)

2. For i = 1 to n1 do:
2.1 For j = 1 to n2,i do:

2.1.2 Si,j = FRNN
(
Si, p2,i,j,W2,i,j

)
3. return Si,j

MRC Decoding
Input: settings = (k1, n1) ,

(
k2,1, n2,1

)
, · · · , (k2,n1 , n2,n1 )

S̃ - Representation of S in 2L-RRNS;
p̂ =

(
p1,1, . . . , p1,n1

)
,
(
p2,1,1, . . . , p2,1,n2,1

)
, . . . ,

(p2,n1,1, . . . , p2,n1,n2,n1 ); ID; Ŵ1 = (ŵ1,1, . . . , ŵ1,n1 ) and
Ŵ2,i = (ŵ2,i,1, . . . , ŵ2,i,n2,i ) is synaptic weights DNN,
Output: S
1. Slist = []; plist = []; / auxiliary lists
2. For i = 1 to k1 do:

2.1. c = DNN
(
Si,j, p2,ID[i],j, Ŵ2,ID[i]

)
2.2. Slist .append(Si); plist .append(p1,ID )

3. S = DNN (Slist , plist , Ŵ1)
4. return S

There are several open research challenges. We want to
evaluate our solution with dynamic variations of the cloud
characteristics, failures, and attacks to study how an adaptive
approach can mitigate the non-stationary uncertainty and
provide a good compromise over the criteria. The number
of shares and their distribution on the second level can be
dynamically adjusted to cope with the situation in each stor-
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age and different user requirements. To this end, past tech-
nical characteristics and failures statistics of cloud providers
have to be analyzed for a certain time interval.

APPENDIX
We describe the algorithms used for the analysis of a
2L-RRNS model of Section V. For simplicity, in the algo-
rithms, the variable S̃ represents an array with all the shares
of level 2.

Algorithms Mignotte Encoding, MRC Encoding, and the
functions of algorithm 2L-RRNS encoding obtain the total
shares S̃ from input data S. The three algorithms first convert
S into n1 shares, next take each share Si at a time and convert
it into n2,i shares for each combination of settings of Level 2.
Mignotte Encoding uses mod operation Si = |S|pi to

convert each input.MRC [8,16]Encoding represents the input
into a residue representation, lines 1.1 and 2.1.2 using FRNN.

To recover S, we use 2L-RRNS Decoding algorithm and
functionsMignotte Decoding that uses classic CRT, andMRC
Decoding that uses classic MRC decoding conversion [16]
and FRNN modification based on FRNN [42]. The three
functions use k2,i shares of Level 2 to retrieve the Si shares
of Level 1 for each combination of settings of Level 2. Next,
we take k1shares Siand, finally, retrieve S.
For MRC Decoding, we use a DNN. First, we calculate

the coefficients (weights) of the neuronal architecture in lines
from 2.1 to 3. Then, we perform the calculation of each part
of the Si for an FRNN.
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