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ABSTRACT The paper presents a new scheme of cyclic codes suitable for the correction of burst errors. This
is accomplished by the proper definition of their parity check polynomials in which the difference between
orders of every two consecutive elements of the utilized polynomial is unique and in order of power of 2.
In the proposed polynomials, the number of applied elements is much lower than their orders (or codes’
lengths). This leads to represent codes as a class of low-density parity check (LDPC) codes, while they do
not have any 4 cycle in their Tanner graphs. Considering the properties of the circulant matrix and structure
of the defined polynomials, it is proven that codes have the optimum burst error-correcting capability. This
is evident for short and long length codes. Moreover, it is shown that constructed codes can be combined
with Fire codes and demonstrate cyclic codes that are applicable for the simultaneous correction of random
and burst errors.

INDEX TERMS Burst error correcting cyclic codes, circulant parity check matrix, low density parity check
(LDPC) codes, compound channels.

I. INTRODUCTION
Cyclic codes and their shortened shapes named as shortened
cyclic codes are the reputable codes for the protection of data
against the burst error. Due to the high performance in the
correction of errors as well as rich algebraic structure, these
codes were widely used in global standards. Depending on
the code’s characteristics, burst errors are correctable if the
allocated length of code is set greater than the length of error
patterns. As a class of linear block codes, the burst error-
correcting capability of a (n, k) cyclic code is upper bounded
by the value of

⌊ n−k
2

⌋
[1], where n and k are lengths of the

codeword and message, respectively.
There are several methods for constructing single or mul-

tiple dimensional cyclic codes suitable for the correction of
burst errors [2], [3]. As expected, multi-dimensional codes
provide better error protection than the one-dimensional
codes as they can correct a number of single burst errors
but at the expense of more complexity in design due to
utilizing two or more codes in their structures. One dimen-
sional cyclic codes can be found either by the computer
search or through an algorithm [4]–[7]. BCH codes, Fire
codes and Hsu-Kasami-Chien (HKC) codes are amongst the
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famous structure-based codes although the majority of them
do not provide optimum error correcting capability [8], [9].

Cyclic codes can be represented as a class of low den-
sity parity-check (LDPC) codes, when the cyclic property
of the code is satisfied and the number of elements applied
in their parity check polynomials are much smaller than the
code lengths. Cyclic LDPC codes are mainly recognized as
suitable codes for random error correction, which are con-
ventionally constructed based on either Euclidean geometry
(EG) or projective geometric (PG) algorithm. The analysis
reveals that their burst error-correcting capability is not the
same as their burst error correcting limit as the algorithm used
for correction of burst errors is not implemented based on the
canonical structure of the circulant parity check matrix [10].

This paper presents a method for constructing cyclic LDPC
codes with the optimum burst error-correcting capability.
In parity check polynomials of these codes, the difference
between two consecutive orders is in order of power of 2.
To analyze the performance of these codes, the algorithm
represented in [5] is modified based on the number of sub-
matrices defined at their parity check matrices. Consider-
ing the effect of each submatrix, in particular, those having
one or two 1s in their rows, new bounds for the burst error-
correcting capability of the codewill be presented. The results
obtained from this analysis are extended to verify the effect
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of other submatrices on the correction of bursts with the
specified lengths. Based on features of the submatrices and
the circulant matrix, it is proven that proposed codes have the
optimum burst error-correcting capability. This is evident for
short and long length codes, while their rates can be reached
to 0.5. As an application, these codes are combined with
Fire codes to construct codes suitable for the simultaneous
correction of random and burst errors. The organization of
the paper is as follows:

Section II introduces the structure of the circulant parity
check matrix and its application for the correction of burst
errors. Sections III and IV present the structure and anal-
ysis of cyclic LDPC codes with the optimum burst error-
correcting capability. Section V represents the application of
these codes in the construction of cyclic codes suitable for the
simultaneous correction of burst and random errors. Finally,
Section VI summarizes the paper.

II. BURST ERROR CORRECTING CYCLIC CODES
A linear code C is called a cyclic code if every cyclic shift of
a codeword in C is also a codeword in C [4]. A codeword
v can be represented as a n-tuple vector, which is v =
(v0, v1, v2, . . . , vn−2, vn−1). It can also be expressed in the
polynomial form. That is, v(x) = v0 + v1 x + v2 x2 +
. . . + vn−1xn−1. Let u(x) be the polynomial representing k
bit message to be encoded by the code. The codeword v(x) is
given by

v(x) = u(x)g(x)

= (u0 + u1x + u2x2 + . . .+ uk−1xk−1)g(x),

where g(x) = 1+g1 x+g2 x2+ . . .+gn−k−1xn−k−1+ xn−k

is the generator polynomial of the code and in the order of
n− k . For a (n, k) cyclic code, there exists one and only one
generator polynomial, which is applied for expression of all
codewords. This can be achieved by the implementing a low-
complex shift register based encoder. For a binary cyclic code
defined in Galois Field 2 (GF(2)), gis, 1 ≤ i ≤ n− k− 1, are
either 0 or 1.
It is proven that g(x) of the cyclic code is a factor of

xn + 1. Hence, for a (n, k) cyclic code with the generator
polynomial g(x), the corresponding parity check polynomial
h(x) is defined by [4]:

h(x) ≡
xn + 1
g(x)

. (1)

A cyclic code can be represented by its (n×n) circulant parity
checkmatrix (H ) in the canonical form. The zeroth row of this
matrix is constructed by elements of h(x) followed by n−k−1
zeros. Other rows are obtained by cyclic shifts of the zeroth
row. In this paper, the representation of rows and columns of
the matrix is indexed from zero.

For a non-zero n-tuple overGF(2), a zero span is defined as
the sequence of zeros between two 1s. Themaximal zero span
of the n-tuple, is the maximum length of the zero spans [10].
The maximal zero span of the circulant parity check matrix

(δ) is the maximal zero span of the first row, which is given
by δ = n− k − 1.
Let C0 be the zeroth column of the matrix. The module-

2 sums of the `th column (C`), 1 ≤ ` ≤
⌊ n−k

2

⌋
− 1, with its

previous columns are given by

A2`−1+j = Aj + C`,

where A0 = C0 and 0 ≤ j < 2`−1 [10]. In this paper, module-
2 sum of columns is expressed by sum.
Example 1: In a circulant matrix, for 1 ≤ ` ≤ 3, sums of

C`s are as follows:
A1 = C0 + C1, A2 = C0 + C2, A3 = C0 + C1 + C2,
A4 = C0+C3, A5 = C0+C1+C3, A6 = C0+C2+C3,
A7 = C0 + C1 + C2 + C3.

Bursts with length `+1 (1 ≤ ` ≤
⌊ n−k

2

⌋
−1) are correctable

if all A2`−1+js, 0 ≤ j < 2`−1, generate a unique maximal zero
span with length δ−` started from the (`+1)th position [10].
In this case, a simple decoding algorithm can be implemented
based on the burst-error correcting capability of the code,
which is represented as B(Hn).
The circulant parity check matrix can be divided into

two parts. The first part contains the first n − k rows of
the matrix, while the remaining rows (or the last k rows)
represent the second part of the matrix. Considering this
structure, a simpler algorithm for determining burst error
correcting capability of codes can be formed, when the sum
of columns at the last k rows of the matrix is initially
calculated.

For the fixed column `, if each of A2`−1+js, has a maximal
zero span less than δ− `, the effect of zeros positioned at the
end (or second) part of the matrix is considered. Again, for
the fixed column `, if any of A2`−1+js has the number of zeros
with length greater than or equal to δ−2`, the corresponding
sum for the first ` rows, represented as the initial part of the
matrix, will be calculated.

Figure 1 shows the circulant matrix of (30,11) cyclic code
with h(x) = 1 + x2 + x3 + x5 + x8 + x11 and its two parts.
For any 0 ≤ i ≤ 7, corresponding A2i−1+j, 0 ≤ j < 2i−1,
produces unique maximal zero spans at the first part of the
matrix. However, for sums of the 8th column (C8), all unique
maximal zero spans are not provided from the first part of
the matrix. For example, define Ć0 := [100100101101],
Ć3 := [000100100101], and Ć8 := [00000001001], whose
first 11 elements are the zeroth, third and eighth columns
of the second part of the matrix, respectively. Their last
elements are also the zeroth, third and eighth components
of the zeroth row of the circulant matrix. The sum of Ći,
i = 0, 3, 8, will be Ć0 + Ć3 + Ć8 = (100000000001),
which yields a zero span with the length of 10. Similarly,
the sum of C8 = [10010110100000000000000000100] with
previous columns will generate the zero span with the length
of δ − 8 = 10 in the first part. This means that the unique
maximal zero span is not gained from the first part of the
matrix and consequently the burst error-correcting capability
is B(Hn) = 8.
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FIGURE 1. Circulant matrix of (30,11) cyclic code and its submatrices
formed at the second part of matrix.

III. CYCLIC CODES WITH THE OPTIMUM BURST ERROR
CORRECTING CAPABILITY
Let p(x) be a polynomial in GF(2), which is defined by

p(x) = 1+
m−2∑
i=0

x
∑i

j=0(2
η)j
, (2)

where η is a positive integer (η ≥ 1). m is represented as
number of elements of p(x), which is an integer value greater
than or equal to 3 (m ≥ 3). Obviously, the order of ith element
of p(x), 1 ≤ i ≤ m− 1, is

∑i−1
j=0(2

η)j .1

Theorem 1: The polynomial p(x) defined in equation (2) is
the parity check polynomial of the (n, k) cyclic code, where
n =

∑m−1
j=0 (2η)j and k =

∑m−2
j=0 (2η)j.

Proof: The difference between orders of the i′ and (i′−1)
elements of p(x), 1 ≤ i′ ≤ (m− 1), is expressed by

i′−1∑
j=0

(2η)j −
i′−2∑
j=0

(2η)j = (2η)i
′
−1. (3)

For [p(x)]2
η
, the order of (i′ − 1)th element is given by

2η
i′−2∑
j=0

(2η)j = 2η
[ i′−3∑
j=0

(2η)j + (2η)i
′
−2
]

=

i′−3∑
j=0

(2η)j+1 + (2η)i
′
−1

=

i′−2∑
j=1

(2η)j + (2η)i
′
−1. (4)

Let n =
∑m−1

j=0 (2η)j be the order of (m − 1)th element of
x[p(x)]2

η
. Indeed, the value of n represents the order of the

1The order of the zeroth element is 0.

polynomial. The order of (i′ − 1)th element of x[p(x)]2
η
is

1+
i′−2∑
j=1

(2η)j + (2η)i
′
−1
=

i′−2∑
j=0

(2η)j + (2η)i
′
−1. (5)

Refer to equation (3), it is concluded that this order is equal
to the order of i′th element of p(x). Similarly, the order of
zeroth element of x[p(x)]2

η
, i.e. 1, is the same as the order

of the first element of p(x). Therefore, except xn, elements of
x[p(x)]2

η
are the same as elements of p(x). p(x) also has an

element with the order of zero, which is x0 = 1. As a result,
p(x)+ x[p(x)]2

η
= xn+ 1 or p(x)[1+ x(p(x))2

η
−1] = xn+ 1.

This means that p(x) is a factor of xn + 1 and can be
represented as the parity check polynomial of (n, k) cyclic
code, where k =

∑m−2
j=0 (2η)j is the order of p(x). Considering

equation of (1), h(x) = p(x) and the generator polynomial of
the code is g(x) = 1+ x[h(x)]2

η
−1.

Let αi, 0 ≤ i ≤ m− 1, be the order of ith element of h(x),
where α0 and αm−1 (α0 = 0, αm−1 = k) are introduced as the
lowest and greatest orders of h(x), respectively.
In the defined h(x), values of n and k are odd numbers.

Hence, for all codes,
⌊ n−k

2

⌋
=

n−k
2 . From the (n−k)th row of

the parity check matrix,m−1 submatrices are defined, whose
columns size is n−k2 . For the λth submatrix (Sλ), 1 ≤ λ ≤ m−
1, its row size is equal to αm−1−(λ−1) − αm−1−λ, which gives
the difference between orders of two consecutive elements.
In this paper, the content of the ith row and jth column of the
λth submatrix is denoted by Sλi,j.

If αm−1 − αm−2 =
n−k
2 , a n−k

2 ×
n−k
2 submatrix is

formed, whose ith row, 0 ≤ i ≤ n−k
2 − 1, has only one

1 at ith column. The submatrix with such a feature is named
exclusive-1 submatrix and formed in codes with η = 1. The
number of submatrices (except the exclusive-1 submatrix) is
given by N = meff − 1.
For codes with exclusive-1 submatrix, meff = m − 1.

Otherwise, meff = m.
Example 2: Let p(x) = 1+ x + x3 + x7 + x15 + x31 be a

polynomial with the order of 31 in GF(2). Refer to equation
(2), this polynomial is formed by η = 1 and m = 6. Based
on p(x), x[p(x)]2 = x + x3 + x7 + x15 + x31 + x63. Hence,
p(x)+x[p(x)]2 = x63+1. As p(x) is in order of 31 and a factor
of x63+1, it can be considered as the parity check polynomial
of a (63,31) cyclic code. The generator polynomial of this
code is g(x) = 1+ x[p(x)] = 1+ x2 + x4 + x8 + x16 + x32.
In the given p(x), α5 = 31 and α4 = 15. As α5 − α4 =
n−k
2 , the circulant parity check matrix of the code includes an

exclusive-1 submatrix. It also has four submatrices (N = 4)
in its second part.

IV. BURST ERROR CORRECTING CAPABILITY OF
PROPOSED CYCLIC CODES
In this section, the structure of submatrices is analysed to
determine the longest possible zero patterns resulted from
sums of columns in the second part of the parity checkmatrix.
Considering columns selected from this part, the zero pattern
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obtained from their sum at the initial part of the matrix
is determined. This consequently concludes the maximal
zero span from the sum of columns, which is positioned at
the second and initial parts of the matrix. Then, the length
of obtained zero span is compared with the lengths of zero
spans formed in the first part of the matrix to determine the
burst-error correcting capability of the code.
Lemma 1: Let Z1 = αm−1 − αm−2 − 1 be the difference

between two greatest orders of h(x) minus one. The burst
error correcting capability of (n, k) cyclic code with h(x)
defined in equation (2) is upper bounded by
(i) (Blow)η=1 ≥

⌊
n−2k+Z1+1

2

⌋
+ 1, if η = 1,

(ii) (Blow)η>1 ≥ Z1, if η > 1.
Proof: As mentioned above, for codes with η = 1,

an exclusive-1 submatrix having Z1+1 rows exists at the sec-
ond part of the parity check matrix. In these codes, Z1 =
n−k
2 − 1. The content of C` at `th row of this submatrix,

0 ≤ ` ≤ n−k
2 − 1, is 1. Based on this structure, at the

zeroth row of the first submatrix, only content of C0 is 1.
Therefore, sums ofC`s at the zeroth row of the first submatrix
will be 1 and consequently zero spans formed from each
sum in exclusive-1 submatrix will have the length of Z1 − `.
As Z1 < δ, lengths of those zero spans will be shorter than
the shortest length of zero spans formed at the first part of
the matrix, i.e. δ − `. Hence, only the last k − (Z1 + 2) rows
of the matrix become important in determining the maximal
zero span of sum of columns.

For the `th column, in order to ensure that the unique maxi-
mal zero span is from the first part of thematrix, the following
condition should be satisfied:

k − (Z1 + 2)+ ` < δ − `

or

` <
n− 2k + Z1 + 1

2
. (6)

The above inequality means that all bursts with the length
shorter than or equal to

⌊
n−2k+Z1+1

2

⌋
+1 are correctable. As a

result, its burst-error correcting capability is bounded by

(Blow)η=1 ≥
⌊n− 2k + Z1 + 1

2

⌋
+ 1.

For codes with η > 1, the exclusive-1 submatrix is not
defined and Z1+1 is the number of rows of the first submatrix
In this case, Z1 < n−k

2 −1. At the first submatrix of codes with
η > 1, S1i,i = 1, 0 ≤ i ≤ Z1. This means, sums of C`s, 0 ≤
` ≤ Z1, will produce zero patterns, whose lengths are Z1 −
` or shorter. These lengths are shorter than δ−`. At the zeroth
row of the second submatrix, S20,0 = 1 and S20,Z1+1 = 1.
Considering this, sum of columns at the zeroth row of S2 is
also 1. Hence, the longest zero pattern obtained from sums
will be k − (Z1 + 2), which can be started from the first row
of S2. The longest possible zero pattern generated from sums
at the initial part of the matrix is Z1. Therefore, the maximal
zero span formed at the second and initial parts of the parity
check matrix will be (ζspan)2 = k − (Z1 + 2)+ Z1 = k − 2.

FIGURE 2. Structure of the second and initial parts of parity check matrix
for (127,63) cyclic code.

On the other hand, in the first part of the matrix, the shortest
zero span is (ζ ′span)2 = δ − ` = n − k − 1 − Z1, where
` = Z1. For codes with η > 1, Z1 < n−k

2 − 1 and n > 4k .
Hence, (ζ ′span)2 > (ζspan)2. This means, all bursts with length
Z1 or shorter can be correctable. As a result, (Blow)η>1 ≥ Z1.

Example 3: Figure 2 shows the second part as well as the
first eleven rows of the parity checkmatrix for (127,63) cyclic
code. It only includes the first 32 columns. The parity check
polynomial of this code is h(x) = 1 + x + x3 + x7 + x15 +
x31 + x63 with m = 7, Z1 = 31 and η = 1. This matrix
includes an exclusive-1 submatrix. Hence, meff = m− 1 = 6
and N = meff − 1 = 5 submatrices are defined. In exclusive-
1 submatrix, maximal zero spans obtained from sums of C`s,
0 ≤ ` ≤ 31 is shorter than δ − ( n−k2 − 1) = 32. This
means, only the last 29 rows of the matrix become important
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FIGURE 3. Structure of the second and initial parts of parity check matrix
for (85,21) cyclic code.

in determining the maximal zero span at the second part of
the matrix. Therefore, (Blow)η=1 ≥ 17.
Example 4: Figure 3 shows the second and initial parts of

the circulant matrix for (85,21) cyclic code. The parity check
matrix of this code is h(x) = 1 + x + x5 + x21. In the first
submatrix, S1i,i = 1, 0 ≤ i ≤ Z1, where Z1 = 15. This means
that at the first 16 rows of the first submatrix as well as the
zeroth row of the second submatrix, sums of C`s, 0 ≤ ` ≤ Z1
are 1. The longest possible zero pattern formed in the second
part of the matrix is started from the first row of the second
submatrix. This length is k − (Z1 + 2) = 4. At the initial
part of the matrix, the longest zero pattern is 15, where ` =
Z1. Based on this structure, the maximal zero span obtained
from sums of C`s is 18, which is shorter than δ − Z1 = 48.
Therefore, the given code can correct all bursts with length
Z1 = 15 or shorter. Hence, (Blow)η>1 ≥ 15.
Lemma 2: Cyclic codes with the h(x) given in equation (2)

can correct bursts with the length of αN−αN−2−1 or shorter.
Proof: In the second submatrix, S2γ,γ = 1 and

S2γ,γ+αN−αN−1 = 1, where 0 ≤ γ ≤ αN−1 − αN−2 − 1.
Meanwhile, in the first submatrix, S1i,i = 1, where 0 ≤

i ≤ αN − αN−1 − 1. Hence, in sums of C`s, αN − αN−1 ≤
` ≤ αN − αN−2 − 1, the longest zero pattern is positioned
at ` − (αN − αN−1) + 1th row of the first submatrix. This
means that Cj′s, αN−1 − αN−2 ≤ j′ ≤ αN − αN−1 − 1, are
not involved in the sum.

In the third submatrix, S30,0 = 1, S30,αN−1−αN−2 = 1,
and S30,αN−αN−2 = 1. In order to have zero from sums, C0
and CαN−1−αN−2 should be involved. However, as mentioned
in above, CαN−1−αN−2 is one of the columns, which is not
involved in the sum. As a result, sum of those columns
generating the longest zero pattern at the first and second
submatrices will be 1 at the zeroth row of the third submatrix.
In this case, lengths of zeros formed at the first and second

submatrices are (αN − αN−1)− [`− (αN − αN−1)+ 1] and
αN−1 − αN−2, respectively. Hence, the length of zero span
will be (ζspan)2 = 2(2η)meff−2 + (2η)meff−3 − ` − 1, where
αN − αN−1 = (2η)meff−2 and αN−1 − αN−2 = (2η)meff−3.
The length of this zero span is shorter than the length of the
zero span formed at the first part of the matrix, i.e. (ζ ′span)2 =
(2η)m−1 − `− 1, where n− k = (2η)m−1.

As mentioned, when CαN−1−αN−2 is ignored, sums of C`s
at the zeroth row of the third submatrix will be 1. In this
case, the greatest length of the zero pattern positioned at
the third and following submatrices is αN−2 − 1. Therefore,
the maximal zero span placed at these submatrices and the
initial part of the matrix will be αN−2− 1+ `. Obviously, for
all codes defined by equation (2), δ − ` > αN−2 − 1 + `.
Hence, the length of the above zero span is shorter than the
one formed at the first part of the matrix.

If CαN−1−αN−2 is used in the sum, the longest length of
the zero pattern obtained from sums of C`s will be αN −
(αN−1 − αN−2 + 1). This pattern is started from (αN−1 −
αN−2 + 1)th row of the first submatrix. In this case, columns
positioned between CαN−1−αN−2+1 and CαN−αN−1−1 are not
involved in the sum. Let X = αN−1 − αN−2. At Y =
αN − 2αN−1+X th row of the matrix, content of CαN−2 at the
zeroth row of the matrix will be placed at CαN−αN−1 of the
Y th row of the matrix. Other columns with the content of 1
are either between CαN−1−αN−2+1 and CαN−αN−1−1 or after
CαN−αN−2−1. Of these columns with the content of 1, only
CαN−1−αN−2 is used in the sums of columns at the second
part of the matrix. Hence, sum of selected columns at Y th
row of the matrix is 1 and consequently the length of zero
span formed at the second and initial parts of the matrix is
2(αN − αN−1) − 1. This length is shorter than the shortest
length of zero spans placed at the first part of matrix, which
is the value of δ−( n−k2 −1) = 2(αN−αN−1). Hence, all bursts
with the length of αN − αN−2 − 1 or shorter are correctable.

The above two lemmas conclude that the maximal zero
span of sums of C`s, 1 ≤ ` ≤ αN − αN−2 − 1, are
positioned at the first part of the parity check matrix. To pre-
cisely determine the burst error correcting capability of codes,
it is essential to consider effect of other columns positioned
between CαN−αN−2 and C n−k

2 −1
.

Theorem 2: A cyclic code with the parity check polyno-
mial of h(x) given in equation (2) has the optimum burst error
correcting capability.

Proof: To verify the effect of the third and following
submatrices, columns positioned after CαN−αN−2−1 are con-
sidered in sums of C`s, 1 ≤ ` ≤ n−k

2 − 1. This leads to
represent cases for the sum of CX ′s, αN − αN−2 ≤ X ′ ≤
n−k
2 − 1, which generate zero patterns from a row of the first

submatrix to the end of the matrix. A common point of the
cases is utilizing even number columns with the content of 1
at every row of Sλs, 3 ≤ λ ≤ N to determine the maximal
zero span positioned at the second and initial parts of the
matrix.
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1) SUM OF CX ′ WITH NUMBER OF COLUMNS POSITIONED
BETWEEN C0 AND CαN−1−αN−2

At a row of Sλ with CX ′ = 1, odd number of Cjs 0 ≤ j ≤
X ′ − (αN − αN−2) should be applied to produce zero for the
sum of the selected columns. In rows with CX ′ = 0, even
number of Cj′s, 0 ≤ j′ ≤ αN−1 − αN−2 should be applied.
Alternatively, it is possible to have sum of odd number of Cj′s
with the content of 1 and a column with the content of 1 posi-
tioned between CαN−αN−2 and CX ′ . In addition to CαN−αN−1 ,
for each of Cjs and Cj′s applied in the sum, Cj+(αN−αN−1)
and Cj′+(αN−αN−1) will also be used to ensure that sum of
columns remains zero in the second submatrix. Let jselect be
the greatest index of Cjs and Cj′s used in the sum. Let Y =
αN − 2αN−1 + jselect . At Y th row of the parity check matrix,
columns with the content of 1 are placed at CY+αi , where
0 ≤ i ≤ N . Of these columns, only Cjselect+αN−αN−1 is used
in the sum of columns positioned in the second part of the
matrix. As a result, sum of columns selected from the second
part of the matrix produces a zero pattern with the length of
αN − 2αN−1 + jselect at the initial part of the matrix. Hence,
the maximal zero span positioned at the second and initial
parts of the matrix will be 2(αN −αN−1)−1, which is shorter
than the shortest length of zero spans formed at the first part
of the matrix, i.e. the value of δ− ( n−k2 −1) = 2(αN −αN−1).

2) SUM OF CX ′ WITH NUMBER OF COLUMNS POSITIONED
BETWEEN C0 AND CαN−1−1
This case is considered as the extension of the previous case
as all columns with the content of 1 positioned at Sλs, 3 ≤
λ ≤ N can be applied in sums.
In a row of Sλ with CX ′ = 1s, the sum of columns will be

zero, when an odd number of columns with the content of 1
positioned before CX ′ is applied.
Assume CX ′ and Cj are applied in the sum, where j = X ′−

(αN − αN−1). In the considered row, in addition to these two
columns, there exist a number of columns with the content
of 1, which are positioned at Cj′s, where j′ = j − (αN−1 −
αN−U ) and 2 ≤ U ≤ λ− 1.
In rows of Sλ with CX ′=0, a Cj1 , αN−1 − αN−2 + 1 ≤ j1 ≤

αN−1 − 1, with the content of 1 exists, whose sum with the
Cj′1 , j

′

1 = j1 − (αN−1 − αN−U ), will be zero.
Based on Cj′1s and Cj′s applied in the sum, Cj′′1 s and Cj′′s

will be used to ensure that sum of columns at the second
submatrix is zero, where j′′1 = j′1 + (αN − αN−1) and j′′ =
j′ + (αN − αN−1).
Let jselect be the greatest index of Cjs and Cj1s involved

in the sum. Let Y = αN − 2αN−1 + jselect . At Y th row of
the parity check matrix, columns with the content of 1 are
placed at CY+αi , where 0 ≤ i ≤ N . Of these columns, only
Cjselect+αN−αN−1 is used in the sum of columns positioned at
the second part of the matrix. As a result, sum of columns
selected from the second part of the matrix produces a zero
pattern with the length of αN − 2αN−1 + jselect at the initial
part of the matrix. Hence, the maximal zero span positioned
at the second and initial parts of the matrix will be 2(αN −
αN−1) − 1, which is shorter than the shortest length of zero

spans formed in the first part of the matrix, i.e. the value of
δ − ( n−k2 − 1) = 2(αN − αN−1).
The above analyses conclude that at the initial part of

the matrix, the longest zero pattern obtained from the sum
of columns will be αN − 2αN−1 + (col)sel . (col)sel , 1 ≤
(col)sel ≤ αN − αN−1 − 2, is the column with the content
of 1 such that the zero pattern is started from (col)sel + 1th
row of the first submatrix. At the second part of the matrix,
the longest zero pattern formed from the sum of columns will
be αN − (col)sel − 1. As a result, the maximal zero span
positioned in the second and initial parts of the matrix will
be 2(αN −αN−1)−1. This maximal zero span is shorter than
the shortest length of zero spans formed at the first part of the
matrix, i.e. δ − ( n−k2 − 1) = n−k

2 . Therefore, all bursts with
length n−k

2 or shorter are correctable.

Example 5: In the parity check matrix of (127,63) cyclic
code shown in Figure 2, let X ′ = 30. At the last row of
the matrix, CX ′ = 1. To have zero from sum of columns in
this row of the matrix, odd number of columns with content
of 1 positioned between C0 and C8 can be applied. In this
case, C0 + C2 + C6 + C30 = 0. C26 is added to this sum
to provide zero at the second row of the third submatrix. C8
and C16 are also added to the sum, which conclude zero at
the zeroth rows of the second and third submatrices. As a
result, C0 + C2 + C4 + C6 + C30 + C8 + C16 + C26
will conclude zero patterns placed at the third, fourth and
fifth submatrices. As C2, C4, and C6 are used, C18,C20, and
C22 will also be applied in the sum to produce zero pattern
at the second submatrix. Among C0,C2,C4, C6 and C8, C8
has the greatest index. Hence, the zero pattern obtained from
the sum of columns is started from the 9th row of the first
submatrix. At 9th row of the matrix, among the mentioned
columns, only C16 with the content of 1 was used in the
sum. Indeed, other columns with the content of 1 are either
C24 or placed betweenC9 andC15. Note that asC0 andC8 are
used, C24 is exempted to make sure that the sum of columns
remains zero at the zeroth row of the third submatrix. The
sum of the mentioned columns will result in zero patterns
with lengths of 22 and 9 at the second and initial parts of
the matrix, respectively. Hence, the length of the zero span
obtained from the sum of the above columnswill be 31, which
is shorter than the shortest length of zero spans formed in the
first part of the matrix, i.e. the value of δ − 31 = 32.
Example 6: In the parity check matrix of (127,63) cyclic

code shown in Figure 2, let X ′ = 25. In the first row of the
third submatrix, C25 = 1. In this row, other columns with the
content of 1 are C9 and C1. C0+C1+C8+C12+C14+C13+

C25 will conclude zero patterns at the third, fourth and fifth
submatrices. Of these columns positioned between C0 and
C14, C14 has the greatest index. Therefore, jselect = 14 and
Cjselect = C14. Sum of the above columns with C16 and C17
will form a zero pattern with the length of 16, which is started
from the 15th row of the first submatrix. At 15th row of the
matrix, among the mentioned columns, only content of C16 is
1. This will result in a zero pattern with the length of 15 at the

192070 VOLUME 8, 2020



S. Vafi: Cyclic LDPC Codes With the Optimum Burst Error Correcting Capability

initial part of the matrix. The length of the zero span obtained
from the sum of above columns will be 31, which is shorter
than the shortest length of zero spans formed at the first part
of the matrix δ − 31 = 32. Hence, all bursts with the length
of 32 or shorter are correctable.

A. SPECIAL CASE
It is possible to have a zero pattern, which is started from the
zeroth row of the first submatrix with the length of αN . This
is achievable from C0 + CαN−αi , where 1 ≤ i ≤ N − 1 and
C0 = 1. Moreover, in the zeroth row of the matrix content
of C0 is 1. Sum of selected columns at the zeroth row of the
matrix will be 1 because every two rows of the matrix do not
havemore than one common 1. Hence, the length of zero span
will be αN , which is shorter than the shortest length of zero
spans formed at the first part of the matrix.
Example 7: In parity check matrix of (127,63) cyclic code

shown in Figure 2, there exists a sum of columns, which
generates zero pattern from 10th row of the first submatrix.
In addition to C0 and C16, C1 and C17 should be involved
to ensure that the sum remains zero at the second and third
submatrices. Based on C1, C5 and C21 are also summed
to conclude zero from the fourth and second submatrices.
Similarly, C6 and C22 are used to have zero from the sum of
columns at the fifth and second submatrices. Zero is resulted
from the sum at the zeroth rows of the third and fourth
submatrices by utilizing C24 and C28. Such this zero pattern
will be formed, when CX ′s, 10 ≤ X ′ ≤ 15, are not applied
in the sum. Moreover, C25 can not be used since its sum with
already selected C1 and C9 will become 1 at the first row of
the third submatrix. Based on the above conditions, the length
of this zero pattern will be 21. At the tenth row of the matrix,
amongst columns with the content of 1 onlyC17 was involved
in the sum. Hence, the sum of selected columns will be 1 and
consequently a zero pattern with the maximum length of 10 is
obtained. As a result, the length of obtained zero span will be
31, which is shorter than the shortest length of the zero spans
formed at the first part of the matrix (the value of 32).
Example 8: In the parity check matrix of (85,21) cyclic

code shown in Figure 3, the sum ofC0,C16, andC20 generates
zero pattern with the length of 20 in the second part of the
matrix. At 11th row of the matrix, among these columns, only
content of C16 is 1. Hence, the longest possible length of that
sum formed at the initial part of the matrix is 12. As a result,
the length of zero span is 20+11=31. This length is shorter
than the shortest length of zero spans formed at the first part
of the matrix, i.e. δ − ` = 32, where ` = n−k

2 − 1.

V. APPLICATION OF PROPOSED LDPC CODES FOR
COMPOUND CHANNELS
Proposed cyclic LDPC codes can be combined with Fire
codes to construct cyclic codes suitable for the compound
channel, where burst and random errors are mixed.

For GF(2m), let gF (x) = (xb + 1)φ(x) be generator
polynomial of (n, k) Fire code, where n is an order of 2m − 1

TABLE 1. Cyclic codes suitable for the compound channel.

VOLUME 8, 2020 192071



S. Vafi: Cyclic LDPC Codes With the Optimum Burst Error Correcting Capability

and represented as n = a · b. In this case, a and b are two
integers and b+1

2 ≤ m. Moreover, φ(x) is a polynomial,
which divides 1 + xb + x2b + . . . + x(a−1)b. The generator
polynomial of the cyclic code applied for the compound
channel is represented by the least common multiple (LCM )
of two generator polynomials as follows [4]:

g(x) = LCM (gF (x), gLDPC (x)), (7)

where gLDPC (x) is the generator polynomial of the cyclic
LDPC codes constructed by η = 1. As gLDPC (x) is not order
of (x + 1), the above polynomial is given by

g(x) = (xb + 1)LCM (gLDPC (x), φ(x)). (8)

Constructed cyclic codes are capable for correction of burst
errors with length b as well as t or less random errors, where
t is the error correcting capability of the cyclic code. Table 1
shows a number of cyclic codes constructed on the basis
of the above method. In the second column, values written
in the parenthesis denote orders of elements of g(x). Some
short codes are comparable with other well-known codes.
For example (15,4) code can correct bursts with lengths
2 or 3, which is equal to capability of (15,5) BCH code.
However, (15,4) with the minimum weight of 8 can also
correct 3 random errors. The parity check polynomial of this
code is h(x) = 1+ x+ x4. As the difference between any two
orders of h(x) is unique, Tanner graph of the code does not
include any 4 cycle. Hence, decoding of this LDPC code can
be accomplished by a hard-decision based technique (such as
bit flipping), which requires lower complexity than decoding
techniques applicable for (15,5) BCH code. Similarly, (63,24)
cyclic codes proposed for the compound channel has the min-
imum weight of 12. This means that the code can correct all
burst errors with length 7 as well as five random errors. This
code is comparable with (63,24) BCH code, which corrects
either seven random errors or burst errors with length 17 or
less [10].

VI. CONCLUSION AND FUTURE WORK
This paper represented cyclic LDPC codes with the opti-
mum burst-error correcting capability. Considering the parity
check matrix of these codes, bounds for determining their
burst error correction were presented. Codes have flexibility
in their lengths and rates. This allowed them to be com-
bined with Fire codes to demonstrate a new scheme of cyclic
codes suitable for simultaneous correction of random and
burst errors. In future work, application of these codes for
correction of multiple burst errors will be followed.
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