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ABSTRACT A significant increase is expected in video and multimedia traffic in Beyond 5G networks.
The inclusion of a huge number of IoT nodes in Beyond 5G networks further complicates the design of
such networks. These futuristic networks are expected to deal with this increased traffic and number of
nodes while ensuring that network delays do not exceed a certain threshold. In such networks, Quality of
Service (QoS) provisioning has become vital, not only to guarantee certain key performance indicators but
also to improve user experience. This paper proposes a hybrid approach for end-to-end QoS provisioning,
involving both clients and controllers to address these challenges. Each client tries to satisfy its own access
QoS requirements by choosing optimal access device(s) and makes decisions based on locally available
view. Controllers are then responsible for finding optimal paths in the core network to satisfy client core
QoS requirements. Experimental results show that the proposed approach provides better QoS guarantees
than several other access device selection and routing schemes.

INDEX TERMS Beyond 5G networks, quality of service, QoS in beyond 5G networks, QoS system
architecture, QoS system model.

I. INTRODUCTION
With the auctioning and roll-out of 5G networks in sev-
eral countries across Europe, the United States, and Asia,
the research community has started to lay out plans for
Beyond 5G (B5G) networks. B5G networks, among other
requirements, aim to provide higher peak data rates of up to
10 terabits per second, universal connection, low latency, reli-
ability, higher energy efficiency, universal connectivity, ubiq-
uitous intelligence, and native security. B5G networks also
aim to integrate several revolutionary technologies, including
holographic radio, terahertz communications, large intelli-
gent surface, orbital angular momentum, and visible light
communications [1].

Around 37 billion connected devices are forecasted by the
year 2025, with 25 billion of them related to the Internet
of Things (IoT) [2]. Connected IoT nodes would include
sensors, consumer electronics, wearables, machines, and con-
nected cars. In addition to the increased number of devices,
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a continual increase in demand for mobile data traffic is
expected due to web applications, real-time streaming, and
IoT applications [3]. According to Cisco Systems, Global IP
traffic will increase from 122 exabytes per month in 2017 to
396 exabytes per month by 2022 [4]. Video traffic will make
up 82% of the total IP traffic. B5G networks will have to
deal with a massive increase in the number of connected
IoT devices and manifolds increase in multimedia traffic.
To ensure a certain level of network quality for such traffic
and guarantee a certain user experience, providing Qual-
ity of Service (QoS) guarantees will be very important in
next-generation wireless networks, such as higher data rates,
seamless mobility, ultra-low latency, high reliability, and
energy efficiency [3].

IoT has no universal definition, but it points to the concept
of connecting everyday objects we see around us through a
network, usually the Internet. With the concepts of device-to-
device and machine-to-machine communications being envi-
sioned as core concepts in future networks, it seems likely
that objects with capabilities such as identification, sensing,
and processing would be networked to communicate with
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other devices. These networked devices would help achieve
several collaborative tasks, including sensing data from a
remote location, identifying a particular person, and remotely
controlling homes, etc.

For modern cellular networks, two approaches for
provisioning QoS are proposed; client-centric and network-
centric [5]. In client-centric approaches, the client is responsi-
ble for Radio Access Technology (RAT) selection. Whereas,
in network-centric approaches, the network devices are
responsible for providing a certain level of QoS to the client
based on its requirements. There are pros and cons to both
approaches. Modern end-devices have high processing power
and are equipped with multiple RAT receivers. These devices
are very sophisticated and can monitor signal strength, data
rates, delays, and other radio access parameters available
through various RATs. Furthermore, the end-devices also
have a better view of the access network, available battery,
client-side application preferences, and user behavior [6].
However, clients do not have a complete overview of the
network topology and its parameters, making it very difficult
for a client-centric approach to efficiently solve QoS provi-
sioning problems. Whereas, in a network-centric approach,
the network devices have a complete overview of the topol-
ogy and also have information about continuously changing
conditions of the links. However, these devices do not have
an as accurate view of the access layer as the clients have.
Further, as the number of IoT nodes increases as expected in
beyond 5G networks, the scalability issues would arise [7].
For network devices, in addition to their data routing and
forwarding responsibilities, it might become challenging to
handle the QoS requirements of each flow arising from such
a massive number of devices in IoT.

QoS provisioning in conventional networks has been per-
formed at network core devices, which are already respon-
sible for routing and forwarding the data. If network core
devices are also involved in QoS provisioning, it would sig-
nificantly burden them, increasing the core’s data forwarding
delays. Because of the size of IoT networks, it would also
cause scalability issues for these devices. Several QoS pro-
visioning architectures have been proposed using Software
Defined Networking (SDN) instead of network core devices,
thus taking the load away from them [8]–[15]. Recently, there
has also been profound research interest in 5G and beyond 5G
networks for client-based RAT selection [6], [16]–[19].

The rest of the paper is organized as follows. Section II lists
the relevant literature review. The proposed QoS provisioning
architecture, system model, and algorithms are presented in
Section III. Section IV lists the experimentation setup and is
followed by results in Section V. Section VI concludes the
paper.

II. LITERATURE REVIEW
A massive number of IoT devices would be interconnected
in B5G networks. Providing seamless connectivity to such
a massive number of IoT devices with QoS guarantees
would be challenging. Conventionally used multiple-access

techniques in current cellular networks are insufficient to
accommodate such massive IoT networks. B5G networks
would need to enable massive IoT for accommodating the
massive number of IoT nodes expected in such networks [20].
Orthogonal multiple access techniques are used in current
networks. However, as the number of IoT nodes increases,
such techniques might not support massive access, along
with the inability to provide high spectral efficiency and
low latency [21]. Non-orthogonal multiple access techniques
are researched to improve spectral efficiency, and signifi-
cantly improve bandwidth efficiency, while introducing some
degree of interference at the receiver [22].

Multi-access Edge Computing (MEC) paradigm has been
proposed to move storage and computing resources at the net-
work’s edge, closer to wireless end devices. MEC’s demand
has been driven by high bandwidth and low latency applica-
tions, thus improving the quality of experience and QoS [23].
However, increasing data-intensive applications may over-
whelm the computing and storage resources at MEC nodes.
An extension to MEC’s concept is device-enhanced MEC,
using modern end devices with increasingly powerful central
processing units and storage capabilities. This community
of wireless devices, referred to as mobile clouds, aggregates
their resources to serve individual end devices along with
MEC jointly [24]. Device-enhanced MEC improves the scal-
ability of MEC, with further improved network QoS. A Lay-
back architecture [25] is proposed for resource sharing of
communication and computational resources among different
wireless operators and technologies. Layback architecture
decouples the front-haul from the backhaul by placing the
coordination points just behind the gateways. A virtualized
radio access network approach, named FluidRAN [26], relo-
cates some base station functions to a central unit, thus par-
tially reducing RAN operational costs while satisfying the
needs of MEC.

Quality of service has been a highly researched topic in
networking. Work has been done for QoS provisioning in
IoT networks, including scheduling techniques, monitoring,
resource estimation, and cooperative communication for pro-
visioning QoS. A study particularly focuses on which layers
of IoT architecture have been researched the most concerning
QoS, which quality factors have been considered for measur-
ing performance, and what kind of research has been con-
ducted in this area [27]. An architecture for the virtualization
of IoT services is proposed in [28] to satisfy user-requested
QoS requirements. A simple and generic model is proposed
in [29] deploying QoS aware IoT applications to fog infras-
tructures. Some researchers have proposed models to sup-
port the QoS-aware deployment of IoT applications over fog
resources [30]. A probabilistic analysis is performed for QoS
provisioning in [31] for IoT in LTE-A based heterogeneous
networks with partial spectrum usage. Effective bandwidth
concept is leveraged to ensure users are provided probabilistic
QoS guarantees. In [32], an approach for efficient network
planning with QoS constraints is proposed for IoT networks.
The paper provided a low-cost solution by minimizing the
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cost of deployed devices and resources in the network while
achieving minimal QoS requirements specified. A three-
layered QoS architecture for IoT is proposed in [33]. The
lower perception layer collects data from the environment.
The middle network layer is responsible for data forward-
ing, whereas the application layer presents data to the users.
Different QoS parameters for each layer have been identi-
fied; application layer (service time, delay, accuracy, load,
priority), network layer (bandwidth, delay, packet loss rate,
jitter), and perception layer (coverage, time synchronization,
mobility).

The use of SDN in IoT networks is around for some time
now. It has been discussed in several papers, including mod-
ification to OpenFlow protocol for WSNs [34], integration
of arbitrary SDN controllers [35], program injection in WSN
sensor nodes [36], and a software-defined sensor node [37],
etc. However, we focus on the use of SDN in QoS provision-
ing for various communication networks. A QoS framework
is proposed in [8] using SDN, where high priority traffic
takes precedence over low priority traffic. A single controller
is introduced in each autonomous system for this purpose.
HiQoS technique ensures bandwidth guarantees for different
traffic classes by using a queuing mechanism over multiple
paths between source and destination [9]. To ensure QoS
requirements of bandwidth and jitter, a precise bandwidth
allocation scheme over multiple paths is proposed in [10],
while minimizing the number of active OpenVSwitches in
the network. OpenQoS solves a constrained shortest path
problem for dynamic QoS routing [11]. It allows selecting a
path with the least cost ensuring specific QoS requirement
for path delay. A four-layered QoS provisioning architec-
ture using an SDN controller is proposed in [12]. The user
specifies an abstract task description, which is converted
into network requirements, resulting in corresponding net-
work resources being reserved using the SDN controller.
An approach named LearnQoS is proposed in [13] for QoS
provisioning in multimedia video services. SDN is integrated
with machine learning and policy-based network manage-
ment for compliance with QoS requirements. For guaran-
teed service level agreements in multi-tenant networks where
multiple tenants share a common network, an SDN based
approach is presented in [14]. Challenges for QoS provi-
sioning in such networks where multiple tenants compete
for network resources are being addressed. For 5G networks
with multimedia video communications comprising 70 per-
cent of mobile traffic, a statistical delay bounded QoS pro-
visioning approach is presented in [15] to accommodate
time-sensitive and bandwidth-intensive applications. SDN is
used for dynamic reconfiguration of 5G wireless and radio
access resources.

There has been recent research interest in client-based RAT
selection in 5G and beyond 5G cellular networks. In [6],
an overall utility function maximization approach for all
clients in a particular 5G access network is proposed, with
certain constraints from each client. A dual-sim User Equip-
ment (UE) based RAT selection approach is presented in [16].

The client is simultaneously connected with two different
base stations from two different networks. RAT selection
is based on call quality, cost of making a call, power con-
sumption at UE, and handover rate offered by base stations
from each RAT. Work has been done for cooperative network
prediction by fusing knowledge from the client and network
domains [17]. The paper presents a proof-of-concept for 6G
networks, arguing that better data rates could be achieved by
cooperatively involving UEs and network devices to make
machine learning-based network optimization decisions com-
pared to network-centric approaches. In a context-aware radio
access technology selection technique, client and network
contexts are considered for choosing a RAT [18]. Results
show such a context-aware approach outperforms conven-
tional RAT selection approaches like received signal strength,
number of handovers, delay, and throughput, etc. A multi-
homing approach for 5G heterogeneous networks is presented
in [19], where various traffic classes can be transmitted over
different RATs by the client. A distributed decision making
client-centric algorithm is proposed, making a polling order
for allocating network resources for different classes. The
literature discussed here for using the SDN controller in QoS
provisioning and client-based RAT selection is summarized
in Table 1.

A. CONTRIBUTION
As discussed in the literature review and shown in Table 1,
only network-centric QoS provisioning or client-centric RAT
selection techniques exist in the literature. This paper presents
the first hybrid end-to-end QoS provisioning technique to the
best of our knowledge, combining client-centric and SDN
based network-centric approaches. The proposed architecture
achieves QoS provisioning by solving two sub-problems;
access-QoS and core-QoS. Major contributions of this paper
are as follows:

• Access-QoS: An optimization-based approach is pre-
sented for access device selection at the client-side.With
access-QoS being the client’s responsibility, a client can
better select access devices from various RATs.

• Core-QoS: An optimal QoS provisioning approach is
presented, which SDN controllers use to reserve network
resources in the core network as per client requirements.

• Heterogeneous QoS Parameters: The approach allows to
specify different access-QoS and core-QoS parameters,
which are more suitable for each network segment than
the same QoS parameters for the whole network. Each
client also has the ability to use QoS parameters different
from other clients.

• Scalable End-to-End QoS Provisioning: As the
access-QoS is shifted to the client, the load of last
hop QoS provisioning is shifted from the network to
the client. This would reduce the amount of signaling
information required to inform client-specific require-
ments to the SDN controller and switching decision
information sent from the controller to the clients in such
large IoT networks. The reduced signaling improves
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TABLE 1. Summary of SDN based QoS provisioning and client based RAT selection techniques.

network scalability. As an SDN-based approach is
used for core-QoS provisioning, the load is completely
shifted from network core devices to SDN controllers.
To mitigate any possible SDN controller scalability
issues, multiple controllers could be used [7].

III. QoS PROVISIONING TECHNIQUE
A. ARCHITECTURE
The proposed hybrid QoS provisioning architecture com-
prises a four-layered model, as shown in Figure 1; end device
layer, access layer, controller layer, and core layer. A layered
architecture helps to achieve reuse of various resources, better
designing of network services and applications.

1) LAYER-1: END DEVICE LAYER
In this layer, end devices or hosts exist, which could connect
to different access devices in the access layer. Today, end
devices also have the capability to connect to multiple access
devices. For example, mobile devices can connect to a cellular
network (like 4G or 5G) and a WiFi network simultaneously.
A sensor network would contain sensor nodes in this layer,

which are responsible for transmitting sensed data. Other
examples of devices that could exist in the end device layer
are personal computers, laptops, and micro-controllers, etc.

2) LAYER-2: ACCESS LAYER
The access layer considered in this architecture has multiple
access networks. Such networks are referred to as Hetero-
geneous Networks (HetNets). Access devices communicate
directly with end devices and are located at a one-hop dis-
tance from them. Depending upon the access technology
used, access device varies as well. For example, the cellular
network access layer may contain a Base Transceiver Sta-
tion (BTS) or an eNodeB. Similarly, an Access Point (AP)
acts as an access device in a WiFi network. A Base Sta-
tion (BS) acts as an access device for WSNs. These access
devices can communicate with devices in both the controller
layer (control traffic) and the core layer (data traffic).

3) LAYER-3: CONTROLLER LAYER
The controller layer comprises of SDN controllers. The
access layer queries the controller layer only if it does not
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FIGURE 1. Proposed layered architecture for QoS provisioning.

have a rule for forwarding such traffic. Depending on the
core-QoS logic implemented in the controller, a controller
instructs access layer devices and core layer devices on how
to forward the packet and may also install a flow in the flow
table of these devices, instructing them on how to deal with
similar packets in the future. The controller layer also receives
information about complete network topology from the core
layer, along with network parameters for each link. This helps
it to build network topology of the core layer, which is vital
for core-QoS provisioning. Controllers only communicate
over control connections, and there is no actual data traffic
transmitted to and from controllers to the access layer and
the core layer. As end devices and access layer devices are
responsible for mobility and handovers, such information
does not necessarily need to be relayed to controllers. Con-
trollers can automatically detect the currently active access
device from the incoming traffic. In this way, controllers are
mainly responsible for forwarding traffic, and the possible
latency that could be caused by mobility and handovers in
controllers could be avoided.

Multiple controllers can be deployed in this layer for the
purpose of scalability. As B5G networks are expected to have
billions of IoT devices with each device having multiple
flows, packet processing at a single controller may cause
processing and queuing delays, as well as overflowing of

queues. It would not be possible for a single controller to
handle this massive amount of incoming data. Therefore,
multiple controllers are usually deployed to handle incoming
data. With multiple controllers at this layer, a single point of
failure can also be avoided, as with a single controller, the
failure of this controller may result in no traffic to flow from
the access layer to the core layer. Multiple controllers also
add resiliency to the network in case of attacks like Denial of
Service (DoS) and Distributed Denial of Service (DDoS).

Controllers do not necessarily need to have connections
with the core layer. To ensure QoS provisioning, controllers
need to know the core layer’s exact topology. In communi-
cation networks with changing network conditions, it would
be challenging to update this information at controllers man-
ually. Therefore, it is vital to provide a control connection
between core and controller layers to automatically propagate
the core layer’s changing network conditions to controllers.

4) LAYER-4: CORE LAYER
The core layer consists of devices usually responsible for
carrying data from one network to another. This layer consists
of a massive number of interconnecting devices like routers
and Layer-3 switches. With the control plane moved to SDN
controllers in Layer-3, the core layer devices are only respon-
sible for performing the functionality of forwarding data from
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source to destination through a specific path provided by the
controller. The source and destination networks can be part
of the same Internet Service Provider (ISP) or may have to
traverse through an Internet Exchange Point (IXP).

B. SYSTEM MODEL AND PROBLEM FORMULATION
The proposed model is a hybrid model, implying that both
end-devices and controllers participate in improving the qual-
ity of service available to the end-user. The optimization
problem formulations at both devices are specified in the
coming sub-sections. Similar system models are used in lit-
erature for both access-network based RAT selection and
core-network based QoS provisioning [6], [11].

1) ACCESS-QoS
A distributed optimization approach is proposed, where each
client tries to maximize some utility function, subject to
certain constraints. We consider a multi-RAT network, with
each RAT having one or more access devices in the access
layer. Let V be the set of access devices in the access layer,
which are geographically distributed, each being connected
to the controller cloud in the controller layer. Let N be the
set of IoT nodes in the end device layer, each using different
applications and requiring different QoS levels.

An IoT node n∈N is connected tomultiple access devices.
Each access device v ∈ V also has multiple IoT nodes con-
nected to it. Let xnv ∈ {0,1} be an assignment indicator, where
xnv = 1 means that node n is connected to access device v,
otherwise, xnv = 0. Each access device v is constrained by
the maximum number of IoT nodes Xv that can connect to
it simultaneously, as well as the maximum workload Wv =∑
∀n w

n
v from the IoT nodes communicating through it. The

workload wnv represents the workload from the n-th node to
the v-th access device, and is a function of data transmitted in
bits from the n-th IoT node to the v-th access device.
The latency lnv of a one-hop communication link between

the n-th IoT node and the v-th access device is dependent on
the workload from the the n-th IoT node wnv and the data rate
Rv available to the v-th access device:

lnv =
wnv
Rv

(1)

The access device data rate Rv is defined as the sum of data
rates of all IoT nodes connected to the v-th access device and
is given as:

Rv =
∑
n∈Nv

rnv (2)

where rnv is the data rate of the n-th IoT node provided by the
v-th access device and is defined as follows:

rnv = β
n
v log2(1+ SINR

n
v) (3)

where βnv is the bandwidth assigned to the n-th IoT node from
the v-th access device. SINRnv is the signal to interference plus

TABLE 2. Access-QoS system model abbreviations with descriptions.

noise ratio at node n for the signal received from access device
v and is calculated as follows:

SINRnv = xnv
pnvh

n
v∑

v′ 6=v∈V p
n
v′h

n
v′ + N0

n
v

(4)

Here pnv is the power received at IoT node n from the access
device v, hnv is the channel gain between IoT node n and the
access device v, whereas N0

n
v represents the noise signal. The

channel gain hnv is defined as:

hnv = h̄nvζG0
n
v(
d0nv
dnv

)α (5)

In the above equation, for a link between the n-th node
and the v-th access device, G0

n
v is the antenna gain, ζ is a

zero-mean Gaussian random variable with σ standard devia-
tion, dnv is the distance between IoT note n and access device
v, d0nv is the reference distance of antenna far-field, path loss
exponent is α, and Rayleigh random variable is given as h̄nv .

Access-QoS can be defined as providing a certain level
of guarantees for parameters like data rate, delay, jitter and
packet loss, etc. An IoT node can build constraint over any
of these parameters and try to maximize or minimize certain
parameters simultaneously. In this paper, we formulate a rate
optimization problem that distributively runs at each node,
with QoS constraints of SINR and delay. Similar optimization
problems can be constructed for various other access-QoS
parameters. Assuming an IoT node n is connected to a subset
V̄ from a set V of all access devices, i.e. V̄ ⊆ V , the objective
function would then be given as:

max
SINR,l

∑
v∈V

xnv r
n
v ∀ n ∈ N (6)

subject to:

C1 : SINRnv̄ ≥ Sn ∀ v̄ ∈ V̄ (7)

C2 : lnv̄ ≤ Ln ∀ v̄ ∈ V̄ (8)

C3 :
∑
v∈V

xnv ≤ Mn ∀ n ∈ N (9)
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C4 :
∑
n∈N

xnv̄ ≤ Xv̄ ∀ v̄ ∈ V̄ (10)

C5 :
∑
n∈N

wnv̄ ≤ Wv̄ ∀ v̄ ∈ V̄ (11)

Here constraints C1 and C2 are the access-QoS provision-
ing constraints. The constraint C1 ensures that the SINR on
the link with an access device is at least greater than or equal
to the required SINR threshold Sn. Similarly, C2 ensures that
the delay on the link with an access device is less than or
equal to the required delay threshold Ln. The constraint C3
limits the maximum number of access devices a particular
node n can connect at the same time to Mn, where Mn is the
multi-homing parameter. The constraint C4 limits the number
of nodes connecting to a particular access-device v̄ concur-
rently not to exceed Xv̄. The last constraint C5 ensures that the
workload from all nodes connected to a specific access device
v̄ does not exceed the allowed maximum workload threshold
of Wv̄.

2) CORE-QoS
The hybrid architecture leaves the selection of the most
suitable access device for access-QoS provisioning to the
client. SDN controllers perform path selection for core-QoS
provisioning in core networks. This is because the clients
are unaware of the network resources available in the core
network, which the controllers know. That is why clients have
to rely on controllers to do the core-QoS provisioning job.

We assume a core network with e network quality param-
eters. These network parameters could be classified into four
different categories, as listed in Table 3. Let us define a
Path Cost matrix D containing specific values of network
parameters that should be considered for path cost calculation
(Table 3, Category No. 2 & 3): D = [d1 d2 . . . de], where
di is the value of the i-th network parameter used for path
cost calculation. However, based on the requirement and kind
of application running at each client, every client may not
request for each network parameter (Table 3, Category No.
1 & 4) to be considered for cost calculation, setting di = 0
for the i-th such network parameter.
Next, we define QoS matrix Q, which contains the QoS

thresholds for network parameters for whichQoS is requested
by the client (Table 3, Category No. 1 & 3): Q = [q1 q2
. . . qe], where qi is the threshold of the i-th network parameter,
which must be satisfied by a specific network path. For
unconstrained network parameters (Table 3, Category No. 2
& 4), corresponding values in matrix Q should be set to∞.

Next we define two selection variables; path cost selec-
tion variable xi and QoS selection variable yi, where xi ∈
{−1, 0, 1} and yi ∈ {0, 1}. The value of xi identifies if
a particular network parameter is considered for path cost
calculation (value of -1 or 1) or not (value of 0). For network
parameters where a higher value is desired like bandwidth
or SINR, xi equals 1, whereas, for parameters where a lower
value is desired, like delay and jitter, xi equals -1. For the
second selection variable yi, the value is 0 if the i-th network

TABLE 3. Classification of Core-QoS network parameters.

parameter has a lower desired value and 1 if the i-th network
parameter has a higher desired value.

If there are f paths from a particular source to destination,
contained in a set P , then each of these f paths will have a
particular value for each of e network parameters. The matrix
A of actual values of network parameters is then defined as:

A =


a11 a12 . . . a1e
a21 a22 . . . a2e
...

...
...

...

af 1 af 2 . . . afe

 (12)

Here, a11 might be the bandwidth, a12 might be the delay,
and a1emight be the packet loss rate across the first path. Sim-
ilarly, af 1, af 2, and afe would represent the actual bandwidth,
delay, and packet loss rate respectively across the f -th path.

For core-QoS provisioning, a controller tries to find a path
p ∈ P from a source to the destination. If C(p) is the path
cost along a path p, the minimum path cost can then be
calculated as:

{min(C(p)) | 1 ≤ p ≤ f } (13)

where:

C(p) =
e∑
i=1

xi
di − api
api

api 6= 0 (14)

subject to:

C6 :

{
∀iapi ≤ qi if yi = 0
∀iapi > qi if yi = 1

(15)

Here C6 is the QoS provisioning constraint for the core net-
work. C6 could be a single constraint or multiple constraints
depending on the number of network constraints defined
(Table 3, Category No. 1& 3). This constraint makes sure that
the actual value of every network parameter along the selected
path must be greater than or equal to the required QoS value
for parameters with a higher desired value or lower than the
QoS value for the parameters with lower desired values.

Example: Consider a network with four parameters;
bandwidth, jitter, delay, and packet loss ratio. A particular
client requests a path with cost consideration of bandwidth
as 1Mbps and delay as 200 msec. The path cost matrix would
then be: D = [1 0 200 0]. For this particular client, the path
cost selection variables would be x1 = 1, x2 = 0, x3 = −1,
and x4 = 0.

The client also requests for QoS provisioning of delay and
packet loss ratio at 300 msec and 0.01, respectively. The
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TABLE 4. Core-QoS system model abbreviations with descriptions.

resultant QoS matrix would be: Q: = [∞∞ 300 0.01]. The
interesting thing is that the client has considered the delay in
bothQoS request and path cost calculation. However, theQoS
requirement is 300 msec, and the contribution of delay in the
path cost calculation is 200 msec. This means that the path
will still be considered if the delay is less than 300 msec for a
particular path. However, if the delay is greater than 300msec
for a path, then the path will not be considered as it is
violating the core-QoS constraint C6, mentioned in equation
(15). In this scenario, the QoS selection variables would have
values of y1 = 1, y2 = 0, y3 = 0, and y4 = 0.

C. PROPOSED ALGORITHMS
This sub-section presents algorithms for the proposed
access-QoS and core-QoS provisioning problem formula-
tions. The access-QoS algorithm makes use of the same
abbreviations as defined for access-QoS problem formulation
in Table 2. Similarly, the core-QoS algorithm uses the same
abbreviations as defined for core-QoS problem formulation
in Table 4. However, a few new variables are used in these
algorithms, which are defined as used.

Algorithm 1 is a rate-maximization algorithm and selects
an access-device in the access-network based on a sin-
gle parameter. On the other hand, Algorithm 2 is a
cost-minimization algorithm that calculates the minimum
cost path in the core-network based on multiple QoS param-
eters, as per the client’s requirements. Both algorithms could
have very different QoS parameters because of the different
nature of the network segments and the different devices
running these algorithms. Several utility maximization algo-
rithms similar to Algorithm 1 are proposed in the literature.
However, a novel algorithm using core network parameters
simultaneously for path cost calculation and QoS constraints
is proposed in Algorithm 2.

1) ACCESS-QoS
The access-QoS provisioning algorithm for a specific node
n is considered in Algorithm 1. The algorithm takes various
radio and device-specific parameters as input. All possible
binary combinations for xnv are calculated in line 3 and
assigned to X . Line 4 and line 5 initializes an empty set to
the list of access devices AD and assigns a null value to rate
calculation variable R, respectively.

Algorithm 1 Access-QoS Algorithm
1: Input: n, β, SINR, Sn,Ln,Mn,Rv,wnv
2: Initialize Mn
3: X ← all possible binary combinations for xnv
4: AD← {}
5: R← 0
6: for i in X do
7: R′← 0
8: AD′← {}
9: for v in V do
10: xnv ← iv
11: lnv ← (wnv/Rv)
12: Initialize βnv , SINR

n
v , Sn and Ln

13: if xnv = 1 AND SINRnv ≥ Sn AND lnv ≤ Ln then
14: rnv ← βnv log2(1+ SINR

n
v)

15: R′← R′ + (xnv · r
n
v )

16: AD′← AD′ || v
17: end if
18: end for
19: if R′ > R then
20: AD← AD′

21: R← R′

22: end if
23: end for

The access-QoS algorithm consists of two nested for-
loops. The inner for-loop from lines 9 to 18 uses a single
possible combination of xnv in each iteration and calculates
the rate available R′, as well as the set of access devices AD′,
to which the node nwill connect for such a combination of xnv .
The outer for-loop runs from lines 6 to 23 and iterates over all
possible combinations of xnv . Each value of xnv is input to the
inner for-loop. If the inner for-loop computes a new higher
rate, the outer for-loop updates the rate R, as well as the set
of access devices AD, from which such a rate is achieved.

2) CORE-QoS
The Core-QoS algorithm is listed as Algorithm 2. This algo-
rithm takes three matrices D, Q, and A as input. A variable
SP to store the shortest-cost path’s path number is initialized
to zero in line 2. The core-QoS algorithm also makes use
of two nested for-loops. The inner for-loop from lines 5 to
14 computes the path cost C ′ by iterating over each network
quality parameter. If a specific path does not satisfy the QoS
constraint(s), C ′ is considered∞ for such a path. The outer
for-loop from lines 3 to 19 iterates over each path from a
source to a destination. If the inner for-loop discovers a new
shortest path-cost, it is updated in the least-cost variable C ,
and the path number is stored in SP.

D. COMPLEXITY OF ALGORITHMS
In this sub-section, we evaluate the complexity of both
access-QoS and core-QoS provisioning algorithms. Com-
plexity is measured by counting the number of flops, where
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Algorithm 2 Core-QoS Algorithm
1: Input: D, Q and A
2: SP← 0
3: for p← 1 to f do
4: C ←∞
5: for i← 1 to e do
6: C ′← 0
7: Initialize xi, yi, di, qi and api
8: if (yi = 0 AND api ≤ qi) OR (yi = 1 AND api > qi)

then
9: C ′← C ′ + xi((di − api)/api)
10: else
11: C ′←∞
12: break
13: end if
14: end for
15: if C ′ < C then
16: C ← C ′

17: SP← p
18: end if
19: end for

each flop is considered as a real floating-point operation.
We consider the following rules for calculating flops [38]:

• One flop for each real addition, subtraction, multiplica-
tion, or division operation

• One flop for each assignment operation
• One flop for each logical operation
• One flop for each addition or removal of an element from
a set

1) ACCESS-QoS
Algorithm 1 for access-QoS provisioning algorithm takes
various radio, and device-specific parameters as input in line
1. Mn is assigned a value from the input in line 2, which will
take one flop. All possible binary combinations for xnv are
calculated in line 3 and assigned to X . This will take |V|2
flops for computation of combinations, and |V|2 flops for
assignment to X. However, possible combinations of interest
for xnv are only those in which at least one xnv equals 1, and
also xnv ≤ Mn. If Z be the number of reduced combinations of

interest, then Z can be defined as Z =
Mn∑
k=1
|V|!/(k!(|V|−k)!).

Therefore, the flops required by line 3 are reduced from 2|V|2
to 2Z . Lines 4 and 5 use one flop each to initialize an empty
set AD and assign a null value to variable R, respectively.

The inner for-loop from lines 9 to 18 uses three flops in
line 9 to assign value to v, incrementing its value, and perform
a logical operation to check if v is still in V . Line 10 uses
one flop for assigning value to xnv , line 11 uses two flops
for division operation and value assignment to lnv , whereas
four flops for initializing input to the corresponding vari-
ables are used in line 12. Line 13 uses five flops to perform
five logical operations. Five flops are used in line 14 for

performing four arithmetic operations and one assignment
operation to calculate the value of lnv . Similarly, three flops are
used by line 15 to perform two arithmetic operations and then
assigning the computed value to R′. Line 16 adds an element
to the set AD′, using one flop. The inner-for loop in total uses
24 flops. As the inner for-loop is repeated |V| times, the flops
used by the inner for-loop would be 24|V|.

The outer for-loop from lines 6 to 23 also uses three flops
in line 6 for assigning value to i, incrementing the value of i,
and to check if i is still in the vector X . Lines 7 and 8 use
one flop each to assign a null value to R′, and an empty set to
AD′ respectively. Line 19 uses one flop to perform a logical
comparison betweenR′ andR. If true, line 20 copies this set of
access devices AD′ to AD. In the worst case, the length of AD′

would be |V|. For updating AD, we might need to pop at most
|V| elements from AD. Therefore, we consider line 20 takes
2|V| flops. The new higher rate R′ is assigned to R in Line 21,
utilizing one flop. In total, one iteration of the outer for-loop
would take 7+26|V| flops. As the outer-loop iterates Z times,
the total number of flops required would then be (7+26|V|)Z .
Adding the number of flops used by lines 2 to 5, the overall
flop count of Algorithm 1 FA1 can be given as:

FA1 = 3+ (9+ 26|V|)Z (16)

FA1 ≈ (9+ 26|V|)Z (17)

As we have two nested loops from 1 to Z , and from 1 to
|V| respectively, the algorithmic complexity in Big O notation
will be quadratic i.e. O(Z × |V|).

2) CORE-QoS
The core-QoS algorithm is listed as Algorithm 2, which
consists of two nested for-loops. A variable SP to store the
shortest-cost path’s path number is initialized to zero in line 2,
using one flop. The inner for-loop from line 5 to line 14 uses
three flops in line 5, one each for assigning value to i, updating
the value of i, and logical operation to check if the value
of i is still less than or equal to e. Line 6 uses one flop for
assigning null value to C ′, whereas, line 7 uses five flops for
initializing five different variables i.e. xi, yi, di, qi, and api.
Line 8 performs seven logical operations, thus using seven
flops. Line 9 uses five flops for performing four arithmetic
operations and one assignment operation to evaluate the value
of C ′. The body in else-condition uses two flops, one for
line 11 to assign infinite value to C ′, and one for line 12 to
break the inner for-loop. As, if-condition requires five flops,
and else-condition requires two flops, the worst-case scenario
of five flops is considered for complexity calculation. In total,
the inner for-loop from lines 5 to 14 uses twenty-one flops for
each iteration. Thus, the inner for-loop will use 21e flops in
total.

In the outer for-loop, line 3 uses three flops for assignment
of value to p, incrementing the value of p, and logical opera-
tion to check if the value of p is still less than or equal to f .
In line 4, one flop is used to initialize C . For the if-condition
from lines 15 to 17, one flop is used per line. If a newer
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shortest-cost path is discovered, the path’s cost is updated
fromC ′ toC , and the path number is stored in SP. In total, the
outer for-loop will use 7+21e flops for each iteration. As the
outer for-loop repeats f times, the number of flops required
would then be (7+21e)f . Adding one additional flop required
by line 2, the overall flop count of Algorithm 2 FA2 can thus
be given as:

FA2 = 1+ (7+ 21e)f (18)

FA2 ≈ (7+ 21e)f (19)

As we have two nested loops from 1 to e, and from 1 to
f respectively, the algorithmic complexity in Big O notation
will be quadratic i.e. O(e× f ).

E. OPTIMALITY OF ALGORITHMS
Problem formulation or specifically mathematical model of a
given problem determines the convexity of the optimization
problem. Convex optimization problems offer some impor-
tant and useful properties. Local minima of the convex opti-
mization problems serve as global minima of the problem
guaranteeing the achievable optimal point. However, to deter-
mine the convexity, second-order partial derivatives of the
objective function are required. If the Hessian matrix, based
on these second-order partial derivatives, comes out to be
positive definite, then the problem is classified as convex.
Mix integer convex problems are considered a subset of linear
problems in which constrained variables can take integer or
non-integer values. Unlike integer convex problems where
the solution must be limited to the integer values, a mixed-
integer solution has a bigger search space. Both access-QoS
and core-QoS optimization problems are classified as linear,
mix integer convex optimization problems with a bounded
optimal solution.

A separate or distributed optimization problem is defined
for access-QoS. Each IoT node separately runs the opti-
mization algorithm to maximize its objective function.
As each node tries to optimize the access device selec-
tion based on the local view available to the node, the
solution achieved might not be the most optimal solution
from the network’s point of view. The core-QoS optimiza-
tion is classified as a multi-constrained optimal shortest-path
selection problem. Subject to constraints in equation (15),
the optimization problem will achieve an optimal solution
by finding a minimal-cost path between a source and a
destination.

IV. EXPERIMENTATION SETUP
Evaluation of our proposed approach requires an experimen-
tal setup for both access-QoS and core-QoS provisioning.

A. ACCESS-QoS
For the access-QoS provisioning experimentation, an indoor
network scenario with two WiFi APs is considered. The
experimentation is first performed using a network emulation
setup and then using a hardware experimentation setup.

1) NETWORK EMULATION
For network emulation based setup, an indoor network sce-
nario is considered with twoWiFi APs, as shown in Figure 2a.
The total field size considered for experimentation is 140 ×
100 meters, whereas, the range of both APs in each direction
is 50 meters. The first AP ap1 is located at position (50,50),
whereas, the second AP ap2 is situated at position (90,50).
Since the nodes should have access to at least two APs to
switch opportunistically between them, the area of interest
is the overlapping coverage area of both APs, shown with
dark purple color in Figure 2a. Therefore, network topologies
where nodes are only placed in such an overlapping region are
considered in the experimentation setup. One such topology
with a network size of 20 nodes is shown in Figure 2b.

For experimentation, network sizes where 10, 20,
and 40 nodes are located in the overlapping region are
considered. The nodes are randomly placed in the overlap-
ping region in each instance of the experimentation. The
Log-distance path loss model, being simple and widely used
in modeling WiFi networks [39], is used as a propagation
model. Both APs used are 802.11g based and operate in
separate channels, with channel 1 used for AP ap1, and
channel 6 used for AP ap2.

For emulating such an access network, we used
Mininet-WiFi [40] network emulator, a fork from earlier
released Mininet [41]. Mininet-WiFi allows Python-based
code execution without any modification in either kernel or
applications and supports the Linux mac80211 framework,
allowing testing most of the IEEE 802.11 functionalities.

2) HARDWARE EXPERIMENTATION
For hardware experimentation setup, two WiFi APs setup
similar to the network emulation setup is considered.
As shown in Figure 3, aWiFi AP is placed each in Room1 and
Room 2 of an office building, with a separation between them
of 6 meters along the x-axis and 20 meters along the y-axis.
Both APs are connected to the intranet over a Fast Ethernet
connection. The end-devices can be placed in the building
corridor labeled as node placement area in Figure 3, and is
shown with a blue background. This blue background area
falls in the coverage area of both WiFi APs.

Two Raspberry Pi 4 are used as WiFi APs, using IEEE
802.11ac wireless network interface card, with an operating
frequency of 2.4 GHz. Three different end-devices are used,
including Galaxy Samsung S10, Google Pixel C Tablet, and
Motorola Nexus 6. All the devices use LineageOS custom
ROM as an operating system, a customized Android version.
An android application is also installed in all the devices,
which automatically and opportunistically switches between
multiple WiFi APs.

For experimentation, all three devices are placed in the
overlapping coverage area of both APs. Each device is placed
at multiple positions in the node placement area. On the
x-axis, the devices’ position is fixed with a distance
of 3 meters from both APs. Whereas, on the y-axis, all
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FIGURE 2. Network emulation based 140 × 100 meters topology for Access-QoS.

FIGURE 3. Hardware experimentation network architecture for
Access-QoS.

devices’ position is varied from 1 to 20meters from both APs,
with a step-size of 1 meter.

B. CORE-QoS
We have created a testbed for core-QoS evaluation that con-
forms with our architecture presented in Figure 1. We have
considered the example topology shown in Figure 4 for a sim-
plified network with multiple paths to examine acceptance or
rejection of QoS constraints required by the emulated testbed.
Discussion related to the Autonomous Systems (ASes) struc-
ture of the core network is beyond this paper’s scope. How-
ever, we assume that the core consists of switches from
various Internet eXchange Points (IXPs), inter-connected
through transit providers.

A central controller is connected to all access layer devices
(S1, S4) and core layer devices (S2, S3, S5.S6) and maintains
a global view as proposed in [42]. Here we have assumed
that as an outcome of access-QoS provisioning, clients H1

FIGURE 4. Network topology for evaluating core-QoS provisioning.

and H2 have decided to connect to access devices S1 and S4,
respectively. For the sake of simplicity, only two clients are
shown here. Experimental results are obtained for networks
with a larger number of clients.

In this emulation, three network parameters are considered;
throughput, delay, and jitter. Three paths with these network
parameters can be observed through this topology. Path P1
forms by connecting {S1, S2, S3, S4}. Formation of second
path P2 includes {S1, S5, S4}. Whereas, third and the last
path P3 is established using connecting edges {S1, S6, S4}
of the network. For evaluation, we have setup path P2 with
bandwidth twice the path P3, whereas, path P1 has exactly
twice the bandwidth of path P2. Concerning delay and jitter,
P3 has lower values than P2, which has lower values than P1.
Values of delay over paths P1, P2, and P3 are 80, 40, and 30
milliseconds respectively. Jitter over paths P1, P2, and P3 are
12, 6, and 4milliseconds respectively, as depicted in Figure 4.

We have chosen values of network parameters in this
manner to evaluate our proposed approach for two different
QoS provisioning problems using the same network topol-
ogy. For the first QoS problem, we have considered band-
width as a constraint only. Therefore, we have considered
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different bandwidths for each path. The first path P1 has
bandwidth twice of P2, and path P2 has twice the bandwidth
of path P3. In the second QoS problem, we have considered
a multi-constrained problem considering throughput, delay,
and jitter constraints. In order to evaluate the performance of
our proposed technique in scenarios where paths other than
path P1 are dynamically preferred, we assigned smaller delay
and jitter values to path P2 and path P3, than path P1. The
assignment is in reverse order where path P3 has the smallest
values for delay and jitter, whereas path P2 has a lower delay
and jitter values than path P1. Although transmission delay
is inversely proportional to the link bandwidth, and path P1
would have the smallest transmission delay. However, we can
assume that the path P1 has a longer length, resulting in
higher propagation delay and a higher overall delay. Simi-
larly, path P2 has smaller length than path P1, but is longer
than path P3. Similar network topologies and link parameters
have been used in [9], [11], and [13].

We have emulated this experimental testbed over the
Mininet emulation environment [41]. Mininet not only helps
to build a virtual space consisting of network nodes and hosts
by utilizing Linux kernel API, but also leverages to set various
QoS parameters over the emulated network. Virtual hosts and
nodes are connected together to emulate this core network.
Among available options, we have selected Python-based
SDN controller Ryu with proper documentation available and
has been developed by observing operating system design
principles [43]. Modular architecture, scalability provisions,
and agile development style make Ryu a favorable choice
for WAN deployments. One of its prominent deployment in
the core network is the transformation of Toulouse IXP into
Software Define Internet eXchange (SDX) using the Ryu
controller framework [44].

V. RESULTS
In this section, we explain the results obtained for both
access-QoS and core-QoS experimentation, using the setup
described in section IV.

A. ACCESS-QoS
Results from the network emulation-based setup are first
discussed, followed by hardware experimentation results.

1) NETWORK EMULATION
For the experimental evaluation of network emulation based
setup, we have compared our Proposed Methodology (PM)
with conventionally used Received Signal Strength Indi-
cator (RSSI) based AP selection approach in today’s end
devices (referred here as C-RSSI). The PM distributively runs
on each node and tries to maximize the rate as per our pro-
posed Algorithm 1 in Section III. In PM, each node scans for
available RSSI after a specific time interval from both APs.
As soon as the RSSI for the non-connected AP is detected
to be greater than the connected AP, the node automatically
handovers to the non-connected AP. Whereas in C-RSSI,
a node initially selects anAP based on themaximum available

RSSI, but does not continuously scan for other available APs
after connection. In C-RSSI, a node does not handover to
a non-connected AP (even providing a higher RSSI signal),
until disconnected from the connected AP.

Such a C-RSSI approach is energy efficient, but is not suit-
able in situations where users are mobile. The user could still
be connected to a lower RSSI providing AP, while a stronger
RSSI signal is available from another AP due to mobility.
Such situations result in degraded user throughput where the
user enters the coverage area of one AP and gets connected
to it and then moves to a place where coverage of the first
AP is still available, but a stronger signal is available from a
secondAP. For example, a user connects to aWiFi AP located
at the entrance upon entering a building. Later, the user moves
to his office, where he stays most of the time. A second
AP near his office has stronger signal strength, but a weak
signal from the first AP is still available. In such a situation,
the user would remain connected to the first AP with lower
signal strength in C-RSSI, whereas, PM would handover the
user to the second AP with better RSSI. Similarly, passengers
entering an airplane from the front would connect to the AP at
the front, but might have a better signal strength from another
AP at their seats, while still in the front AP’s coverage area.
In such a situation, C-RSSI would keep the user connected to
the AP at the front, whereas, PM would shift the user to the
AP near his seat.

We compared PM with C-RSSI for our experimenta-
tion topology shown in Figure 2 for a network of 10, 20,
and 40 nodes. The results presented are similar for different
network sizes, as the RSSI is independent of the network
size. The results shown in Figure 5 are for a network size
of 20 nodes. Each experiment is repeated ten times, with the
average plotted as a data-point and the standard deviation as
an error-bar.We define the percentage of nodes with incorrect
initial AP assignment as the number of nodes out of the
total number of nodes that receive a better RSSI from a
non-connected AP than the connected AP. We compare the
performance of PM and C-RSSI by varying this percentage
of incorrectly assigned nodes.

It can be seen from Figure 5 that as the percentage of incor-
rectly assigned nodes increase, the average RSSI per node in
C-RSSI decreases as well. This behavior is expected because
asmore nodes incorrectly connect to an APwith a lower RSSI
signal, the average RSSI per node would decrease. However,
as each node individually switches to the AP with the highest
RSSI signal in the PM, the average RSSI per node remains
almost constant. The C-RSSI curve can be approximated
as a linearly decreasing line, whereas, a constant line can
approximate the PM curve.

Next, we compute the channel capacity using the
Shannon-Hartley theorem for the same network size
of 20 nodes. As both APs use different channels, we consider
no interference between the APs. We also assume no inter-
ference between the nodes, and the nodes are, on average,
equally distributed among both WiFi APs. The available
WiFi bandwidth for each channel is 20 MHz, whereas,
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FIGURE 5. Observed average RSSI per node with increasing percentage of
nodes assigned initially to incorrect AP.

FIGURE 6. Achievable average data rate per node with increasing
percentage of nodes assigned initially to incorrect AP.

Power Spectral Density (PSD) of noise considered
is -174 dBm/Hz [45]. This approximately corresponds to a
noise floor of -100 dBm.

A curve similar to Figure 5 can be seen for the average
data rate achieved per node in Figure 6. With the same
noise floor’s assumption and no interference at all nodes,
the RSSI maps without any variation to the data rate using
the Shannon-Hartley theorem. With different noise floors
and interference levels at each node, the curve might not
be the same but would still show a similar trend. It can be
seen from Figure 6 that a consistent average data rate of
around 24 Mbps per node can be achieved by PM. Whereas
for C-RSSI, as the percentage of incorrectly assigned nodes
increases to 70%, the data rate reduces from around 24 Mbps
to 16 Mbps.

2) HARDWARE EXPERIMENTATION
Like network emulation setup, the PM is compared with
C-RSSI in hardware experimentation setup as well. PM is
implemented in hardware experimentation setup by running a
custom Android application on each end-device, maximizing
the rate as per our proposed Algorithm 1 in Section III. The

FIGURE 7. Observed average RSSI per node with increasing Euclidean
distance.

Android application runs a script that scans for available RSSI
from bothWiFi APs every ten seconds and switches to the AP
providing higher RSSI. In C-RSSI, the same end-devices are
used, but without our custom Android application.

Before comparing PMandC-RSSI, the RSSI received from
both APs at different positions is evaluated. The devices are
placed in the node placement area shown in Figure 3, with an
x-axis distance of 3 meters from both APs, whereas the y-axis
distance from each AP is varied from 1 meter to 20 meters,
in a step-size of 1 meter. As shown in Figure 7, the Euclidean
distance from AP is compared with the received RSSI values
at Galaxy Samsung S10 (Device1), Google Pixel C Tablet
(Device2), and Motorola Nexus 6 (Device3). Each data point
shown is the average RSSI received from the first AP and the
second AP at a specific device. Whereas the black-line shows
the averaged values of all the three devices. As the Euclidean
distance from the AP increases, the average RSSI per node
decreases.

The next analysis in Figure 8 shows the C-RSSI tech-
nique’s expected behavior, where a node keeps connected to
the same AP, even with increasing Euclidean distance. The
blue curve shows that the average RSSI per node decreases
with increasing Euclidean distances when the nodes are con-
nected with AP1. The black curve shows a similar behavior
when the nodes are connected with AP2. Each data point is
the average of three devices placed at the same Euclidean
distance from each AP.

Next, the PM is compared with C-RSSI. We considered
a 20 nodes setup for evaluation, similar to the number of
nodes in the network emulation setup. A node is placed at
each of the measured Euclidean distance points shown in
Figure 8. A certain percentage of nodes are randomly selected
and are initially assigned to the incorrect AP. This percentage
is varied from 10% to 70%. For comparison between PM and
C-RSSI, the increasing percentage of incorrectly assigned
nodes is compared with the average RSSI per node. Each
experiment is performed 20 times, with themean representing
the data point, and the standard deviation is shown as the error
bar.
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FIGURE 8. Observed average RSSI per node with increasing Euclidean
distance from the connected AP.

As shown in Figure 9, as the percentage of incorrectly
assigned nodes increase, more nodes incorrectly connect to
an AP with a lower RSSI signal in C-RSSI, resulting in a
lower average RSSI per node. Whereas in PM, even if the
nodes are initially connected to an AP offering a lower RSSI
signal, the node is automatically switched to the AP offering a
better RSSI signal in the next scan of APs running inside the
Android application. This results in the same average RSSI
per node for PM, even with an increasing percentage of incor-
rectly assigned nodes. The behavior observed in the hardware
experimentation setup is similar to the network emulation
setup. In hardware experimentation setup, the average RSSI
per node decreased from -55.9 dBm to -66.6 dBm (16.1%
decrease), when the percentage of incorrectly assigned nodes
increased from 0% to 70%. In comparison, the average RSSI
per node decreased in network emulation setup from -64.1
dBm to -76.5 dBm (16.2% decrease). The almost similar
percentage of decrease in average RSSI per node in network
emulation and hardware experimentation results validates our
network emulation setup.

The same method explained in network emulation results
to map RSSI to data rate is used for hardware experimentation
results. The estimated average data rate per node against an
increasing percentage of nodes with an incorrect initial AP
assignment is shown in Figure 10. As expected, with the
increase in the percentage of incorrectly assigned nodes, the
average data rate per node decreases. With the increase of the
percentage of incorrectly assigned nodes from 0% to 70%,
the average data rate per node decreases from 29.95 Mbps to
22.87 Mbps (23.64% decrease).

B. CORE-QoS
Before explaining the results, it is essential to describe
the process of experiment and results collection methodol-
ogy for core-QoS provisioning. We have passed flows of
fixed packet length across the emulated network to evalu-
ate QoS provisioning of the throughput network parameter.

FIGURE 9. Observed average RSSI per node with increasing percentage of
nodes assigned initially to incorrect AP.

FIGURE 10. Achievable average data rate per node with increasing
percentage of nodes assigned initially to incorrect AP.

Each traffic flow demands a fixed amount of bandwidth
(1 Mbps), whereas, each sender node installs only one flow.
If we formulate this setup according to the proposed system
model in Section III, assuming the whole network requests
for only one QoS parameter i.e. throughput in units Mbps, the
QoS matrix Q will contain only one value i.e. Q = [1]. The
path cost matrix for the throughput parameter could have any
value ≥ 1 Mbps. The higher the value is, the lesser would
be its impact on cost minimization. Here, we assume this
value to be also 1 Mbps, resulting in the matrix D = [1].
As throughput is a parameter with higher desired values, the
selection variables would be x1 = 1 and y1 = 1. From the
topology shown in Figure 4, the actual values matrixAwould
be:

A =

16
4
2

 (20)

We collect transmitted packets at the receiver end and
compare the achieved throughput with the demand. For all
flows where the constraint C6 in equation (15) is satisfied as
per QoS matrix Q, we mark the case as QoS satisfied. As we
increase the number of nodes, the total bandwidth demand

VOLUME 8, 2020 192333



M. Asad et al.: B5G: Hybrid End-to-End QoS Provisioning in Heterogeneous IoT Networks

FIGURE 11. Achieved average throughput per node against number of nodes with various path selection strategies considering only throughput path cost
factor.

FIGURE 12. Percent of QoS satisfied flows against number of nodes with various path selection strategies considering only throughput path cost factor.

of all flows increases proportionally. In case the achieved
throughput for a flow is less than the requirement in QoS
matrix Q, the constraint C6 in equation (15) is not satisfied,
and we mark the case as unsatisfied QoS. In situations where
QoS is unsatisfied, the traffic will still be forwarded but over
the path with the least cost.

We compared our proposed strategy, named here as Flow
Calculation, with three other routing strategies. The Flow
Calculation strategy works according to Algorithm 2 and
maintains a history of the previously admitted flows. For
example, if we have already admitted a flow of 1 Mbps on
a path with throughput 4 Mbps, the corresponding value in
matrix A would be updated to 3 Mbps for admitting future
flows. We have compared our flow calculation strategy with
three other conventionally used simple routing strategies in
communication networks; Maximum bandwidth (MaxBand-
width), Round Robin, and Minimum Delay (MinDelay).
MaxBandwidth routing strategy at the SDN controller selects
the path with maximum bandwidth. Round Robin shifts the
incoming traffic to available paths in a circular fashion.
On arrival of first flow, it chooses the path P1, whereas, for
second flow, it selects the next path P2 without keeping in
view the capacities of paths. In theMinDelay routing strategy,
the SDN controller always selects the path with the minimum
delay.

Results in Figure 11 show the average throughput achieved
per node as the number of communicating node pairs

increase, where each sender node transmits a single flow
of exactly 1 Mbps. The results are shown with no back-
ground traffic in Figure 11a. The MinDelay has achieved the
least throughput because all nodes select the same path P3,
which has a minimum delay of 30 msec and has a minimum
bandwidth of 2 Mbps. As soon as the number of concur-
rently transmitting nodes increases beyond two, the network
would become congested, and the throughput at each node
would decrease. The MaxBandwith could accommodate up
to 16 nodes in parallel without any congestion, as it always
selects the path with the maximum bandwidth, which is P1
in this case with a bandwidth of 16 Mbps. The Round Robin
technique would circularly select all three paths one-by-one.
The paths with lower bandwidths would become congested
sooner, but the Round Robin technique will still keep circu-
larly installing flows, even if the path is already congested.
This technique might install one flow on a non-congested
path and the next on a congested path. Our Flow Calculation
technique outperforms all other techniques because it always
tries to find the network path to satisfy our constraint of
throughput ≥ 1 Mbps. It will install the first 12 flows on
path P1, next 4 flows in round robin fashion between paths P1
and P2, and then the next 6 flows again in round robin fashion
between paths P1, P2, and P3. From here onwards, none of
the paths satisfy the throughput QoS constraint, and the path
costs of all the paths are also the same. Flow Calculation
uses the same path P1 for transmitting any further flows.
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FIGURE 13. Achieved average throughput per node against number of nodes with various path selection strategies considering throughput, delay and
jitter path cost factors.

FIGURE 14. Percent of QoS satisfied flows against number of nodes with various path selection strategies considering throughput, delay and jitter path
cost factors.

Congestion can start to occur when 23 nodes start to transmit
concurrently. For all four techniques, the congestion occurs
almost at the points discussed above and can be seen in
Figure 11a. This can be verified by looking at the average
per-client throughput falling below the required throughput
of 1 Mbps per client. In Figure 11b, and Figure 11c, the same
results are obtained but with background traffic, which is 10%
and 25%of path capacity respectively.We can observe similar
trends except for the shift of congestion points to the left for
all four techniques in both these results.

Results for the percentage of QoS satisfied with all tech-
niques against the increasing number of communicating
nodes are shown in Figure 12. As shown in Figure 12a, the
results show a pattern similar to that of throughput without
any background traffic. As the congestion occurs most in
MinDelay andMaxBandwidth, they also have less percentage
of flows with QoS satisfied. Due to alternating path selection,
Round Robin performs better than these two techniques.
Whereas, our proposed Flow Calculation techniques outper-
forms all others, with the highest percentage of QoS satisfied
flows. With background traffic, similar trends can be seen
in Figure 12b, and Figure 12c. However, as the background
traffic also consumes the path capacity, the percentage of
flows with QoS satisfied decreases for all four techniques.
It can be seen that with 10% background traffic and more
than 40 nodes, and with 25% background traffic and more
than 35 nodes, the percentage of QoS satisfied flows is more

for Round Robin than the Flow Calculation technique. With
the increase in background traffic and the number of nodes
beyond a certain point, the network congestion leaves no
room for further QoS provisioning, and the percentage of
QoS satisfied curves start to converge for all the techniques.
Therefore, this trend should not be seen as if Round Robin
starts to outperform Flow Calculation at a certain point.

Another set of results is obtained where we consider net-
work parameters of throughput (in Mbps), delay (in msec),
and jitter (in msec). The required throughput by each flow
is 1 Mbps. Whereas, there are no constraints on delay and
jitter, resulting in a QoS matrixQ= [1∞∞]. For simplicity,
we have used the same value of throughput for path cost
matrix D. However, for path cost calculation, we consid-
ered additional parameters of delay and jitter with values
of 40 msec and 6 msec respectively. The resultant path cost
calculation matrix would be D = [1 40 6]. The values of
selection variables would be x1 = 1, x2 = −1, x3 = −1,
y1 = 1, y2 = 0 and y3 = 0. The actual values matrix A from
Figure 4 for this multiple path cost parameters scenario would
then be:

A =

16 80 12
4 40 6
2 30 4

 (21)

The other techniques will still perform in a similar man-
ner. MinDelay will always choose path P3, MaxBandwidth
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FIGURE 15. Computational time for various strategies.

will always choose path P1, and Round Robin will alternate
between all the three paths. However, the proposed Flow
Calculation technique’s path cost selection would be a little
complex than the previous experiment. The QoS constraint is
the same throughput requirement of 1 Mbps. However, path
cost calculation is now based on three different parameters
i.e. throughput, delay, and jitter. In this case, our optimization
problem will find the shortest cost path, which satisfies our
throughput constraint as per equations (13), (14), and (15).
During experimentation, unlike the first experiment, it has
been found that at times paths that have lower path cost but
not the maximum available bandwidth have been chosen.
However, this does not significantly impact the throughput
achieved, as shown in Figure 13. This is because of the
fact that although other paths with lower path costs are cho-
sen, they still fulfill the throughput constraint. Like the first
experiment, when none of the three paths could satisfy the
QoS constraint, the lowest-cost path is chosen.When the path
cost also becomes the same for all the three paths, path P1 is
used. We achieved almost similar bandwidth for all four tech-
niques as in the first experiment, with no background traffic
(Figure 13a), with 10% background traffic (Figure 13b) and
with 25% background traffic (Figure 13c).

As almost similar throughput is achieved for the second
experiment compared with the first experiment, the per-
centage of flows for which QoS satisfied is also similar,
as shown in Figure 14. We can conclude that our pro-
posed approach, even though considering multiple factors
in path cost calculation, provided similar QoS guarantees
without background traffic (Figure 14a), with 10% back-
ground traffic (Figure 14b) and with 25% background traffic
(Figure 14c).

These experiments help realize that the proposed Flow
Calculation technique predicts a more appropriate path selec-
tion strategy over the futuristic network core while provid-
ing better QoS provisioning. We have also calculated the
computational time for all four techniques, as shown in
Figure 15. The results are obtained using the tic-toc
method on a machine with specifications: Intel(R) Core(TM)

i5-2430M processor, dual-core CPU 2.4 GHz, and
RAM 6 GB. Load balancing over available paths using
a Round Robin technique takes more computational time
than the rest of the methods, including the proposed Flow
Calculation strategy. From these results, we can deduce that
although the proposed Flow Calculation technique does not
have the lowest computational time, it outperforms in path
selection while considering QoS parameters of throughput,
delay, and jitter.

VI. CONCLUSION
Beyond 5G networks face challenges of increased traffic and
number of IoT nodes, with delays expected not to increase
a certain threshold. To address these challenges, a hybrid
QoS provisioning approach is proposed to ensure a certain
service level. We have discussed the effectiveness of our
proposed completely hybrid end-to-end QoS provisioning
technique, involving both clients and SDN controllers. Due
to the hybrid nature of our technique, clients can specify
access specific QoS parameters. They can also make better
decisions to select between access devices due to the local
view available to them. This reduces the client’s dependency
on the controller for access device selection, thus reducing the
signaling between both. The reduced signaling also improves
network scalability. In the case of access-network, we have
shown with the help of Mininet-WiFi emulator as well
as with hardware-based experimentation, that our proposed
methodology outperforms the conventionally used AP selec-
tion approach. For the core-network, Mininet based exper-
imentation results have shown that our proposed approach
outperforms several conventionally used routing techniques
while considering complex scenarios with multiple network
parameters for path cost calculation and constraints.
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