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ABSTRACT Localization and tracking of personnel and equipment are technical issues that urgently need
to be solved for Indoor positioning. To improve the accuracy and environmental adaptability of personnel
and equipment localization algorithms in the construction and operation of smart water platform, this paper
proposes a fingerprint localization algorithm (KF-KNN) based on FM signals. Firstly, use FM data collection
device to obtain RSSI fingerprint information within the coverage area, and train them to build a fingerprint
database; secondly, KNN technology is used to complete the rough localization calculation based on the
RSSI data received by the module to be located, the RSSI fingerprint database and environmental noise
parameters; finally, the Kalman filter model is used to predict and optimize the rough position information,
so as to have better environmental adaptability and effectively improve the accuracy of localization. The
analysis results show that: compared with the original KNN andWKNN fingerprint localization models, the
KF-KNN algorithm has better performance in localization, and its average localization error can be as low
as 1.9 meters.

INDEX TERMS Fingerprint, localization, KNN, Kalman filter model.

I. INTRODUCTION
With the development of science and technology in recent
years, Fingerprint Location Technology is gradually mature
and popular in indoor location and other fields Its unique
advantages such as high localization accuracy, strong
anti-interference ability, no need to deploy any hardware
facilities, no need for any knowledge about beacon position,
lower cost, less influence by the surrounding environment and
non-line-of-sight and no need to consider signal propagation
paths and propagation models have aroused great attention
in pipe system Safety Management, Indoor Personnel Local-
ization and Tracking and other application fields, especially
the fingerprint localization based on received signal strength
has become the preferred localization technology in this
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application field [1]–[5]. There are still four problems to be
solved based on the researches of fingerprint localization used
in pipe system [6]–[10]:

(1) Lack of features for generating high-precision
fingerprints;

(2) Lack of fingerprint suitable for band-shaped sparse
distribution of wireless access points;

(3) The location description of single fingerprint is
inaccurate;

(4) RSSI fingerprint is vulnerable to environmental inter-
ference and its localization accuracy is not high, which
cannot meet the requirements of specific applications for
high-precision localization.

Therefore, it will have important theoretical value and
practical significance to apply the high-precision fin-
gerprint positioning method to the research of pipeline
system [3], [11]–[13].
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In order to solve this problem, some projects use various
sensors, robots and other auxiliary devices, which provide
the location system with fingerprints updated from prede-
fined points in the region of interest. Chen et al. designed
a Wi-Fi-based localization system, which uses RFID-based
sensors to provide a reference location for the system when
users pass by. Assuming that the user’s walking speed is
constant, the system can regularly update the calibration data
even during RFID reading [14]. Another method is to use
a set of fixed signal sniffers or a mobile robot that can
automatically collect Wi-Fi signal strength measurements at
different locations. Despite the above limitations, fingerprint
identification provides the best accuracy in complex envi-
ronments (such as indoor) and works well when receiving
the reflected, diffracted and scattered signals from LOS or
NLOS [15]–[19]. In addition, compared with all other meth-
ods, fingerprint identification does not require any knowledge
about beacon location, which makes it the only option for
localization systems that utilize external beacons, such as
cellular network nodes or broadcast FM stations. Based on
the above reasons, this paper proposes that fingerprint identi-
fication technology is mainly adopted to achieve FM location
calculation and service.

Comparison the indoor fingerprint location method based
on Wi-Fi, geomagnetic and RFID network technology,
because the FM fingerprint signal has better time domain
robustness, it has higher practical value in the field of
indoor location service [20]. For this reason, researchers have
devoted more attention to this field in the last 20 years,
such as in 2005, chen et al. use FM broadcast signal to
realize coarse localizationused in six areas of Seattle, USA,
location error up to 8 km, difficult to use in indoor location
services [21]; V. Moghtadaiee et al. presents a new finger-
print location algorithm based on FM broadcast signal, this
method compares the localization performance of NN, KNN
and WKNN algorithms, the experimental results show that:
ideally, WKNN algorithm can achieve an optimal positioning
accuracy of 2.96m at k= 6 [22]; S.H.Fang and Piyush Kumar
at al. used different methods to study fusion localization
technology of FM and GPS, experimental results show that:
using 924 power spectra distributed over 200 miles, the
positioning error is less than 5 miles and in a specific campus
area, the ideal location error is less than 35 meters [1], [23];
Andrei Popleteev systematic study on FM indoor position-
ing [24], data acquisition and analysis over a long period
of one year on several experimental platforms, he studied
the effects of different classifiers, training methods and fin-
gerprint widths on localization performance, experimental
results show that: the long-term stability of the ambient FM
localization approach even several months after training.
Although these studies have promoted the development of
FM indoor fingerprint location technology to a great extent,
the technology is still not mature enough at present. There
are still some problems to be solved in practical application
scenarios such as smart water.

Facing the specific application scene of smart water, aim-
ing at the common problems existing in indoor fingerprint
localization, based on the unique advantages of FM signal,
such as low frequency, low susceptibility to human and
multi-path fading, strong penetration ability, small changes
in signal, low cost, no need to build infrastructure, etc [25].
A precise positioning algorithm based on frequency mod-
ulation signal KF-KNN is proposed in this paper. Firstly,
to acquire FM broadcast signals or FM signal data of FM
local transmitters by FM data acquisition unit, minimize the
location area of personnel to be located by KNN technology,
and continuously optimize adjacent K points by the weighted
centroid method, so as to overcome the randomness shortage
of K value selection in the previous FM localization algo-
rithm based on KNN, and improve the localization accuracy
of the algorithm. Then, Kalman filter model is introduced
for optimizing the strong discreteness after KNN localiza-
tion, in which the prediction and correction performance of
Kalman filter is brought into full play. The personnel local-
ization and tracking method which combines the Kalman
filter with RSSI fingerprint localization model can effectively
reduce the influence of noise on the performance of local-
ization model, and improve the localization accuracy and
comprehensive localization performance [26]–[30].

This paper outlined our contributions as follows. In order to
meet the needs of personnel and equipment localization in the
construction and application of smart water, a new fingerprint
localization algorithm based on FMmodel is proposed. After
extensive simulation analysis, a practical fingerprint local-
ization model is proposed for only using publicly available
FM transmission information and floor plans of buildings
to predict RSS distribution so as to achieve high-precision
localization.

II. KF-KNN ALGORITHM DESCRIPTION
According to the requirement of improving high-quality loca-
tion service for intelligent terminals in different indoor envi-
ronments, this section proposes a new indoor localization
algorithm, namely weighted centroid KNN-FM precise loca-
tion algorithm (KF-KNN), based on FM broadcast signals.
The algorithm can achieve the accurate localization of the
intelligent terminal under the condition that the intelligent
terminal can move freely indoors without any network con-
ditions and without deploying any reference equipment or
anchor nodes in advance.

Training and localization are two localization processes
of KF-KNN algorithm. After selecting the environment for
the experiment, first set up four data collection points (i.e.
reference points) in each office, and collect RSSI, DNS, CSC
and other data of each channel in FM broadcasting through
special testing equipment. AssumingOr,t−1 indicates the FM
signal measurement data set of the reference point R at time
t-1, p(lr,t |lr,(t−1)) indicates the probability value that the fin-
gerprint at time t of the intelligent terminal and the fingerprint
at time t-1 satisfy the relation model at the reference point R,
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FIGURE 1. Two Fingerprint Identification Stages of KF-KNN Algorithm.

the reference points with the correlation degree lower than
the threshold value with respect to the position K can be
filtered according to the matching degree of the FM signal
data set acquired by the intelligent terminal at point k at time
T and the fingerprint data at time t of each reference point
p(lr,t |ok,t ), r = 1, 2, . . . ,R. The KNN method is used to
calculate the reference points (i.e. sample points) larger than
the threshold value, and the probability value is used as the
weight to update the position value of the reference points at
time t and the centroid of the geo.

A. TRAINING PHASE
The first step is to establish the RSSI fingerprint database of
R reference points (RP) in the test environment (only RSSI
data features are used in this chapter) as a training sample in
the localization phase.

The database contains Q fingerprint data of all P FM
channels measured by each RP in a specified time period, i.e.

{RSSIrq = [RSSIr1,RSSIr2, . . . ,RSSIrp,

r = 1, 2, . . . ,R q = 1, 2, . . . ,Q} (1)

RSSI =
1
Q

∑Q

q=1
RSSIrq (2)

According to equation (1), the average value of all mea-
sured values of each FM channel is calculated and recorded
as the reference data of the RP in the database. The process
of the fingerprint recognition training phase is described in
Figure.1 [16].

B. ROUGH LOCALIZATION PHASE
In the localization stage, compare RSSI to the Q RSSI mea-
surement data (3) obtained with the position to be positioned
through a specific calculation model, adopt different match-
ing algorithms to find the best matching point, and calculate
the coordinate value of the position to be positioned.

{RSSIq = [RSSI1,RSSI2, . . . ,RSSIp], q = 1, 2, ..,Q} (3)

In the stage of fingerprint localization, deterministic
method and probabilistic method are mainly used to estimate
the location. In this paper, three different algorithms are com-
pared and analyzed. The first is nearest neighbor algorithm

(NN), in which the position closest to RP to the unknown
point is regarded as the estimated position. The nearest RP is
determined by the shortest distance from the unknown point.
This distance calculation is based on the Manhattan distance
and Euclidean distance between the observed fingerprint and
the fingerprint recorded in the database.

The second method is K nearest neighbor (KNN). The
basic principle of the algorithm is that the fingerprints in
the fingerprint database and the fingerprints collected online
r referring to the ri, i = 1, 2, . . . ,L mean values of all
FM broadcast signal samples. In the execution process, the
Euclidean distance of r and each RPi corresponding fin-
gerprint ri stored in the fingerprint database is solved, and
after ascending order, select K RPi corresponding positions
li with the smallest Euclidean distance for weighting, and
the weighted position information is the position estimation
result of the terminal. The mathematical model of the algo-
rithm is as follows:

r = arg _min
ri,i=1,2,...,K

K∑
i=1

‖ri − r‖2 (4)

r = [r1, r2, . . . , rk ]T represents the set of fingerprints, and
r = [r1, r2, . . . , rk ]T at the k reference points with the
minimum Euclidian distance.The set of reference points for
this point is l = [l1, l2, . . . , lk ]T , then the location estimation
result of KNN algorithm is:

l =
1
k

K∑
i=1

li (5)

The position estimation for the weighted KNN algorithm
can be optimized as follows:

l =
1∑K
i=1 wi

K∑
i=1

wili (6)

In wi = 1
ς+‖ri−r‖

, ς is a constant approximately zero.
From equation (5), the weighted KNN algorithm is a special
case when the weighted factors in the KNN algorithm are
DE-averaged.

Due to the short distance between sampling points of
FM broadcast data, the similarity between adjacent reference
points is high, which makes the general KNN algorithm often
misjudge adjacent points and has a great impact on the local-
ization accuracy, resulting in erroneous position estimation.
In order to improve the reliability and robustness of localiza-
tion in complex indoor environment, this chapter proposes to
integrate the geometric layout of indoor environment layout
into the fingerprint database establishment, and to optimize
the K parameter selection and usage of localization algorithm
by using the graph structure formed by RP to improve the
traditional indoor localization model.

Assuming that the real coordinates of an intelligent termi-
nal A to be located in a 2D experimental environment are
(x, y). Set the RPi coordinate as (xi, yi), then calculate RSSIrq
of each reference point and RSSIi, i = 1, 2, . . . , p received
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from point A according to formula (5), and select K reference
points with the highest geometric spatial correlation. In this
chapter, Geometric space correlation by distance dn, the spe-
cific formula is as follows:

dn =
∥∥rssi− RSSIr∥∥2 , r = 1, 2, . . . ,R (7)

Consider a two-dimensional plane surrounded by the
selected K reference points, and the coordinates (xOb, yOb)
of the Ob are:

xob =
1
K

K∑
k=1

xk , yob =
1
K

K∑
k=1

yk (8)

Then the distance between the Ob and A is:

dOb =
√
(xOb − x)2 + (yOb − y)2

=

√√√√(
1
k

K∑
k=1

xk − x)2 + (
1
k

K∑
k=1

yk − y)2

= =
1
K

√√√√[
K∑
k=1

(xk − x)]2 + [
K∑
k=1

(yk − y)]2

= =
1
K
[
K∑
k=1

(xk − x)2+
K∑
k=1

(yk − y)2

+ 2
K−1∑
i=1

K∑
j=i+1

(xi − x)(xj − x)

+2
K−1∑
i=1

K∑
j=i+1

(yi − y)(yj − y)]1/2 (9)

where,

2(xi − x)(xj − x)

= 2xixj − 2xix − 2xjx + 2x2

= (xi − x)2 + (xj − x)2 − (xi − xj)2 (10)

2(yi − y)(yj − y)

= 2yiyj − 2yiy− 2yjy+ 2y2

= (yi − y)2 + (yj − y)2 − (yi − yj)2 (11)

dOb =
1
K
[K

K∑
k=1

(dn)2 −
K−1∑
i=1

K∑
j=i+1

(xi − xj)2

−

K−1∑
i=1

K∑
j=i+1

(yi − yj)2]1/2 (12)

Therefore, given the coordinates of K reference points
(xk , yk ) and the distance dn between them and the node A
to be located, the coordinates (xOb, yOb) of the centroid Ob
of the space enclosed by the selected reference points and
the distance dOb between the centroid Ob and A can be
obtained by equations (7) and (1-12). By further simplifying
equation (12), the following results can be obtained:

d2Ob =
1
K

K∑
k=1

(dn)2 −
1
K 2 [

K−1∑
i=1

K∑
j=i+1

(xi − xj)2

+

K−1∑
i=1

K∑
j=i+1

(yi − y2j )] = F1 − F2

F1 =
1
K

K∑
k=1

(dn)2, F2 =
1
K 2

K−1∑
i=1

K∑
j=i+1

(dij)

2

(13)

dij indicates the distance between reference points RPi
and RPj. Assuming that the distance between the selected K
reference points and the intelligent terminal A to be located
satisfies the following relation:

0 < d1 ≤ d2 ≤ d3 · · · ≤ dK−1 ≤ dK (14)

Substitute into (13)
F1 =

1
K

K∑
k=1

(dn)2 ≤ d2K

F2 =
1
K 2

K−1∑
i=1

K∑
j=i+1

(dij)2 > 0

(15)

The following results can be obtained by calculating the
comprehensive equations (13)-(15):

dOb < dK (16)

That is, among the known K reference points, there is at
least one reference point whose distance dN to the intelligent
terminal A to be located must be greater than the obtained
distance dOb between the current centroid Ob and the intel-
ligent terminal A to be located. Therefore, it is considered
to replace the reference point farthest from the intelligent
terminal A to be located with the current centroid Ob. The
plane enclosed by the newK reference points must be smaller
than the plane enclosed by the original K reference points,
which can further reduce the range of the plane on which the
intelligent terminal A to be located is located and improve the
localization accuracy of nodes through multiple iterations.

C. KALMAN FILTERING PHASE
In fingerprint localization, RSSI (k) indicates RSSI vector at
k time, RSSI (k − 1) indicates RSSI vector (old fingerprint
vector), Z (k) indicates RSSI vector actually collected by k
time sensor (new fingerprint vector). Assuming that environ-
mental factors are not considered, The RSSI vector and the
vector at time K-1 are consistent at time K, that is, the system
state remains consistent at any time. At time K, the RSSI
vector is consistent with the measured value, and can also be
represented byA=H= I; Since there are no control variables
in the system, B = 0,U (k) = 0. Therefore, Kalman filtering
can be correspondingly converted into the formulas shown
in (17) and (18) in fingerprint location.

RSSI (k) = RSSI (k − 1)+W (k),W (k) ∼ (0,Q) (17)

Z (k) = RSSI (k)+ V (k),V (k) ∼ (0,R) (18)

Therefore, after the fusion model of the old and new data
in fingerprint localization is established, the fused finger-
print data RSSI (k|k) is obtained according to equations (17)
to (18).
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FIGURE 2. Kalman filtering process in fingerprint localization.

This paper provides a dynamic map construction method
to solve the above problems. The RF signal map before
construction is called static map or offline map, and the
signal strength will not change with time. The construction of
dynamic radio frequency map is based on a new environment.
Specifically, a static radio frequency map is established at
time 0t. At any recent time it, the RSSI of all reference points
can be estimated by combining the RSSI collected by a small
number of calibration points with the static map at time 0t.
fig.2 shows the model of the dynamic map. The previous
analysis indicates that the key to building a dynamic radio
frequency map is how to build the RSSI function mapping
relationship between several calibration points and each ref-
erence point at 0t, and then collect the RSSI of calibration
points at it time to estimate the RSSI of each reference point.
An important assumption here is that the functional mapping
relationship between the calibration point and the reference
point will not change over time.

Define an area to build a map (calculate the map), m indi-
cates the number of channels, M indicates the number of
calibration points, and n indicates how many reference points
there are. At Ot time, the mapping relationship between the
reference point and the RSSI value of the calibration point
can be expressed by Equation 4-12.

Rnk (t0) = fnk (S1k (t0), S2k (t0), . . . , SMk (t0)) (19)

SMK is the RSSI value of the k(1<k<m) the channel
collected at the m-th calibration point. Rnk is defined as the
RSSI value of them-th channel collected by the n-th reference
point. Assuming that the fingerprint database is constructed
at Ot time, the function fnk can be solved. The functional
relation at ti time can still be expressed as:

Rnk (ti) = fnk (S1k (ti), S2k (ti), . . . , SMK (ti)) (20)

During the localization calculation, a position estimation
(observation position) can be obtained by some localization
technology (such as position fingerprint method), according
to past experience and law, to determine the current position
(predicted position)(moving target is usually moving with
uniform speed), can be based on the position and speed of the
previous moment The observation result and the prediction
result are weighted average as the localization result. The

weight value depends on the uncertainty degree of the obser-
vation position and the prediction position, and is weighted
optimal according to the Kalman method. The specific oper-
ation steps of the algorithm proposed in this chapter are as
follows:

1) Introducing external input to predict the current state
from the state at the previous moment.

x̃k = Ax̃k−1 + Buk−1 (21)

2) Adding new uncertainties in the prediction process,
plus the uncertainties that existed before.

P̃k = APk−1AT + Q (22)

3) Calculate the kalman gain (weight) from the uncer-
tainty Pk− of the prediction result and the uncertainty
RR of the observation result.

Kk = P̃kHT (HP̃KHT
+ R)−1 (23)

4) Performing weighted average on the prediction result
and the observation result to obtain the state estimation
at the current time.

x̂k = x̃k + Kk (zk − Hx̃k ) (24)

5) Update Pk to represent the uncertainty of this state
estimation.

Pk = P̃k − KkHP̃k (25)

It should be noted that in the localization, the state xk is
a vector, and besides coordinates, it can also contain veloc-
ity, such as xk = (coordinate x, coordinate y, velocity x,
velocity y). The state is a vector rather than just a scalar.
The matrix multiplication in the above formulas actually
calculates multiple States at the same time, indicating that the
variance of uncertainty, i.e. the covariance matrix.

III. EXPERIMENTAL SETUP AND RESULTS
A. SETTINGS OF SIMULATION ENVIRONMENT
The experimental test site is located on the fourth floor of the
office building. Figure 3 shows the layout of the test envi-
ronment. The testing area is 88m x 88m, including 7 rooms
(typical indoor offices) and corridors, and the sign (�) refers
to test point (TP) or reference point (RP). There are 9 RPs and
3 TPs in this experiment. RP is a strong nearby FM broadcast
signal searched by FM test equipment. TP is defined as
the point that user most likely needs localization. Each RP
senses 17 FM channels (P = 17), covering the entire FM
bandwidth from 88MHz to 108MHz. At each RP, the user
would first face north and record the RSS of the sensed FM
channel. Then user would change the direction to south and
again record the RSS value. The reason for above is that the
antenna is wide and suitable for narrow corridors in the east-
west direction. A total of 120 measurements are made at each
point (Q = 120). Since our FM-based localization is a two-
dimensional method, the height of the FM antenna remains
constant in all measurements (height = 75cm). The data was
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FIGURE 3. Arrangement of wireless FM data acquisition points.

collected three times a day and measured 120 times each
time within a two-week period, thus effectively avoiding the
presence of people.

B. ALGORITHM PERFORMANCE ANALYSIS
1) LOCALIZATION ACCURACY
Figure.4 shows the statistics of the FM signal. From the
results, the following conclusions can be drawn: the posi-
tioning characteristics of FM signal is good. Considering the
complexity of signal propagation in indoor environment, this
chapter would first analyze the FM statistical characteristics
of different locations at the same time and the characteris-
tics of the same location at different times before analyzing
the localization accuracy. In this way, we can have a better
understanding of which factors affect the performance and
accuracy of the positioning algorithm.

According to the characteristics of the indoor environ-
ment, the relationship between RSSI and location should be
one-to-one, which is also the key to realizing indoor local-
ization. Theoretically, the RSSI values received at different

data collection locations will show differences. At the same
time, the signal strength received from different radio sta-
tions at the same location will also be different. Figure.4
intuitively embody this one-to-one matching relationship.
Figure 4 shows a variety of corresponding mean RSSI dis-
tribution characteristics measured at different physical loca-
tions. The distribution of mean RSSI from multiple FM radio
stations at different data collection locations can be seen from
the figure; at the same time, as this chapter has selected
multiple radio stations for comparison, the mean RSSI of
different radio stations measured at the same location also
differs as shown in Figure.4.

Figure.4 shows the probability distribution histogram of
RSSI received from one radio station at the same data
collection location. Data in the figure was collected every
half an hour using MS9801 small solar field strength meter
for 7 days, with a total of 30,000. The test took place on the
third and fourth floors of the office building in November
2019. It can be seen from the figure that the richer the signal
sample data set, the better and closer is the sample’s RSSI
distribution to the true one. Theoretically, the larger the num-
ber of samples, the more it can truly reflect the relationship
between RSSI and location, and the higher the localization
accuracy will be. However, it will take a lot of time and
labor to collect signal samples, especially for the fingerprint
localization method. In addition, the larger the sample size,
the more complicated the calculation and the more difficult
the maintenance of fingerprint database would be.

The FM fingerprint was generated by the MS9801 small
solar field strength meter after collecting FM radio sig-
nals. The RSSI value was collected at 12 data collection
points. Only 37 data collection points were set in 12 rooms
of 12 × 9.5 m because of the original furnishings of office,
etc. Each FM fingerprint includes 13 channels, and each
channel collects 10 RSSI samples at a time. In order to adopt
the weighted centroid KNN algorithm to realize indoor FM
localization, this chapter uses a K-nearest neighbor classifier
(k = 30). Randomly select a path consisting of 100 points as
the true trajectory (shown by the green line in the figure), and
take the location estimated by the algorithm in this chapter as
the predicted trajectory (shown by the red line in the figure).
Comparing the relationship between the predicted trajectory

FIGURE 4. Typical distribution of RSS of an FM channel measured at a location.
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FIGURE 5. Influence of ranging error on localization error.

FIGURE 6. Performance of different localization algorithms.

and the true trajectory, the result shows that the algorithm can
better serve indoor localization.

In the performance evaluation of dynamic localization
technology, firstly, Figure 5 shows the improvement of cor-
responding performance after comparing KF-KNN algorithm
with KNN algorithm. Curve in Figure.5a represents the true
trajectory of the intelligent terminal for testing, while Fig-
ure. 5b represents the estimated trajectory using the KNN
algorithm, and Figure. 5c represents the estimated trajectory
using the KF-KNN algorithm. It is known from Figure.5
that the trajectory estimated by the KF-KNN algorithm is
closer to the actual route of the terminal’s movement, that
is, the localization performance of the KF-KNN algorithm is
significantly better than the KNN algorithm.

As shown in Figure.6, all ranging errors are combined
into a cumulative distribution function (CDF), to analyze
the performance of four algorithms, KNN, KNN + Kalman
filtering, WKNN and KF-KNN. It can be seen from Figure.8
that when the localization error is low, the covariance of the
Kalman filter is also small, so when the localization error is

FIGURE 7. Influence of different K values on localization error.

less than 5 meters, the algorithms without Kalman filtering
have better localization accuracy, and when the localization
error is greater than 6 meters, on the contrary, algorithm using
Kalman filtering method has better performance.

2) THE EFFECT OF K VALUE ON LOCALIZATION ERROR
Figure 7 shows the influence of changingK value on position-
ing accuracy. K value being 1 is equivalent to the NNmethod.
As the value of K increases, the algorithm’s localization error
continues to decrease and reached the best average error when
K = 40, and then fall into a relatively stable convergence
stage. Under the experimental conditions in this chapter, the
overall localization performance is the best when K = 40,
and the best estimation of location can be obtained with an
average error on distance of 1.85 meters. On the other hand,
using more nearest neighbor reference points is equivalent to
that points far from the target would also have influence on
classification of unknown objects. The advantage of this case
is that it is robust, yet the shortcomings are also obvious that
it will cause under-fitting, that is, the unclassified objects are
not really labeled and classified; while using less neighbor
points maymiss some useful information, which requires that
the unclassified objects shall be very close to its neighbors.
This might raise a problem if the neighbor is a noise point,
then the classification of the unclassified object will produce
errors, then the KF-KNN algorithm will be overfitting.

3) INFLUENCE OF PREDICTED NOISE COVARIANCE MATRIX
Q ON LOCALIZATION ERROR
The size of the predicted noise covariance matrix Q depends
on the degree of trust in the prediction process. It can be seen
from Figure.8, with the continuous increase of Q value, the
algorithm will converge rapidly. The abscissa in the figure
shows different Q value while the ordinate represents the
localization error of the algorithm. As can be seen from
Figure.10, initialization and stabilization comprise the entire
positioning process. In the initialization stage, as the con-
fidence in the prediction process increases, the localization
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FIGURE 8. Influence of different Q values on localization error.

FIGURE 9. Influence of different R values on localization error.

error of the KF-KNN algorithm is improved very quickly.
In the stable stage, when the degree of trust in the prediction
process reaches a certain value, the impact on the localization
error reaches balance to some degree, and the localization
error tends to stabilize at this moment.

4) INFLUENCE OF OBSERVED NOISE COVARIANCE R ON
LOCALIZATION ERROR
The size of the observed noise covariance matrix R depends
on the degree of trust in the observation process. It can be
seen from Figure.9 that as the R value increases, the local-
ization error of the algorithm gradually increases as well.
The abscissa in the figure shows different R value while the
ordinate represents the localization error of the algorithm.
It can be seen from Figure.9 that the R value shows an
approximately linear relation to the algorithm’s localization
error. The R value is an important adjustable index when

optimizing and adjusting the performance of the KF-KNN
algorithm.

IV. CONCLUSION
This paper presents an FM - indoor location algorithm based
on weighted centroid KNN technology. It overcomes the
shortcoming of randomness for K value selection in the pre-
vious KNN-based FM localization algorithm and improves
accuracy as the KNN technology can narrow the location
scope of the target intelligent terminal, and weighted centroid
method is combined to continuously optimize the neighbor-
ing K points. At the same time, this algorithm can meet
the needs of various application scenarios by using differ-
ent motion models. Simulation results show that, compared
with the traditional KNN model, the localization accuracy
of the KF-KNN model is significantly improved. Further-
more, the comprehensive performance of KNN, WKNN and
KF-KNN models is compared systematically.It can be seen
that the comprehensive performance of KF-KNN model is
much higher than that of the other two models. In addition,
KF-KNN model has low algorithm difficulty, which allows
it to be well applied to the precise localization of personnel
and equipment in construction and operation of pipe system
theoretically. The above is only a preliminary study, and there
are still many problems to be further discussed and improved
in the practical life and project application of this design:

1) This FM localization algorithm has not been compared
with other indoor localization methods such as WI-FI,
Bluetooth, RFID, UWB, GSM, etc., as well as the
in-depth performance analysis of these algorithm and
their combinations for the application scenario of pipe
system construction and operation in this project;

2) Establishment of multi-dimensional wide fingerprint
localization model. For example, fingerprint localiza-
tion using WI-FI + FM, RSSI + CSI, video analysis
+ fingerprint localization and other combinations still
need in-depth study;

3) The fingerprint database needs to be constantly updated
in the fingerprint localizationmodel, resulting in a large
amount of work in collecting dynamic data. In order
to make a breakthrough in fingerprint localization,
it is necessary to continuously improve and optimize
the self-adaptive capacity of the fingerprint database,
and to establish a dynamic mapping model of the fin-
gerprint database with better performance, which will
directly determine whether the fingerprint localization
technology can be widely applied on a large scale.
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