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ABSTRACT This paper presents a real-time machine learning control (MLC) of articulated robotic
manipulators using artificial bee colony optimization (ABC) algorithm incorporated with fuzzy theory.
The modified ABC with dynamic weight is used to optimize the fuzzy structure and fractional order. The
fractional parameters, fuzzy membership functions and rule base are determined by means of the ABC
computation. This ABC-fuzzy hybrid learning algorithm is applied to real-timeMLC of robotic manipulators
by including fractional order proportional-integral-derivative (FOPID) control strategy. The MLC’s control
gain parameters are online tuned via the ABC-fuzzy optimization. With the kinematics analysis of a
six-degree-of-freedom (DOF) articulated arm via reverse coordinates approach, an ABC-fuzzy MLC is
developed to achieve motion control. A real-time operating system (RTOS) on a microprocessor collaborates
with theABC-fuzzyMLC tomeet critical timing constraint by considering the dynamics of actuators. Finally,
the mechatronic design and experimental setup of a six-DOF articulated robotic manipulator are constructed.
Experimental results and comparative works are provided to demonstrate the merit of the proposed methods.
Comparedwith the conventional control schemes, the proposedABC-fuzzyMLChas theoretical and practice
significance in term of real-time capability, online parameter tuning, convergent behavior and hybrid MLC.
The proposed MLCmethodologies are applicable to designing real-time modern controllers in both industry
and academia.

INDEX TERMS Artificial bee colony optimization, fuzzy theory, machine learning control, robotic arm.

I. INTRODUCTION
Real-time systems have grown in demand in the market
especially in industrial environments [1], [2]. They are time
constrained and deterministic systems that respond within
a specified time frame. To date, they are used to develop
modern feedback control strategies that control actuators and
sensors for industrial applications. Real-time control is one of
themost common applications of real time systems. Although
numerous real-time control methods have been presented and
achieved exciting results [1]–[4], the machine learning tech-
nology is not included for high performance control. More
importantly, they are still restricted with constant control
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gain, which may not be applicable for real-world engineering
domains under time-varying uncertainties [5].

Machine learning is a subfield of artificial intelligence (AI)
that provides systems the ability to automatically learn from
data and improve through experience. This incredible form
of artificial intelligence is already being used in various
industries and professions where it is difficult or infeasible
to develop conventional algorithms to perform the desired
tasks [5]–[9]. By learning the previous patterns, it will learn
the new process and execute the knowledge. This approach
has proven to be one of the most challenging field of the past
decade and is making a significant impact on the industry
domains, including regression, image and speech recognition,
medical diagnosis and etc.

MLC is a specific application of machine learning that
employs data-driven methods for control design [10]–[14].
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It is also a branch of intelligent control theory which
solves optimal control problems usingmachine learning algo-
rithms. This methodology has become particularly powerful
for complex systems with strong nonlinearities where the
conventional control schemes are not applicable. Taking the
advantages of machine learning and intelligent control, MLC
has tremendous potential and is a relatively new frontier in
data-driven engineering [13], [14].

Evolutionary algorithms are powerful regression tech-
niques because of their generality in optimizing both
the structure and gain parameters associated with a con-
troller [15]. Generally speaking, they provide an effective
alternative search strategy to find optimal solutions in a
high-dimensional search space [16], [17]. These computing
paradigms form an important category of machine learning
techniques that adapt and optimize through a nature-inspired
process [14], [17]. They have been successful in many diverse
control applications, including system identification, parame-
ter tuning and optimal control. This methodology is a rapidly
developing field at the intersection of control engineering and
natural sciences [15]–[19].

Evolutionary MLCs are now pervading fields of academic
and industrial research [20]. MLC feedback control laws with
biological processes provide many advantages and is a chal-
lenging research in advanced intelligent control field. Some
popular evolutionary algorithms, such as genetic algorithm
(GA), ant colony optimization (ACO) and particle swarm
optimization (PSO) are widely applied to design advanced
MLCs. These algorithms are already central in control design
and provide context for modern MLCs [20]–[24].

Among traditional metaheuristics, ABC is particularly
promising for MLCs due to its strong global search capa-
bility [25]–[27]. ABC is one of the swarm intelligence algo-
rithms that mimic honey bees’ food search behavior to drive
a search towards the optimization solution. This algorithm is
proposed by Karaboga based on a particular foraging behav-
ior of honey bee colonies on finding nectar and sharing the
information of food sources to the bees in the hive [26], [27].
As the authors’ best understanding, there has no attempt to
design ABC-based real-time MLCs for robotic manipulators.

ABC algorithm has been shown to be competitive with
other conventional bioinspired algorithms to solve complex
engineering problems [28], [29]. However, this evolutionary
computation has the difficulty of local optimum caused by
the unbalance between global and local search. Some strate-
gies have been employed to develop ABC variants to fur-
ther improve performance [28]–[30]. Overall, these modified
ABC algorithms are computationally extensive and not appli-
cable to high-dimension optimization problems. This paper
proposes an efficient self-adaptive ABC to not only increase
the search diversity but also balance the exploitation and
exploration. Moreover, this modified ABC is incorporated
with fuzzy theory to present a ABC-fuzzy real-time MLC.

Compared with the conventional offline control schemes,
real-timeMLCs feature online tuning capability for engineer-
ing applications. In other words, the control gain parameters

associated with the MLC are self-adjusted at every sampling,
thus obtaining optimal performance. In this study, the meta-
heuristic ABC is utilized to optimize both fractional order
parameters and fuzzy structure. This ABC-fuzzy approach
is then employ to develop a real-time online FOPID MLC
using a RTOS. The control parameters are online tuned
by means of fuzzy logic. Taking the advantages of ABC-
fuzzyMLC, online tuning and real-time control, the proposed
ABC-fuzzy FOPID MLC is applied to industrial articulated
robotic manipulators.

The articulated manipulator is an industrial robot which
consist of mechanical links connected by rotating joints [31].
This kind of robot arm is ideally suited to industrial automa-
tion, such as material handling, assembly operations, weld-
ing, spray painting and medical surgery [31]–[33]. The main
advantages of articulated robots are the flexibility and dex-
terity. They are extensively used to perform repetitive tasks
with greater speed and consistency in the industrial manu-
facturing sector. Although numerous studies have been pre-
sented to cope with the design and control problems of
articulated arms, the real-time optimal MLC deserves further
investigations.

The reminder of this paper is organized as follows.
Section II presents the hybrid ABC-fuzzy FOPID machine
learning that includes ABC-fuzzy optimization and FOPID
control theory. Section III describes the ABC-fuzzy real-time
online MLC of robotic manipulators. Experimental results
and comparative analysis are given in Section IV. Finally,
Section V concludes this paper.

II. EVOLUTIONARY ABC-FUZZY FOPID MACHINE
LEARNING CONTROL
A. SELF-ADAPTIVE ABC MACHINE LEARNING
1) ABC ALGORITHM
In nature, the exchange of information among honey bees is
the most important occurrence in the formation of the col-
lective knowledge [28]. Communication among bees related
to the quality of food sources in the dancing area. ABC was
inspired by this intelligent foraging behavior of honey bees.
It is a swarm based metaheuristic algorithm for optimizing
numerical problems. To date, this robust algorithm has been
successfully utilized to solve combinatorial problems in sci-
ence and engineering domains. It has been proven an effi-
cient tool in solving complex and multimodal optimization
problems.

In ABC algorithm, a colony of artificial forager
bees (agents) search for rich artificial food sources (good
solutions for a given problem). This computation consists
of three essential agents: (1) employed bee, (2) onlooker
bee (3) scout bee. Both onlookers and scouts are also called
unemployed bees. The employed bees search for food and
share the information to the onlooker bees. The onlooker bees
select good food sources from those found by the employed
bees and the scout bees are responsible for finding new food
sources. In particular, the employed bee whose the food

192482 VOLUME 8, 2020



H.-C. Huang, C.-C. Chuang: Artificial Bee Colony Optimization Algorithm Incorporated With Fuzzy Theory for Real-Time MLC

source has been abandoned by the bees becomes a scout bee
and continues the ABC search process.

To apply ABC, the considered optimization problem is
first converted to the problem of finding the best parame-
ter vector by optimizing a predefined fitness function. The
position of food sources represents a possible solution and
the nectar amount corresponds to the fitness of the associated
solution. The artificial bees randomly discover a population
of initial solution vectors and then iteratively improve them
by employing the ABC strategies.

Taking the shared information of food sources from all
employed bees through waggle dances, an onlooker bee
chooses a food source with a probability related to its nectar
amount, expressed by

pi =
fiti

SN∑
n=1

fitn

(1)

where fiti is the fitness value of the ith solution in ABC swarm
population and SN is the population size. In ABC algorithm,
xij is the ith employed bee in the jth dimension, vij is a new
solution for xij and xkj is the neighbor of xij. The update rule
is formulated as follows:

vij = xij + rand[−1, 1](xij − xkj) (2)

where rand[−1, 1] is a random number within [−1,1] to
control the production of neighbor solutions around xij. 1 <
k < SN , k 6= i and 1 < j < D. If a position cannot be
improved over a predefined number (called limit) of cycles,
then the food source is abandoned and the scout bees will be
sent to find a new food source. Then the food source found by
the scout bee will take the place of the abandoned one. The
movement of the scout bees is expressed by

xij = x jmin + rand[0, 1](x
j
max − x

j
min) (3)

where rand[0, 1] is a random number within [0,1] based
on a normal distribution and x jmin, x

j
maxare lower and upper

boundaries of the jth dimension, respectively.

2) MODIFIED ABC WITH DYNAMIC INERTIA WEIGHT
To avoid the difficulty of local optimum caused by the
unbalanced search and poor search diversity in classical
ABC. This study presents a self-adaptive ABC with dynamic
inertia weight and mutation operation to not only increases
the search diversity but also balances the global and local
search. In the proposed modified ABC, a dynamic inertia
weight is added to balance exploitation and exploration in the
ABC search space. The position update rule is expressed as
follows.

vij = w(t)xij + rand[−1, 1](xij − xkj) (4)

where w(t) is the weight at iteration t . This parameter is self-
adaptive in the modified ABC computation, described by

w(t) = (w(0)− w(nt ))
(nt − t)
nt

+ w(nt ) (5)

FIGURE 1. Scheme of the modified ABC algorithm.

where nt is the maximum number of iteration, w(0) is the
initial weight and w(nt ) is the final weight, w(0) > w(nt ).
To increase the search diversity of ABC, a single-point muta-
tion strategy is employed in the scout bee phase. The gen-
eral scheme of the improved ABC algorithm is presented
in Fig. 1 that searches for the global optimum more effi-
ciently. Notice that the detailed computational complexity
analysis and statistical test of ABCs for optimization prob-
lems are presented in [25]–[30]. This study mainly con-
tributes to the development of ABC-based real-time MLC of
articulated robotic manipulators.

B. HYBRID ABC-FUZZY FOFPID MLC
1) TAKAGI-SUGENO (TS) FUZZY SYSTEM
Fuzzy systems are rule-based systems or knowledge-based
systems by using fuzzy rule base and membership functions.
The fuzzy IF-THEN rule bases are linguistic variables that
describe the state of the system under given conditions and
the membership functions define the degree of a particular
measurement belongs to a particular state. This fuzzy-model-
based system has been a promising research area and has
attracted enormous efforts from fuzzy theory community.

Fig. 2 illustrates s the block diagram of the classical fuzzy
system. It is composed of four main modules which inter-
act with the crisp input to generate a desired output. There
are four core modules in fuzzy systems, including fuzzifier,
knowledge base, inference engine and defuzzifier. Fuzzifica-
tion transforms the crisp input variables into fuzzy sets. Each
fuzzy set is described by a varying membership function and
quantified by a linguistic term. Knowledge base consists of
a database and a rule base. They are linguistic variables that
describe the state of the system under given conditions and
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FIGURE 2. The structure of TS fuzzy systems.

the membership functions define the degree of a particular
measurement belongs to a particular state.

The fuzzy rule base is composed of multiple "IF...,
THEN..." inference sentences. The inference engine can
apply reasoning to compute fuzzy outputs by considering
the rule base. This paper considers the Takagi-Sugeno fuzzy
system and the ith rule (Ri) is represented by

Ri : IF f (A1 is a1,A2 is a2, ...,An is an)

THEN C = g(a1,a2,, . . . , an,) (6)

where f() and g() are mathematical functions, C is the conse-
quent part, ai is an antecedent or input variable. Ai is a fuzzy
set represented by the membership function µAi . Defuzzifi-
cation is a fuzzy-to-crisp mathematical conversion procedure
inferred by the inference engine into a real value. The firing
strength αk is calculated by

αk =
∏
ai∈Ak

µAi (ai) (7)

where Ak is the antecedents of rule k . The output of the fuzzy
system is then obtained by

C =

L∑
k=1

αkg(a1, . . . , an)

L∑
k=1

αk

(8)

2) INTELLIGENT ABC-FUZZY FOPID CONTROL
FOPID control introduced by Podlubny has received a
considerable attention in the last years because it pro-
vides more flexibility and better response with respect to
the standard PID controllers [34], [35]. In this study, the
Riemann-Liouville method is used to define fractional cal-
culus, formulated by

aD
q
t f (t) =

dqf (t)
d(t − a)q

=
1

0(n− q)
dn

dtn

∫ t

0
(t − τ )n−q−1f (τ )dτ (9)

where aD
q
t is a differintegral operator that combines differen-

tiation and integration, defined by

aD
q
t =


dq

dtq
, q > 0

1, q = 0∫ t

0
(dτ )−q, q < 0

(10)

n is an integer and n− 1 < q < n. q is the fractional order. a
and t are the limits of the operation. 0 is a Gamma function,
expressed by

0(x) =
∫
∞

0
tx−1e−tdt (11)

A FOPID controller is an extension of the classical PID
controller by involving an integrator of order λ and a differ-
entiator of orderµ, calledPIλDµ control. Using the fractional
calculus, the generalized transfer function of the FOPID con-
trol law is described as follows.

Gc(s) =
U (s)
E(s)

= KP +
KI
sλ
+ KDsµ, (λ,µ ≥ 0) (12)

where Gc(s) is the transfer function. U (s) and E(s) are the
output and input signals in Laplace space, respectively. KP,
KI and KD are respectively the proportional gain, integration
gain and derivative gain in FOPID control. To present a real-
time FOPID controller with auto-tuning capability, the fuzzy
theory is employed to adjust the control parameters at every
sampling point and meet time constraint.

Fuzzy structure optimization is an essential issue in fuzzy
applications. To address this concerning issue, this study
presents a hybrid ABC-fuzzy FOPID control system, shown
in Fig. 3. The triangular MFs with center ci and width wi are
applied in the proposed ABC-fuzzy FOPID control system by
taking the advantages of simplicity and easy implementation.
The modified ABC algorithm is employed to optimize the
fractional order and fuzzy structure. The parameters λ,µ, ci,
wi and the number of rule L are considered in the proposed
ABC-fuzzy FOPID MLC system.

FIGURE 3. ABC-fuzzy MLC feedback control system.
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In the proposed ABC-fuzzy FOPID control scheme,
anABC individual is defined by the parametersABC_agent=
{λ,µ, ci,wi,L}. The initial ABC bee population are
randomly generated and the optimal FOPID model
ABC_agent∗ = {λ∗, µ∗, c∗i ,w

∗
i ,L
∗
} is evolved through the

ABC process. The fitness function (objective function) is
defined by mean square error (MSE) with NABC sample to
evaluate the ABC individuals, expressed by

MSE_ABC =
1

NABC

NABC∑
k=1

(
ybee∗(k)− ybee(k)

)2 (13)

where ybee(k) is the output in kth sampling data and ybee∗(k)
is the predicted output. The seven fuzzy sets are defined by
the linguistic values: Negative Large (NL), Negative Medium
(NM), Negative Small (NS), Approximate Zero (AZ), Posi-
tive Small (PS), Positive Medium (PM), and Positive Large
(PL). TheMFs have sufficient overlap between adjacentMFs.

As shown in Fig. 3, the improved ABC algorithm is used
to design optimal fuzzy structure and fractional order prior
to motion control. Once the initial fuzzy structure and frac-
tional order are optimized, the ABC-fuzzy computation is
then utilized to online tune the FOPID parameters in the
real-time MLC. Having the measured signals from plants,
the error information is calculated and updated. Finally,
the proposed ABC-fuzzy MLC system determines the real-
time optimal control commands to the plants. This intelligent
MLC approach is superior to the traditional fuzzy control
systems because the fuzzy structure and fractional order are
initially optimized through ABC process and the control gain
parameters are online tuned.

III. APPLICATION TO REAL-TIME MLC OF ROBOTIC
MANIPULATORS
This section aims to develop an ABC-fuzzy real-time MLC
of six-DOF articulated robot manipulators. The forward kine-
matics is derived bymeans of Denavit-Hartenberg (D-H) con-
vention. With the forward kinematic equations, the inverse
kinematics is presented using reverse coordinates method.
After kinematics analysis, the dynamic plant model and
motion planning are employed to design a ABC-fuzzy MLC
controller of robot armwith real-time FPGA implementation.

A. FORWARD KINEMATICS
Articulated robotic arm consists of a set of links connected
by joints to form a kinematic chain. The D-H convention
is employed to derive the forward kinematic equations of
the six-DOF robot manipulator. According to classical D-H
convention for robotic manipulators, the D-H matrix Ai from
the coordinate i-1 to the coordinate i is expressed by

i−1Ai = Rotz,θiTransz,diTransx,aiRotx,αi (14)

where Rot is a rotation matrix and Trans is a transformation
matrix. The four quantities θi (joint angle), di (joint distance),
ai (link length) and αi (link twist angle) are D-H parameters

associated with link i and joint i of the six-DOF articu-
lated manipulator. The homogeneous transformation matrix
between adjacent coordinates is summarized by

i−1Ai

=


cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1



×


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cosαi − sinαi 0
0 sinαi cosαi 0
0 0 0 1



=


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1


(15)

Fig. 4 depicts the coordinate relationship of the articulated
manipulator and Table 1 lists the D-H parameters of the
proposed six-DOF articulated manipulator in this study. With

FIGURE 4. Coordinate of the six-DOF robotic manipulator.

TABLE 1. D-H parameters of the six-DOF manipulator.

VOLUME 8, 2020 192485



H.-C. Huang, C.-C. Chuang: Artificial Bee Colony Optimization Algorithm Incorporated With Fuzzy Theory for Real-Time MLC

the geometric relationship and D-H parameters, the transfor-
mation matrices of adjacent joint are described as follows.

0A1 =


cos θ1 0 − sin θ1 0
sin θ1 0 cos θ1 0
0 −1 0 d1
0 0 0 1

,

1A2 =


cos θ2 0 sin θ2 0
sin θ2 0 − cos θ2 0
0 1 0 0
0 0 0 1

 (16)

2A3 =


cos θ3 0 − sin θ3 0
sin θ3 0 cos θ3 0
0 −1 0 d3
0 0 0 1

,

3A4 =


cos θ4 0 sin θ4 0
sin θ4 0 − cos θ4 0
0 1 0 0
0 0 0 1

 (17)

4A5 =


cos θ5 0 − sin θ1 0
sin θ5 0 cos θ1 0
0 −1 0 d5
0 0 0 1

,

5A6 =


cos θ6 − sin θ6 0 a6 cos θ6
sin θ6 cos θ6 0 a6 sin θ6
0 0 1 0
0 0 0 1

 (18)

According to D-H convention, the transformation matrix
H from link 0 to link 6 is described by

H = 0A11A22A33A44A55A6 =


nx sx ax px
ny sy ay py
nz sz az pz
0 0 0 1


=

[
R60 P60
0 1

]
(19)

where P60 =
[
px py pz

]T is the position vector and R60 is
the orientation matrix that includes yaw, pitch and roll angles.
The D-H forward kinematics analysis for the articulated robot
arm is completed in (19), namely that if the joint angles
θ1 ∼ θ6 are given, the pose of the end-effector is then
determined.

B. ANALYTICAL INVERSE KINEMATICS ANALYSIS
This subsection is devoted to developing a closed-form
inverse kinematics solution by means of the reverse coor-
dinates methodology [36]. In reverse coordinates method,
one should invert the base and the end of the articulated
manipulator to obtain a new manipulator. The modified
D-H (M-D-H) coordinates is established in Fig. 5 and the
M-D-H parameters are listed in Table 2. The transformation
matrix (i−1)′Ti′ can be obtained from the inverse of i−1Ai as

FIGURE 5. M-D-H coordinates system of the manipulator.

TABLE 2. M-D-H parameters of the manipulator.

follows:
(i−1)′Ti′

=


cos θ ′i − sin θ ′i 0 a′i

sin θ ′i cosα
′
i cos θ ′i cosα

′
i − sinα′i −d ′i sinα

′
i

sin θ ′i sinα
′
i cos θ ′i sinα

′
i cosα′i d ′i cosα

′
i

0 0 0 1


(20)

According to reverse coordinates approach, the position
and orientation of end effector can be decoupled to perform
inverse kinematics analysis. In doing so, Fig. 6 depicts the

FIGURE 6. Simplified mode of the new manipulator.
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simplified newmanipulator that consists of base (B), shoulder
(S), elbow (E), wrist (W) and top (T). The following relation-
ships are obtained by means of reverse coordinates analysis.

θ ′3 = 180− cos−1
(∥∥0Xsw∥∥2 − L2SE − L2EW

2LSELEW

)
(21)

where 0Xsw is a vector from S to W and ‖•‖ is a norm
operation, LSE is the distance from S to E and LEW is the
distance from E to W. Using the geometric relationship in
Fig. 6, the vector 0Xsw is expressed by

0XSW

=

 L1(cos θ ′3 sin θ
′

1 + cos θ ′1 cos θ
′

2 sin θ
′

3)+ L2 sin θ
′

1
−L1(cos θ ′1 cos θ

′

3 − cos θ ′2 sin θ
′

1 sin θ
′

3)− L2 cos θ
′

1
L1 sin θ ′2 sin θ

′

3


=

 0XSW (1)
0XSW (2)
0XSW (3)

 (22)

Once θ ′3 is determined, the next step is to compute θ ′1 and θ
′

2
from (20). Based on (22), we have[
sin θ ′1
cos θ ′1

]
=

[
L1 cos θ ′3 + L2 L1 cos θ ′2 sin θ

′

3
L1 cos θ ′2 sin θ

′

3 −L1 cos θ ′3 − L2

]−1
×

[ 0XSW (1)
0XSW (2)

]
(23)

and

θ ′1 = tan−1
(
sin θ ′1
cos θ ′1

)
(24)

θ ′2 = sin−1
( 0XSW (3)
L1 sin θ ′3

)
, if sin θ ′3 6= 0 (25)

The inverse kinematics solution θ ′4, θ
′

5 and θ ′6 can be
derived by using the following rotation matrix 0R6, formu-
lated by

0R6 =0 R33R6 (26)

where

3R6 =
(
0R−13

) (
0R6

)
=

 ∗ ∗ cos θ ′4 sin θ
′

5
cos θ ′6 sin θ

′

5 − sin θ ′5 sin θ
′

6 − cos θ ′5
∗ ∗ sin θ ′4 sin θ

′

5


(27)

and ∗ are the ignored elements. From (27), the solution of θ ′5
is described by

θ ′5 = cos−1
(
−

3R6_23
)

(28)

and

θ ′4 = tan−1
( 3R6_33

3R6_13

)
, if sin θ ′5 6= 0 (29)

θ ′6 = cos−1
( 3R6_21
sin θ5

)
, if sin θ ′5 6= 0 (30)

where 3R6_ij is the (i, j) element of matrix 3R6. Notice that
if sin θ ′5 = 0, then θ ′4 and θ ′6 can be directly calculated.
Comparing the parameters in Table 1 and Table 2, accord-
ing to reverse coordinates method, one obtains the inverse
closed-form kinematics solution of the six-DOF articulated
manipulator, expressed by

θ1 = −θ
′

6, θ2 = −θ
′

5, θ3 = −θ
′

4, θ4 = −θ
′

3,

θ5 = −θ
′

2, θ6 = −θ
′

1 (31)

where θ1 ∼ θ6 is the closed-form inverse kinematics solution
of the original six-DOF robotic manipulator.

C. DYNAMIC MODELING OF ACTUATORS
In this study, the six-DOF articulated manipulator are actu-
ated using electric motors. The generalized model with actu-
ator dynamics and arm dynamics for n-link robot arms is
derived as follows.

M (q)q̈+ Vm (q, q̇) q̇+ F(q̇)+ G(q) = τ (32)

where q ∈ Rn is the arm joint variable and τ is the generalized
forces. M (q) is the inertia matrix, Vm (q, q̇) is the Coriolis
/centripetal vector,F(q̇) is the friction vector andG(q) is grav-
ity vector. The mathematical model of ith link is described by

JMiq̈Mi + BMiq̇Mi = τMi − τLi (33)

where the ith electric motor has damping constant BMi, iner-
tia JMi, rotor position angle qMi, motor’s torque τMi and
load torque τLi. Considering the actuator friction vector FMi,
torque constant KMi, rotor damping constant BMi, back emf
constant Kbi and armature resistance Rai.
The dynamics of the electric motors that drive the links are

expressed by the n-decoupled equations:

JM q̈M + Bq̇M + FM + Rτ = KMv (34)

where v = {v1, v2, . . . , vn} ∈ Rn is the motor voltage. qM =
{qM1,qM2, . . . , qMn} ∈ Rn, JM = diag{JMi), B = diag{BMi+
KMiKbi

/
Rai},R = diag{ri},KM = diag{KMi

/
Rai}, τ =

{τ1, τ2, . . . , τn}. The gear ratio of ith link is described as
follows.

qi = riqMi , q = RqM (35)

Combing (33)-(35), one obtains the dynamics model of the
articulated robotic manipulator, expressed by(
JM + R2M (q)

)
q̈+

(
B+ R2Vm(q, q̇)

)
q̇+ RFM (q)

+ R2F(q)+ R2G(q) = RKMv (36)

D. REAL-TIME ABC-FUZZY MLC OF ROBOTIC ARM
This subsection is devoted to developing an intelligent
ABC-fuzzy MLC system for the six-DOF robotic manipula-
tor with real-time capability. Having the ABC-fuzzy compu-
tation and robot arm model, the proposed MLC outputs the
control command to drive the plant actuators in Fig. 7. This
real-time FOPID MLC with online tuning has more practical
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FIGURE 7. Real-time MLC system for robotic articulated arms.

significance because the fuzzy system is optimized via the
modified ABC algorithm.

In Fig. 7, the controllers are implemented as several tasks
on a microprocessor with a real-time operating system to
meet critical timing constraint. The real-time kernel uses
multiprogramming to multiplex the execution of the various
tasks. In this study, the real-time ABC-fuzzy MLC of robotic
manipulator is considered as a typical distributed feedback
control system that consists of sensing (input), processing
(computation), and actuation (output) components.

As shown in Fig. 7, once the reference command is
received in Cartesian space, the proposed analytical inverse
kinematics solver calculates the joint angles of each link.
Then the trajectory profile is obtained by means of trape-
zoidal motion planning. In designing the feedback control of
robot arm, the encoders are directly mounted on DC motors
to provide sensed signal. An embedded processor with RTOS
is employed to perform ABC-fuzzy MLC and output the
actuation signal to DC motors.

There are six ABC-fuzzy MLCs in the proposed robotic
system. Each controller unit is configured to support the
RTOS and external communications with sensors/actuators.
The configuration includes an interrupt controller, one timer
clock, one processor, memory module and communication
devices. The interrupt controller handles external interrupts
according to priority to cope with external events or data
arriving. All the inverse kinematics solver, motion profile and
MLCs are implemented in one embedded processor to present
a cost-effective robotic system.

IV. EXPERIMENTAL RESULTS, COMPARATIVE WORKS
AND DISCUSSION
A. MECHATRONIC DESIGN AND EXPERIMENTAL SETUP
Fig. 8 presents the mechatronic design and experimen-
tal setup of the robotic manipulator used to validate the

FIGURE 8. Picture of the six-DOF articulated robotic manipulator.

effectiveness and merit of the proposed real-time ABC-fuzzy
MLC. As shown in Fig. 8, there are six servo motors with
drives in the articulated robotic arm system. The two-phase
encoders are directly mounted on the motors to provide sen-
sor feedback signals. An Altera development board DE1-
SoC with one embedded processor and RTOS is employed
to perform the proposed real-time ABC-fuzzy MLC control
law. The embedded processor collaborates with the RTOS
to provide the FOPID control responses to the events within
specific time.

In the proposed cost-effective MLC robotic system,
the embedded dual-core ARM Cortex-A9 performs the
inverse kinematics, motion profile and ABC-fuzzy FOPID
control law in C/C++ language. The hardware components
such as pulse width modulation (PWM) circuit and quadra-
ture encoder pulse (QEP)module are implemented byVerilog
hardware description language. Both the software modules
and hardware components are integrated in one FPGA chip,
thereby reducing the circuit size. Fig. 9 depicts the FPGA

FIGURE 9. FPGA realization of the proposed real-time ABC fuzzy MLC for
the six-DOF robot manipulator.
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FIGURE 10. (a). Single-axis test for Joint1∼Joint4. (b). Single-axis test for Joint5∼Joint6.

realization of the proposed real-time ABC-fuzzyMLC for the
six-DOF robot manipulator. The ARM hard processor sys-
tem (HPS) consisting of processors, peripherals, and memory
control. Although the HPS and the FPGA can operate inde-
pendently, they are tightly coupled via a high-bandwidth sys-
tem interconnect built from high-performance ARM AMBA
AXI bus bridges. This FPGA realization outperforms the

conventional controllers in term of reconfigurability, flexi-
bility, time-to-product and reliability in designing modern
MLCs for robotic systems.

B. ANALYTICAL INVERSE KINEMATICS SOLVER
This subsection aims at conducting several experi-
ments to validate the effectiveness of the kinematics
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TABLE 3. Test patterns for the six-DOF robot arm.

TABLE 4. Inverse kinematics solutions.

FIGURE 11. Experimental results of trajectory tracking using PID, fuzzy
PID and ABC-fuzzy FOPID MLC.

analysis using D-H convention and reverse coordinates
approach. Table 3 lists the ten patterns used to perform D-H
forward kinematics analysis. Taking the calculated position
and orientationmatrices into the analytical inverse kinematics
solver, Table 4 presents the results for all cases. Through this
cross-checked experiments, the proposed closed-form solver
provides inverse kinematics solutions of the six-DOF robotic
manipulator successfully.

FIGURE 12. Experimental tracking errors of PID, fuzzy PID and ABC-fuzzy
FOPID MLC (a)error of x (b)error of y (c) error of z.

C. SINGLE-AXIS TEST AND COMPARATIVE WORKS
This subsection is devoted to conducting experiments to eval-
uate the control performance of the proposed ABC-fuzzy
MLC for servo motors. Fig. 10 presents the experimental
results of the six actuators using PWM H-bridge drives. The
reference command for each axis is set as a square wave
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FIGURE 13. Convergent behavior of the fitness value using GA, ACO and
modified ABC.

trajectory. As can be seen in Fig 10, the proposed ABC-fuzzy
real-time MLC tracks the desired command successfully.

In order to illustrate the merit of the proposed real-time
MLC over other existing control approaches, Fig. 10 also
presents the comparison analysis. The traditional PID control,
fuzzy-PID control schemes are also utilized to perform the
same single-axis test of articulated robot arm. This compari-
son work clearly indicates that the proposed real-time ABC-
fuzzy FOPID MLC scheme outperforms the conventional
control methods.

D. EXPERIMENTAL RESULTS OF TRAJECTORY TRACKING
This subsection aims at presenting experimental results
of trajectory tracking. After performing inverse kinematics
analysis and trapezoidal motion profile, the robot manip-
ulator is steered to achieve a circular trajectory tracking
task. Fig. 11 depicts the tracking result using the proposed
ABC-fuzzy FOPID control strategy. This experimental result
clearly indicates that the proposedMLC achieves the tracking
task successfully. To provide comparison analysis in Fig. 11,
the traditional control laws are also employed to achieve the
same tracking task. Fig. 12 depicts the experimental track-
ing errors of PID, fuzzy PID and ABC-fuzzy FOPID MLC.
Through these experimental results and comparison works,
the proposed ABC-fuzzy MLC is superior to the existing
control schemes.

In this study, the modified ABC algorithm is utilized
to determine the fractional order and fuzzy structure in
the real-time MLC. The evolved agent ABC_agent∗ =
{λ∗, µ∗, c∗i ,w

∗
i ,L
∗
} is employed to conduct the experiments.

Fig. 13 presents the convergent behavior of the fitness value.
To illustrate the merit of the proposed MLC, this result is
compared with the ones using traditional GA, ACO based
fuzzy systems. The GA and ACO parameters are determined
using the robust design methods in [37], [38]. As shown
in Fig. 13, the proposed MLC converges to optimum solu-
tion more quickly and the evolved solution is better than

the ones obtained by GA and ACO evolutionary algorithms.
Compared with the traditional MLCs using supervised, unsu-
pervised and reinforcement learning [39], [40], the fuzzy
structure is optimally determined via ABC computation to
achieve optimal intelligent control.

V. CONCLUSION
This paper has presented a real-time MLC of articulated
robotic manipulators using ABC algorithm incorporated with
fuzzy theory. This ABC-fuzzy hybrid learning algorithm is
applied to real-time MLC of robotic manipulators by includ-
ing FOPID control strategy. TheMLC’s parameters are online
tuned via the ABC-fuzzy optimization to meet critical tim-
ing constraint. Experimental results and comparative works
clearly demonstrate the superiority of the proposed MLC
methods against other existing approaches. The proposed
ABC-fuzzy MLC has theoretical and practice significance in
both industrial and academic applications.
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