
Received September 26, 2020, accepted October 18, 2020, date of publication October 21, 2020, date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032851

Combinatorial Test Suites Generation Strategy
Utilizing the Whale Optimization Algorithm
ALI ABDULLAH HASSAN 1, SALWANI ABDULLAH 1, KAMAL Z. ZAMLI 2, (Member, IEEE),
AND ROZILAWATI RAZALI3
1Center for Artificial Intelligence Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
2Faculty of Computing, College of Computing and Applied Sciences, Universiti Malaysia Pahang, Pekan 26600, Malaysia
3Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Corresponding author: Ali Abdullah Hassan (ali87hassan@gmail.com)

This work was supported in part by the Ministry of Education, Malaysia, under Grant FRGS /1/2019/ICT02/UKM/01/1, and in part by the
Universiti Kebangsaan Malaysia under Grant DIP-2016-024.

ABSTRACT The potentially many software system input combinations make exhaustive testing practically
impossible. To address this issue, combinatorial t-way testing (where t indicates the interaction strength, i.e.
the number of interacting parameters (input)) was adopted to minimize the number of cases for testing.
Complimentary to existing testing techniques (e.g. boundary value, equivalence partitioning, cause and
effect graphing), combinatorial testing helps to detect faults caused by the faulty interaction between input
parameters. In the last 15 years, applications of meta-heuristics as the backbone of t-way test suite generation
have shown promising results (e.g. Particle Swarm Optimization, Cuckoo Search, Flower Pollination
Algorithm, and Hyper-Heuristics (HHH), to name a few). Supporting the No Free Lunch theorem, as well
as potentially offering new insights into the whole process of t-way generation, this article proposes a new
strategy with constraint support based on the Whale Optimization Algorithm (WOA). Our work is the first
attempt to adopt the WOA as part of a search-based software engineering (SBSE) initiative for t-way test
suite generation with constraint support. The experimental results of the test-suite generation indicate that
WOA produces competitive outcomes compared to some selected single-based and population-based meta-
heuristic algorithms.

INDEX TERMS Search-based software engineering (SBSE), T-way testing, combinatorial testing, software
testing, meta-heuristic.

I. INTRODUCTION
Ensuring conformance to specification, software testing is
often considered a determinant of quality. In many situations,
testers often race against time to release software on-time and
on schedule. Practically, however, it is impossible to consider
all exhaustive test cases because of the numerous time and
resource constraints involved.

Combinatorial testing provides a convenient mechanism to
minimize the number of test cases by considering a subset
of interactions between parameters, called t-way testing. The
fundamental idea of t-way testing is that ‘‘a fault is usu-
ally caused by interactions of two or more system inputs
(say, t number of parameters)’’ [1], [2]. Many t-way test-
ing applications have demonstrated encouraging results (e.g.
at t = 6, almost 90 percent of faults can be triggered and

The associate editor coordinating the review of this manuscript and

approving it for publication was Seyedali Mirjalili .

detected). Nevertheless, it should be noted that combinato-
rial testing does not replace existing minimization strategies
(such as boundary value, equivalence partitioning, cause-
effect-graphing and the like) but rather complements them.

To-date, in line with the emergence of a new field called
Search-based Software Engineering (SBSE), which deals
with solving optimization problems within the Software
Engineering lifecycle, many related works have adopted
meta-heuristics to address the combinatorial t-way test suite
generation. Such applications include PSO [3], Cuckoo
Search (CS) [4], the Flower Pollination Algorithm (FPA) [5],
Ant Colony System (ACS) [6], and High Level Hyper-
Heuristics (HHH) [7].

The No Free Lunch theorem suggests that no single meta-
heuristic is superior to the other in all optimization cases.
In line with this idea, the adoption of a new meta-heuristic
is most welcome. This article proposes a new strategy with
constraint support for t-way test suite generation based on

192288 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4635-7385
https://orcid.org/0000-0003-0037-841X
https://orcid.org/0000-0003-4626-0513
https://orcid.org/0000-0002-1443-9458

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

theWhale Optimization Algorithm (WOA). TheWhale Opti-
mization Algorithm (WOA) is a recently developed algorithm
based on the hunting behavior of the humpback whale [8].
WOA has a strong global search capacity due to its distinc-
tive optimization mechanism [9]. In addition, WOA is less
parameter-dependent and has a straightforward implementa-
tion [9]. It has therefore been commonly proposed in various
domains to solve many issues, such as feature selection [10],
clustering [11], flow shop scheduling [12], electronic engi-
neering [13], energy [14], and electrical power [15], to name
a few. Moreover, the WOA has also shown competitive
outcomes in all domains. Owing to its robust performance
against many existing meta-heuristics, the adoption of WOA
for the currently proposed combinatorial t-way test suite
generation appears justifiable.

Complementing existing works on t-way testing meta-
heuristics, our contributions are two-fold. Firstly, we present
the first work of its kind that adopts WOA for t-way test
suite generation. More precisely, our work investigates the
hypothesis that the adoption of WOA is useful for SBSE
applications involving constrained and unconstrained soft-
ware test suite generation. Secondly, we extensively evaluate
the performance of WOA through a set of benchmark test
suites.

We organized our paper as follows: Section II presents
the background on the t-way strategy using definitions and
scenario examples, while the related works are presented
in Section III. In Section IV and Section V, we introduce
the Whale Optimization Algorithm (WOA) and its imple-
mentation in t-way testing, respectively. Preliminary findings
and discussion are presented in Section VI and Section VII
concludes this research.

II. OVERVIEW OF T-WAY TESTING
To demonstrate t-way testing, let us consider the follow-
ing hypothetical smart city planning example, as shown
in Figure 1.

Smart city planning consists of five basic compo-
nents/parameters, i.e. a transport system, e-service, smart
traffic management, health cards, and water level monitoring.
The transport system parameter takes three possible val-
ues (i.e., Transport System = Public Transport, e-hailing,
Individual Vehicle), whereas the rest of the parame-
ters take two possible values (i.e., e-Service = Wired,
Wireless, Smart Traffic Management = Sensors, CCTV,
Health Cards = Government Hospital, Private Hospital, and
Water Level Monitoring = Tripping-bucket Rain Gauge,
Hydrophone).

Figure 2 shows that the covering array asMCA (N;3, 3124)
in the smart city planning example, assuming the interaction
strength is t = 3. The exhaustive test for smart city planning
requires 3 ∗ 2 ∗ 2 ∗ 2 ∗ 2 = 48 test cases to cover all
the smart city planning configurations. Meanwhile, when the
meta-heuristic strategy (i.e., WOA) is used in 3-way testing,
only 17 test cases are generated to cover all the configurations
of the above-mentioned example.

FIGURE 1. Smart city planning.

Mathematically, the test suite is a process of constructing
an array, N ∗ k where N is the number of test cases and k is
the number of parameter values. Every test case consists of
a combination of k parameter values [1]. It is mandatory to
include all combinations of the t-way parameter values in the
test suite. The interaction strength is the number of interacting
parameters, denoted as t . Some important definitions of the
terminologies used are listed below:

• T-way testing is a combinatorial software testing method
that examines the t-way interaction of every possible
discrete combination of input parameters. This testing
can be done much faster than an exhaustive search of all
combinations of all parameters.

• An interaction represents a combination of two or more
different parameters with a specific value.

• TheCovering Array (CA) represents the test suite, which
is an array of size N ∗ v, where v is the value (option
of system configuration/input user), p is the parameter
(system configuration/ user input), t is the interaction
strength, andN is the number of test cases generated and
is denoted as CA (N ; t, vp). Minimizing the size of the
test suite, as well as retaining fault detection capabilities,
are critical to escape time and resource constraints and
to maintain the effective detection of faults [16].

• Mixed Covering Array (MCA) is denoted as MCA
(N ; t, vp11 , vp22 , vpii) similar to CA except the number of
parameter values varies.

• t-tuple is an array (table) containing a selection of t
parameters.

Current t-way strategies generate test cases (i.e. the test
suite) to cover every single combination generated as a result
of parameter-interaction. However, some test suite combina-
tions should be omitted when producing the final test suite
as a result of unacceptable outputs or undesirable test suite
combinations. Such combination types are identified as for-
bidden combinations or constraint combinations. Forbidden
combinations or constraints are types of test cases that may
result in defective performance or output. Thus, they should
not be generated in the final test suite.

CA with constraints can be denoted as CCA (N ; t, vp,F),
where F is the forbidden combination. F can also be

VOLUME 8, 2020 192289

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

FIGURE 2. 3-way mixed covering array construction for smart city planning.

denoted as F = {(Cpno,vno ,Cpno,vno)1, (Cpno,vno ,Cpno,vno)2,
. . . , (Cpno,vno ,Cpno,vno)n}, where C is the constraint, pno rep-
resents the parameter number in the t-tuple table, and vno
represents the value number of the parameter in the t-tuple
table. Section V further elaborates on these constraints.

III. RELATED WORK
Combinatorial interaction testing strategies use Greedy test
suite construction algorithms [17]. Every iteration of the
design process aims to cover the maximum number of combi-
nations. The test suite may be constructed by using either one
parameter at a time (OPAT) or one test at a time (OTAT) [18].
The OPAT approaches start the test suit composition for
the first two parameters or smallest t-combination. Next,
it expands the test suite horizontally by inserting one param-
eter per iteration until the t-way requirements have been
completed. IPOG [19] and IPOG-D [20] are examples of such
an approach.

Unlike OPAT, OTAT approaches start by producing one
test case per iteration, including all the parameters, to cover
the maximum number of combinations. The iteration lasts
until all the t-combinations are covered. Because of its good
performance, many studies have appliedOTATmethods, such

as Jenny [21] and TConfig [22]. A number of OTAT-based
approaches have recently implemented meta-heuristic algo-
rithms to produce a t-way test suite.

Meta-heuristic optimization algorithms give adequate
solutions within a sensible time for solving hard and com-
plex issues in science and engineering; thus, justifying the
increased interest among researchers and scientists in this
area. Meta-heuristic optimization algorithms solve optimiza-
tion problems by imitating evolution behavior, swarm behav-
ior, or the law of physics [23].

Evolutionary algorithms emulate the processes of
evolution in nature. These algorithms use biological
evolution-inspired mechanisms, such as reproduction,
mutation, recombination, and selection. Examples of such
algorithms are the Genetic Algorithm (GA) [24], Differ-
ential Evolution (DE) [25], Biogeography-Based Optimizer
(BBO) [26], and Asexual Reproduction Optimization (ARO)
algorithm [27], to name a few. Meanwhile, swarm-based
algorithms emulate the social behavior of swarms, birds,
insects, and animal groups. Such animal behaviors include
searching for food, locating other individuals, and flocking,
with example algorithms being Particle Swarm Optimization
(PSO) [28], the Artificial Bee Colony (ABC) algorithm [29],

192290 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 1. Summary of strategies applied on t-way testing.

the Bat Algorithm (BA) [30], the Cuckoo Search (CS) algo-
rithm [31], the Grey Wolf Optimizer (GWO) algorithm [32],
the Ant Lion Optimizer (ALO) algorithm [33], and the
Moth-Flame Optimization (MFO) algorithm [23] to name
a few. Lastly, physics-based algorithms emulate physical
or chemical processes, such as gravity, ion motion, electri-
cal charges, river systems, etc. Algorithms in this category
include Simulated Annealing (SA) [34], the Gravitational
Search Algorithm (GSA) [35], the Artificial Chemical Reac-
tion Optimization Algorithm (ACROA) [36], Heat Transfer
Search (HTS) [37], and Henry Gas Solubility Optimization
(HGSO) [38], to name a few.

To date, there is a fairly comprehensive literature on
combinatorial testing, spanning various approaches. Never-
theless, each of these approaches share a common aspect:
when combined with heuristics, these approaches can harness
the power of random combinatorial searching to evaluate t-
strength covering arrays. Two main aspects must be focused
on to formulate the optimization problem: the definition of
the objective function; and the selection of the technique,
whether utilizing a pure-based approach or a hybrid-based
approach [39]. In terms of the objective function, the number
of tuples covered for the candidate test case (i.e. weight) is
used as the fitness value. Meanwhile, the number of uncov-
ered tuples is taken as the cost of the candidate test case in
another case, which needs minimization.

As for the type ofmeta-heuristic algorithm applied in t-way
combinatorial testing, Table1 summarizes some of the algo-
rithms introduced in the last five years, as further explained in
the following sections. Some of these algorithms have been
listed in [40] and their variants have also been updated and
provided here as well.

PSO was firstly applied to t-way testing in 2010 to
generate a test suite. PSO imitates the behavior of flocks
of birds searching for food. The optimal solution (posi-
tion) is calculated using individual position and velocity.
In each flock, an individual moves towards the best individual

position and the best global position (optimal solution) [3].
PSO has opened many developmental ideas on variant
algorithms due to its rapid convergence rate behavior and
less demanding computational requirements. These variants
include DPSO [42], SITG [43], PSTG [51], etc.

TCA [41] integrates Greedy Tabu search and heuristic
random walk. Initialization of test cases is generated using
Greedy Tabu search. TCA performs the heuristic search
method to extend the search to discover any uncovered
interactions. Another algorithm emerged in 2015 called the
Cuckoo Search (CS) [4], which was implemented in t-way
combinatorial testing with a small number of control param-
eters. A variant of CS was also implemented in t-way testing
that upgrades the search space with Levi flights [31]. Then,
Flower Strategy (FS) [5] was introduced in 2015 derived from
the efficiency of the Flower Pollination Algorithm (FPA).
Some defining features of FPA are its simplicity, flexibility,
and low complexity.

Ant Colony System (ACS) [6] is an AI-based strategy and
is a type of Ant Colony Optimization (ACO). ACS has effec-
tively resolved numerous combinatorial optimization issues.
Its strategy provides all kinds of interactions, particularly
IOR. Additionally, another strategy based on the Bat Algo-
rithm (BA) was introduced, called the Bat-inspired Testing
Strategy (BTS), where the BA works as the main search
engine to obtain the optimal test suite size [44].

Meanwhile, in 2017, several strategies were implemented
in t-way testing, such as the Artificial Bee Colony Algo-
rithm (ABC) and the Teaching-Learning-Based Optimization
algorithm (TLBO). ABC was designed to imitate a honey
bee colony’s feeding behavior. Several variants of ABC
have also been implemented in t-way testing. For instance,
the Pairwise Artificial Bee Colony algorithm (PABC) [45]
was implemented in 2-way testing and the Artificial Bee
Colony Strategy (ABCS) [46] was applied for a higher inter-
action strength of up to ten (i.e. t ≤ 10). Meanwhile,
TLBO mimics the classroom environment, which has two
stages, i.e. a teacher (global search) and a learner (local
search). TLBO was applied in pairwise testing (i.e. 2-way
testing) to generate a test suite [47]. Meanwhile, another
variant called Adaptive TLBO (ATLBO) was also imple-
mented in t-way testing in another study [18]. ATLBO
uses the Mamdani Fuzzy inference system to enhance the
selection process between the global search and the local
search [18].

Two novel algorithms were introduced in 2018 for appli-
cation in t-way testing, namely the firefly algorithm (FA)
and the kidney algorithm (KA). FA was inspired by the
distinguishing feature of the firefly, namely the flash patterns
that attract consorts and scare away predators. A strategy
called FATG based on FA was introduced to minimize the
test suite and reduce execution time [48]. KA emulates the
role of the kidneys in the human body. KA involves two main
procedures: filtration (local search) and reabsorption (global
search). The Pairwise Kidney Strategy (PKS) was developed
based on KA to generate a smaller test suite [49].

VOLUME 8, 2020 192291

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

Improved Jaya Algorithm (IJA) [50] is a population-
based algorithm developed to address constrained and uncon-
strained problems. The key idea behind the algorithm is that
every candidate solution will seek the best solution while
simultaneously evading the worse solution. IJA is imple-
mented in t-way testing by only updating the best test case
and the worse test case. Then, the current test case is updated
based on the best and worst test cases. To improve diversity
and a quality solution, lévy flight was introduced, as well as a
mutation operation, to improve the convergence speed of the
proposed method in generating a test suite [50].

Multiple Black Hole (MBH) algorithm [39] emerged
in 2020 for application in combinatorial testing. The Black
Hole algorithm is a modern meta-heuristic method focused
on observable evidence of the black hole phenomenon and
the behavior of stars when interacting with the black hole.
The Black hole algorithm is considered a population-based
algorithm. The stars are the solutions (test cases) and the best
star (test case) is selected as the black hole, which all solutions
move towards based on their current location and a random
number. MBH is based on the multi-swarm principle, which
can be defined as multiple black holes. Additionally, MBH
introduced the black hole energy to promote the removal of
certain black hole swarms and to produce fresh ones [39].
Another algorithm introduced in 2020 is SCA [17], which is
a population-based algorithm that produces numerous initial
random test cases and allows the cases to fluctuate outwards
or towards the best possible test case using a sine and cosine
mathematical model. SCA was enhanced by introducing a
combination of linear and exponential magnitude updates for
search displacement [17].

IV. WHALE OPTIMIZATION ALGORITHM
The SBSE field has seen the extension of several metaheuris-
tic algorithms, such as Greedy Search, Simulated Annealing,
Genetic Algorithms, Tabu Search, and even the Whale Opti-
mization Algorithm (WOA). However, WOA was applied in
regression testing via hybridization with the Artificial Neural
Network (ANN) [52]. Harikarthik et al. [52] introduced an
innovative effort to investigate the effectiveness of WOA in
regression testing by hybridizing it with ANN to optimize
its weights. As for the t-way test suite generation problem,
no study has yet used (WOA) to address software engineer-
ing issues, i.e., the optimization problems mentioned earlier.
Therefore, it appears that the SBSE research community has
not fully explored the potential of WOA.

In 2016, Mirjalili and Lewis [8] introducedWOA, which is
a modern nature-inspired AI-based algorithm. WOA imitates
the hunting behavior of humpbackwhales. Humpbackwhales
are intelligent and have a sophisticated way of performing
collective work. These creatures use a special tracking tech-
nique known as the bubble-net feeding technique, as shown
in Figure 3. The whales perform this technique by making
peculiar bubbles along a circle or a ‘9’-shaped path. Then,
they hunt near the surface and trap the victim in a net of
bubbles.

FIGURE 3. Bubble-net hunting behavior of humpback whales.

There are two stages of WOA: exploitation and explo-
ration. The prey-encircling method and spiral bubble-net
attacking technique are used in the exploitation stage, where
both techniques update the position of the current search
agent using the location of the best search agent. However,
the spiral bubble-net attacking technique includes a random-
ness factor (i.e. explorational side), as seen in Equation (6).
Meanwhile, in the exploration stage, a random search is
conducted, where the position of the current search agent is
updated based on a generated random search agent, as illus-
trated in Algorithm 1. The mathematical model for WOA is
specified below:

A. EXPLOITATION PHASE
The two mechanisms used in this phase are as follows:

1) Encircling Prey:
Humpback whales can identify the victim’s position
and then surround the victim. In WOA, the target
victim is presumed to be the current best candidate
solution. Next, the best search agent is located, while
all other search agents attempt to move towards it.
In other words, the agent updates the movement (loca-
tion) of the whale around the victim per the following
mathematical model:

D = |CX∗ − X (t)| (1)

X (t + 1) = X∗(t)− A.D (2)

where t represents the current iteration, X∗ represents
the best solution obtained so far, and X is the current
solution. Next,A andC are coefficients computed using
Equations (3) and (4) respectively:

A = 2a.r − a (3)

C = 2.r (4)

192292 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

where a is reduced linearly from 2 to 0 during iterations
as shown in Equation (5) and r is a random number
in [0,1].

a = 2− t
2

MaxIter
(5)

2) Bubble-net attacking technique:
This method involves two mechanisms: i) a shrinking
encircling mechanism carried out by the reduction of
the value of a in Equation (3), so the new location of a
search agent is located between the genuine location of
the agent and the location of the existing best agent; and
ii) a spiral updating position mechanism used to calcu-
late the distance between the current solution (whale)
and the best solution (victim) using the spiral equation
of Eq. (6):

X (t + 1) = D′.ebl . cos(25l)+ X∗(t) (6)

where D′ is the distance between the whale and the
victim, b is a constant for defining the shape of
the logarithmic spiral, and l is a random number
in [−1, 1].
Humpback whales use both mechanisms simultane-
ously. To model this behavior, a 50% chance is intro-
duced to select one of the mechanisms to update the
location of the whales during the search. The mathe-
matical model is outlined by Equation (7):

X (t + 1) =

{
Equation (2), if p < 0.5
Equation (6), if p ≥ 0.5

(7)

where p is a random number in [0,1].

B. EXPLORATION PHASE
WOA is considered a global search. Therefore, the whales
search randomly based on each other’s location. Thus,
the location of a search agent is randomly updated instead
of depending on the best search agent found so far. This tech-
nique is used when the random values of A are greater than 1,
to ensure the search agentmoves away from a referencewhale
(best solution). This mechanism emphasizes global search
and induces WOA to perform exploration. The mathematical
model for this step is outlined by Equations (8) and (9):

D = |C .Xrand − X | (8)

X (t + 1) = Xrand − A.D (9)

V. IMPLEMENTATION OF WOA
The WOA-based approach is used to automatically generate
a test-suite and to decrease the number of test cases. Figure 4
presents an overview of the WOA implementation in t-way
testing, which consists of two phases:

A. T-TUPLE TABLE GENERATION
The outcome of this phase is the t-tuple table, which, as men-
tioned earlier, a sequence (or ordered list) of t elements.

Algorithm 1 Pseudo-Code of the WOA Algorithm
1: Initialize the whales population Xi (i = 1, 2, . . . , n)
2: Calculate the fitness of each search agent
3: X∗ = the best search agent
4: while i < maximum number of iteration do
5: for each search agent do
6: Update a, A, C, l, and p
7: if p < 0.5 then
8: if |A| < 1 then
9: Update the position of the current search

agent using Eq (2)
10: else if |A| > 1 then
11: Select a random search agent ()
12: Update the position of the current search

agent using Eq (9)
13: end if
14: else if p ≥ 0.5 then
15: Update the position of the current search

using Eq (6)
16: end if
17: end for
18: Check if any search agent goes beyond the search

space and amend it
19: Calculate the fitness of each search agent
20: Update X∗ if there is a better solution
21: t = t + 1
22: end while
23: return X∗

To generate the t-tuple table, four steps are taken, as illus-
trated in Figure 4, and explained as follows: The first step is to
obtain the system configuration or user input for the software
to be tested. The second step is to decide on the interaction
strength (t) of the t-way testing. The next step is to generate
the parameter combination. For example, if we have 4 param-
eters (say a, b, c, and d) and the interaction strength, t = 2,
then the 2-way combinations are (ab, ac, ad, bc, bd, and cd).
The last step is to generate the t-tuple table that depends on
parameter combination (generated in the previous step) and
the values of the parameters. If we took the previous example
of 4 parameters (a, b, c, d), each parameter has 2 values (0,1),
so the t- tuple table will be represented by Table 2, where the x
would be replaced randomly with one of the parameter values
(0,1) during the search.

While in the presence of constraints, the forbidden combi-
nations are obtained together with the system configuration
or user input for the software to be tested.

B. TEST SUITE GENERATION
The t-tuple table generated in the previous phase is now an
input for this stage, while the WOA attempts to cover its
cells (interaction elements) with the minimum test cases.
As illustrated in Figure 4, WOA will run until the t-tuple
table becomes empty after applying the four steps shown

VOLUME 8, 2020 192293

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

FIGURE 4. The overview of t-way testing implementation.

TABLE 2. T-tuple table.

in Figure 4. Figure 5 shows the elimination process in the
t-tuple. As shown in Figure 5, WOA will search for the best
test case based on weight. The weight is the number of six.
This means that it covers six interactions in the t-tuple table,
which are 1xx0, x1× 0, xx10, 11xx, 1× 1x, and x11x. Then,
the covered interactions are removed from the t-tuple table
and the best test case is added to the test suite array. This
process continues until the t-tuple becomes empty, in other
words, when all the cells (i.e. interactions) in the t-tuple table
are covered.

Meanwhile, in the presence of constraints, each time
the WOA updates its solution (i.e. generate new solution),
the new solution will be checkedwhether or not it is one of the
forbidden combinations. This step is to ensure that the solu-
tions will not converge to one of the forbidden combinations.

Consider the example in Figure 6 of CCA (N ; 2, 24,F),
where F = {(Cp1,v2 ,Cp2,v1), (Cp3,v1 ,Cp4,v1)}. This means
that the constraint covering array (CCA) consists of 4 param-
eters, with each having 2 values and an interaction strength
of 2. Meanwhile, the forbidden combinations, F , has two
constraints, and each constraint has a pair of tuples. The first
constraint is (Cp1,v2 ,Cp2,v1), where the first tuple is Cp1,v2
indicating parameter one and value two and the second tuple
is Cp2,v1 i.e., parameter two and value one. Thus, the first
forbidden combination is (10xx), as per Figure 6. Similarly,
the second forbidden combination will be (xx00), where x is
a ‘don’t-care’ value.

As for WOA, the generation process begins with a set of
random solutions (initial population). Then, the solutions are

192294 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

FIGURE 5. The process of t-tuple elimination and test suite generation.

evaluated using a fitness function to find the best solution.
Then, the algorithm repeatedly executes the following steps
until the stopping criterion is met. First, the coefficients are
updated. Second, based on the random values of A and p,
the algorithm updates the position of a solution using either
Equation (2) or Equation (9) or Equation (6). Lastly, theWOA
returns the best solution obtained.

VI. EXPERIMENT AND DISCUSSION
Our experiments aim to demonstrate the efficiency of
WOA versus other existing, well-known, population-based
meta- heuristic algorithms and pure computational strategies

(i.e. the efficiency is described by the size of the generated
test suite).

To express the computational cost performance of our strat-
egy, a time complexity analysis of our strategy was done by
considering the structure of our implementation as prescribed
under Section V. The structure is displayed in Figure 7.
Assuming that all other operations are carried out in a
time constant, the time complexity of our strategy is
O(ExBxG) ≈ O(n3). The Big O notation can sometimes
be used to describe execution time. However, a few studies
have already computed the code execution time. There are
some valid threats to comparing meta-heuristic algorithms

VOLUME 8, 2020 192295

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

FIGURE 6. An illustration of the forbidden combinations denoted by F.

FIGURE 7. General structure of the WOA strategy.

performance specifically when execution time is com-
pared [7]. Owing to factors such as differences in the imple-
mentation language (e.g. Java versus C versus MATLAB),
the data structure, the system configuration, as well as run-
ning environment, a comparison of execution time is deemed
unfair. The same observation has also been cited by other
researchers [18], [53].

We split our experiments into three parts. First, we sys-
tematically tuned the parameters. Second, we evaluated
and compared the WOA strategy with existing population-
based meta-heuristic algorithms. Lastly, we benchmarked
our strategy with existing constraint-supporting strategies.
Another measurement was also applied based on Wilcoxon’s
signed-rank test for all reported results.

A. PARAMETER TUNING
One of the advantages of WOA is that it has a fewer number
of parameters, unlike other meta-heuristic algorithms, such
as PSO, HS, and GA, to name a few. However, population
size and the maximum number of iterations are still required
for tuning. This is because a big iteration value could be
unproductive if the previous iterations did not produce a better

solution. Conversely, too few iterations could perhaps prevent
the best candidate solution from being reached. Comparably,
a large population size raises the cost of computation; while
a small one hinders a good solution from being obtained.
Hence, it is necessary to carefully coordinate the selection
of the maximum number of iterations and population size.
The covering array CA(N; 2, 57) was chosen as a case study
to tune the parameters. The justification for embracing this
covering array is that many AI-based approaches are tuned
using the same covering array [54]–[56].

To tune theWOA parameters, theWOA strategy for CA(N;
2, 57) was executed repeatedly 20 times with a different
population size and the maximum iteration number values
tested, by setting the population size and varying the maxi-
mum iteration number (i.e. 10, 25, 50, 75, 100, 125, 150, 175,
and 200). Then, reverse experiments were performed, where
the population size was varied (i.e. 10, 30, 50, 70, 100, 120,
140, 160, 180, and 200) and the maximum iteration number
was fixed. The best test suite size and the average test suite
size are shown in Table 3 and Table 4, respectively, where the
darkened cells indicate the most optimal size. The execution
time is reported in seconds. The best execution time and the
average execution time are shown in Table 3 and Table 4,
respectively.

Per the results shown in Tables 3 and 4, it can be concluded
that a large population size could yield better results and,
on the contrary, a too-small population size could contribute
to worse results. A large population size (i.e. 200) did not,
however, necessarily produce better results so we had to con-
sider that the execution time could also increase. Likewise,
a high iteration value (i.e., 200) may not always provide
the most optimal size in each case. The best results were
obtained when the population size was set between 70 and
200. Otherwise, the iteration value would increase and the
result would improve. The best result was obtained when the
iteration value was varied from 75 to 175. Beyond that, when
considering the best average results obtained, the population
size was varied between 120 and 200 while the maximum
number of iterations was varied between 100 and 175.

In Table 4, the best average results are marked in bold.
We highlight two of the best average results: the first was
achieved when the population size was 180 with a maximum
number of iterations of 100, while the second was obtained
when the population size was 180 and the maximum num-
ber of iterations was 150. In this case, we had to consider
the execution time when choosing the optimal population
size and maximum number of iterations. This is because
the execution time increases when both the population size
and the maximum number of iterations increase. Therefore,
we selected 100 as the maximum number of iterations and
180 as the maximum population size.

B. BENCHMARKING WOA STRATEGY WITH EXISTING
STRATEGIES
To assess the performance of WOA, we benchmarked
it against other existing strategies in terms of CA size.

192296 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 3. Best test suite size and execution time acquired with varied population size and the maximum number of iterations for CA(N; 2, 57).

TABLE 4. Average test suite size and execution time acquired with varied population size and the maximum number of iterations for CA(N; 2, 57).

TABLE 5. Parameter values used for the existing meta-heuristic
algorithms.

The experiments were divided into two of the following
well-known datasets:

1) Comparing the WOA strategy with currently avail-
able strategies using CA(t, v7), where the number of
parameters remains constant while their values are var-
ied. In addition, the interaction strength t is varied
from 2 to 6.

2) Comparing the WOA strategy with existing strategies
using CA(t, 3P), where the number of parameters is
varied and their values are kept constant. In addition,
the interaction strength t is varied from 2 to 6.

The experimental environment is a laptop operating on
Windows 10, with a 64-bit, 2.71 GHz, an Intel Core
i5 CPU, and 8 GB of RAM. The proposed strategy was
coded and implemented in Java. Table 5 shows the param-
eter settings for each meta-heuristic algorithm used for the
comparison.

In Table 6, the configurations of CA(t, 3P) were adopted,
where t was varied as 2 ≤ t ≤ 6, pwas varied as 3 ≤ p ≤ 12,
and v was kept constant at v = 3; the results are reported in
terms of the best test suite size, as well as average test suite
size, after repeating the experiment 30 times (for statistical
significance) [17]. The results reveal thatWOA outperformed
all the pure computational strategies and most of the AI-
based strategies, including GBGA, PSO, CS, and ABCVS.
Moreover, WOA produced competitive results to that of the
GS and APSO strategies, bearing in mind that we used the
standard WOA without any modifications.

It can be noted from Table 6 that the WOA strategy
produced better results when the search space got larger,
compared to other AI-based strategies, because WOA has the
ability to exploremore, but it lacks exploitationwhen it comes
to a small search space.

Meanwhile, Table 7 displays the configurations of
CA(t, v7) where t is varied as 2 ≤ t ≤ 6, v is varied
as 2 ≤ v ≤ 7 and p is kept constant at p = 7. The
results show that the WOA strategy outperformed all the pure
computational strategies and most of the AI-based strategies
including PSO, CS, and APSO. In addition, WOA yielded
competitive results to that of the GS strategy, although the
standard WOA strategy was used.

Similarly, Table 7 also shows that the WOA strategy deliv-
ered better results with a larger search space compared to
other AI-based strategies, because WOA can explore more

VOLUME 8, 2020 192297

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 6. Test suite size performance for CA(t , 3P) where P was varied from 3 to 12 and t was varied from 2 to 6.

TABLE 7. Test suite size performance for CA(t , v7) where v was varied from 2 to 7 and t is was varied from 2 to 6.

192298 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 8. Wilcoxon test for the results reported on Tables 6 and 7.

in a larger search space and because exploration is one of its
advantages.

To ensure the superiority of the WOA strategy over the
other existing strategies, a statistical analysis was conducted,
particularly the Wilcoxon signed-rank test, which is a non-
parametric test for matched or coupled data concentrating
on differential ratings. However, this test also considers the
extent of the observed differences in response to evaluating
the signs of the differences. The Wilcoxon signed-rank test
was used because it can inform the researcher if a significant
difference exists between two results.

The Wilcoxon signed-rank test produced two factors. The
first is the Asymp. Sig. (2-tailed) and Z, which are sta-
tistical tests indicating the difference between two groups.
An Asymp. Sig. (2-tailed) value smaller than 0.05 implies
a significant difference between the two groups. Although
the value of Z is not relevant and beyond the applicability of
this study, this value was nonetheless provided in this report.
The second factor is the ranking, which ranks the values
that are greater than, equal to, or less than the comparable
values.

In all the tables presenting the statistical results, in the
ranks part, ‘‘WOA <’’ indicates the number of cases the
WOA strategy generated with a smaller CA size compared
to the other strategies (i.e., pure computational and AI-based
strategies). In other words, this label indicates the number of
times the WOA strategy generated better results. Similarly,
‘‘WOA =’’ indicates the number of times the results were
the same, while ‘‘WOA >’’ represents the number of times
the WOA strategy produced the worst results.

Table 8 presents the result of the Wilcoxon test reported
in Tables 6 and 7. Table 8 shows that the WOA strategy
generated better outcomes than the pure computational strate-
gies; thus confirming the superiority of WOA over the other
strategies. As for theAI-based strategies,WOAalso produced
significantly different outcomes compared to PSO, CS, and
ABCVS. Meanwhile, WOA statistically produced competi-
tive results to that of GBGA, GS, and APSO; but it must also
be considered that these strategies have been modified and
enhanced while ours was not.

TABLE 9. Parameter settings of the implemented algorithms.

C. BENCHMARKING WOA STRATEGY IN THE PRESENCE
OF CONSTRAINTS AGAINST FIVE DIFFERENT ALGORITHMS
In this section, we present our experiments for benchmarking
WOA against 5 recent algorithms. These algorithms are the
Sine-Cosine algorithm (SCA) [62], the Jaya algorithm [63],
the Flower Pollination algorithm (FPA) [64], the Cuckoo
Search algorithm (SC) [65], and the Late Acceptance Hill
Climbing algorithm (LAHC) [66]. All the algorithms, includ-
ing WOA, support constrained t-way testing. The settings
of each algorithm are summarized in Table 9. We ran
each algorithm 30 times and recorded the best results from
these 30 runs.

The performance of the algorithms was mainly evaluated
in terms of test suite size. In the evaluation, we compared the
best test suite size and the average test suite size acquired
by the algorithms, as per Table 10 and Table 11, respectively.
Then, theWilcoxon signed-rank test was applied to the results
reported by the six algorithms.

We divided our experiments into three dataset groups.
We also designed their constraints (i.e. forbidden combina-
tions). The details of the datasets are as follows:

1) Comparing the WOA strategy with five different algo-
rithms using CCA(2, 3P,F), where the number of
parameters was varied and their values (v = 3)
and interaction strength (t = 2) were kept constant.
In addition, the number of constraints (i.e., forbidden
combinations) were varied between 3 and 5 pairs of
constraints, as shown in Tables 10 and 11.

2) Comparing the WOA strategy against five different
algorithms using CCA(2, v7,F), where the number
of parameters (p = 7) and the interaction strength

VOLUME 8, 2020 192299

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 10. Comparison of the implemented algorithms using best results of the three datasets.

(t = 2) were kept constant and their values were varied.
In addition, the number of constraints (i.e. forbidden
combinations) was varied between 3 and 5 pairs of
constraints, as shown in Tables 10 and 11.

3) Comparing the WOA strategy against five different
algorithms using CCA(t, 210,F), where the number of
parameters and their values were kept constant (p = 2
and v = 10).While the interaction strength t was varied
from 2 to 6. In addition, the number of constraints (i.e,
forbidden combinations) were varied between 1 and
3 pairs of constraints, as shown in Tables 10 and 11.

To evaluate the performance of the WOA strategy, we com-
pared WOA against six other t-way strategies that were also
implemented. The performance evaluation criteria included
size (i.e., optimal test suite size) [50]. The experimental
results are presented in Tables 10 and 11; Table 10 shows
the minimum (i.e., best) test suite size while Table 11
shows the average suite size for each competing strategy.
The best results obtained by each strategy are marked in
bold.

The results of Tables 10 and 11 show that WOA performed
better than LAHC, FPA, and CS for both best test suite and
average test suite, asWOA favors exploration, which allows it
to explore more especially when the search space gets larger,
while the CS performance achieved slower convergence that

led to failure to perform well. FPA, meanwhile, lacks explo-
ration. ComparingWOAwith SCA,WOA had better average
test suite results than SCA and produced competitive results
in terms of best test suite because SCA has a good local search
ability but lacks the global search ability. Lastly, WOA and
Jaya produced competitive results when compared to each
other. In terms of average results, Jaya achieved better results
more frequently than WOA because of its ability to balance
between global search and local search, as it is a parameter-
free algorithm.

Statistically, the Wilcoxon signed-rank test was applied to
the results reported in Table 10. Table 12 presents the out-
comes of the Wilcoxon signed-rank test. Statistically, WOA
produced better test suite sizes than LAHC, FPA and CS,
with the exception of the Jaya and SCA algorithms. On a
positive note, WOA managed to produce better results more
frequently than Jaya and SCAwhile most cases showed equal
results.

Additionally, the Wilcoxon test reported the results
in Table 11 and the outcomes of the Wilcoxon test are shown
in Table 13. WOA produced results that are significantly dif-
ferent from that of LAHC, SCA and FPA, with the exception
of the Jaya and CS algorithms. This is because of WOA’s
exploration advantage while LAHC, SCA and FPA lack this
ability.

192300 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

TABLE 11. Comparison of the implemented algorithms using average results of the three datasets.

TABLE 12. Wilcoxon test for the results reported on Table 10.

TABLE 13. Wilcoxon test for the results reported on Table 11.

Side by side, our approach is comparable to that of the
Binary Decision Diagram (BDD) [67] and SATSolver [68].
BDD exploits a decision diagram to ensure restrictions are
turned into constraints. Although useful, the BDD approach
is known to suffer from a state explosion problem, which
can potentially limit the size of the constrained configuration.
SATSolver addresses the aforementioned limitation of BDD
but to the expense of large overheads due to the extensive

use of the Conjunctive Normal Form (CNF) to represent the
constraints. On a positive note, both approaches implicitly
guarantee backtrack-freeness (i.e. dead-end constraint sat-
isfiability during the configuration process). Our approach
excels in terms of simplicity as compared to both BDD and
SATSolver, although the backtrack-freeness must be explic-
itly checked every time a new solution is generated.

VII. CONCLUSION
A convincing review of the most current approaches for
t-way testing was presented. Plus, the recently developed
Whale Optimization Algorithm (WOA) was presented for
implementation in current state-of-the-art constrained and
unconstrained t-way testing and its implementation explained
step by step.

In terms of overall performance,WOA showed competitive
results to that of well-known AI-based metaheuristics from
the literature, bearing in mind that we used the original WOA
while the other methods had been modified. Additionally,
we designed our own constraints on well-known CAs and
implemented six recently-developed AI-based algorithms,
including WOA, to comprehensively compare and evaluate
the performance of each. The results showed that WOA out-
performed most of the AI- based strategies and all of the pure
computational strategies. Moreover, WOA showed consistent
(i.e. no odd outlier result) overall performance.

VOLUME 8, 2020 192301

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

In a future work, given our promising results, we expect
to expand our approach as a multi-objective optimization
method for combinatorial testing. As NSGA-II, four parame-
ters will be taken into consideration to assess the optimality of
the test suit, which are the test suit size, the test case priority,
the test case frequency, and the test case constraints [69]. The
aim is to create a test suit with decreased size and increased
priority.

Additionally, we will enhance WOA by either hybridiza-
tion or by combining it with other meta-heuristics because
two main drawbacks of WOA were noted from the exper-
iments: the first drawback is that its adaptive parameter
depends on random distribution while the second drawback is
that WOA suffers from premature convergence like any other
meta-heuristic (evolutionary and swarm) algorithm.

ACKNOWLEDGMENT
ALI ABDULLAH HASSAN would like to thank
Hadhramout Foundation, Yemen, for his support in tuition
fees.

REFERENCES
[1] A. H. Ronneseth and C. J. Colbourn, ‘‘Merging covering arrays and com-

pressing multiple sequence alignments,’’ Discrete Appl. Math., vol. 157,
no. 9, pp. 2177–2190, May 2009.

[2] D. R. Kuhn, D. R. Wallace, and A. M. Gallo, ‘‘Software fault interactions
and implications for software testing,’’ IEEE Trans. Softw. Eng., vol. 30,
no. 6, pp. 418–421, Jun. 2004.

[3] X. Chen, Q. Gu, J. Qi, andD. Chen, ‘‘Applying particle swarm optimization
to pairwise testing,’’ in Proc. IEEE 34th Annu. Comput. Softw. Appl. Conf.,
Jul. 2010, pp. 107–116.

[4] B. S. Ahmed, T. S. Abdulsamad, and M. Y. Potrus, ‘‘Achievement of mini-
mized combinatorial test suite for configuration-aware software functional
testing using the cuckoo search algorithm,’’ Inf. Softw. Technol., vol. 66,
pp. 13–29, Oct. 2015.

[5] A. B. Nasser, Y. A. Sariera, A. A. Alsewari, K. Z. Zamli, ‘‘Assessing
optimization based strategies for t-way test suite generation: The case for
flower-based strategy,’’ in Proc. IEEE Int. Conf. Control Syst., Comput.
Eng. (ICCSCE), Nov. 2015, pp. 150–155.

[6] N. Ramli, R. R. Othman, and M. S. A. R. Ali, ‘‘Optimizing combinatorial
input-output based relations testing using ant colony algorithm,’’ in Proc.
3rd Int. Conf. Electron. Design (ICED), Aug. 2016, pp. 586–590.

[7] K. Z. Zamli, B. Y. Alkazemi, and G. Kendall, ‘‘A tabu search hyper-
heuristic strategy for t-way test suite generation,’’ Appl. Soft Comput.,
vol. 44, pp. 57–74, Jul. 2016.

[8] S. Mirjalili and A. Lewis, ‘‘The whale optimization algorithm,’’ Adv. Eng.
Softw., vol. 95, pp. 51–67, May 2016.

[9] Y. Sun, X. Wang, Y. Chen, and Z. Liu, ‘‘A modified whale optimiza-
tion algorithm for large-scale global optimization problems,’’ Expert Syst.
Appl., vol. 114, pp. 563–577, Dec. 2018.

[10] Y. Miao, M. Zhao, V. Makis, and J. Lin, ‘‘Optimal swarm decomposition
with whale optimization algorithm for weak feature extraction from mul-
ticomponent modulation signal,’’ Mech. Syst. Signal Process., vol. 122,
pp. 673–691, May 2019.

[11] V. Tiwari and S. C. Jain, ‘‘Histopathological image classification
using efficient bag-of-features and whale optimization algorithm,’’ in
Proc. Int. Conf. Sustain. Comput. Sci., Technol. Manage. (SUSCOM).
Jaipur, India: Amity Univ. Rajasthan, Mar. 2019. [Online]. Available:
https://ssrn.com/abstract=3356718

[12] T. Jiang, C. Zhang, and Q.-M. Sun, ‘‘Green job shop scheduling prob-
lem with discrete whale optimization algorithm,’’ IEEE Access, vol. 7,
pp. 43153–43166, 2019.

[13] N. M. Laskar, K. Guha, I. Chatterjee, S. Chanda, K. L. Baishnab, and
P. K. Paul, ‘‘HWPSO: A new hybrid whale-particle swarm optimization
algorithm and its application in electronic design optimization problems,’’
Int. J. Speech Technol., vol. 49, no. 1, pp. 265–291, Jan. 2019.

[14] G. Xiong, J. Zhang, D. Shi, and Y. He, ‘‘Parameter extraction of solar
photovoltaic models using an improved whale optimization algorithm,’’
Energy Convers. Manage., vol. 174, pp. 388–405, Oct. 2018.

[15] F. Mohamed, M. Abdel-Nasser, K. Mahmoud, and S. Kamel, ‘‘Economic
dispatch using stochastic whale optimization algorithm,’’ in Proc. Int.
Conf. Innov. Trends Comput. Eng. (ITCE), Feb. 2018, pp. 19–24.

[16] S. Singh and R. Shree, ‘‘An analysis of test suite minimization techniques,’’
Int. J. Eng. Sci. Res. Technol., vol. 5, pp. 252–260, Feb. 2016.

[17] K. Z. Zamli, F. Din, A. B. Nasser, and A. Alsewari, ‘‘Combinatorial test
suite generation strategy using enhanced sine cosine algorithm,’’ in Proc.
ECCE. Singapore: Springer, 2020, pp. 127–137.

[18] K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, ‘‘Fuzzy adaptive
teaching learning-based optimization strategy for the problem of gener-
ating mixed strength t-way test suites,’’ Eng. Appl. Artif. Intell., vol. 59,
pp. 35–50, Mar. 2017.

[19] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG: A
general strategy for T-Way software testing,’’ in Proc. 14th Annu. IEEE
Int. Conf. Workshops Eng. Computer-Based Syst. (ECBS), Mar. 2007,
pp. 549–556.

[20] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun, and J. Lawrence, ‘‘IPOG/IPOG-D:
Efficient test generation for multi-way combinatorial testing,’’ Softw. Test.,
Verification Rel., 18, no. 3, pp. 125–148, 2008.

[21] B. Jenkins. (2016). Jenny Test Tool. [Online]. Available: http://www.
burtleburtle.net./bob/math/jenny.html

[22] A. W. Williams, ‘‘Determination of test configurations for pair-wise inter-
action coverage,’’ in Testing of Communicating Systems. Hoboken, NJ,
USA: Wiley, 2000, pp. 59–74.

[23] S. Mirjalili, ‘‘Moth-flame optimization algorithm: A novel nature-inspired
heuristic paradigm,’’Knowl.-Based Syst., vol. 89, pp. 228–249, Nov. 2015.

[24] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine
Learning, 1st ed. Reading, MA, USA: Addison-Wesley, 1989.

[25] R. Storn and K. Price, ‘‘Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,’’ J. Global
Optim., vol. 11, no. 4, pp. 341–359, 1997.

[26] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[27] A. Farasat, M. B. Menhaj, T. Mansouri, and M. R. S. Moghadam, ‘‘ARO:
A new model-free optimization algorithm inspired from asexual reproduc-
tion,’’ Appl. Soft Comput., vol. 10, no. 4, pp. 1284–1292, Sep. 2010.

[28] J. Kennedy, R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. Int. Conf.
Neural Netw., vol. 4, Nov./Dec. 1995, pp. 1942–1948.

[29] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Oct. 2007.

[30] X.-S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ in Nature
Inspired Cooperative Strategies for Optimization (NICSO), Springer, 2010,
pp. 65–74.

[31] X.-S. Yang and S. Deb, ‘‘Cuckoo search via Lévy flights,’’ in Proc.
World Congr. Nature Biologically Inspired Comput. (NaBIC), Dec. 2009,
pp. 210–214.

[32] S. Mirjalili, S. M. Mirjalili, and A. Lewis, ‘‘Grey wolf optimizer,’’ Adv.
Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.

[33] S. Mirjalili, ‘‘The ant lion optimizer,’’ Adv. Eng. Softw., vol. 83, pp. 80–98,
May 2015.

[34] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[35] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, ‘‘GSA: A gravitational
search algorithm,’’ Inf. Sci., vol. 179, no. 13, pp. 2232–2248, Jun. 2009.

[36] B. Alatas, ‘‘ACROA: Artificial chemical reaction optimization algo-
rithm for global optimization,’’ Expert Syst. Appl., vol. 38, no. 10,
pp. 13170–13180, Sep. 2011.

[37] V. K. Patel and V. J. Savsani, ‘‘Heat transfer search (HTS): A novel
optimization algorithm,’’ Inf. Sci., vol. 324, pp. 217–246, Dec. 2015.

[38] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-Atabany, and S.
Mirjalili, ‘‘Henry gas solubility optimization: A novel physics-based algo-
rithm,’’ Future Gener. Comput. Syst., vol. 101, pp. 646–667, Dec. 2019.

[39] H. N. Nsaif Al-Sammarraie and D. N. A. Jawawi, ‘‘Multiple black hole
inspired meta-heuristic searching optimization for combinatorial testing,’’
IEEE Access, vol. 8, pp. 33406–33418, 2020.

[40] N. Ramli, R. R. Othman, Z. I. A. Khalib, and M. Jusoh, ‘‘A review on
recent T-way combinatorial testing strategy,’’ in Proc. MATEC Web Conf.,
vol. 140, 2017, Art. no. 01016.

192302 VOLUME 8, 2020

A. A. Hassan et al.: Combinatorial Test Suites Generation Strategy Utilizing the Whale Optimization Algorithm

[41] J. Lin, C. Luo, S. Cai, K. Su, D. Hao, and L. Zhang, ‘‘TCA: An effi-
cient two-mode meta-heuristic algorithm for combinatorial test generation
(T),’’ in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE),
Nov. 2015, pp. 494–505.

[42] H. Wu, C. Nie, F.-C. Kuo, H. Leung, and C. J. Colbourn, ‘‘A discrete
particle swarm optimization for covering array generation,’’ IEEE Trans.
Evol. Comput., vol. 19, no. 4, pp. 575–591, Aug. 2015.

[43] K. Rabbi, Q. Mamun, and M. R. Islam, ‘‘An efficient particle swarm
intelligence based strategy to generate optimum test data in t-way test-
ing,’’ in Proc. IEEE 10th Conf. Ind. Electron. Appl. (ICIEA), Jun. 2015,
pp. 123–128.

[44] Y. Alsariera, A. Nasser, and K. Zamli, ‘‘Benchmarking of Bat-inspired
interaction testing strategy,’’ Int. J. Comput. Sci. Inf. Eng. (IJCSIE), vol. 7,
pp. 71–79, May 2016.

[45] A. K. Alazzawi, A. A. B. Homaid, A. A. Alomoush, and A. A. Alsewari,
‘‘Artificial bee colony algorithm for pairwise test generation,’’ J. Telecom-
mun., Electron. Comput. Eng.,vol. 9, nos. 1–2, pp. 103–108, 2017.

[46] A. K. Alazzawi, H. Md Rais, and S. Basri, ‘‘Artificial bee colony algorithm
for t-Way test suite generation,’’ in Proc. 4th Int. Conf. Comput. Inf. Sci.
(ICCOINS), Aug. 2018, pp. 1–6.

[47] F. Din and K. Z. Zamli, ‘‘Fuzzy adaptive teaching learning-based optimiza-
tion strategy for pairwise testing,’’ in Proc. 7th IEEE Int. Conf. Syst. Eng.
Technol. (ICSET), Oct. 2017, pp. 17–22.

[48] A. A. Alsewari, L. M. Xuan, and K. Z. Zamli, ‘‘Firefly combinatorial
testing strategy,’’ in Proc. Sci. Inf. Conf. Cham, Switzerland: Springer,
2018, pp. 936–944.

[49] A. A. B. Homaid, A. A. Alsewari, A. K. Alazzawi, and K. Z. Zamli, ‘‘A
kidney algorithm for pairwise test suite generation,’’ Adv. Sci. Lett., vol. 24,
no. 10, pp. 7284–7289, Oct. 2018.

[50] A. B. Nasser, F. Hujainah, A. A. Al-Sewari, andK. Z. Zamli, ‘‘An improved
jaya algorithm-based strategy for t-way test suite generation,’’ in Proc. Int.
Conf. Reliable Inf. Commun. Technol. Cham, Switzerland: Springer, 2019,
pp. 352–361.

[51] B. S. Ahmed and K. Z. Zamli, ‘‘PSTG: A T-Way strategy adopting particle
swarm optimization,’’ in Proc. 4th Asia Int. Conf. Math./Anal. Model.
Comput. Simul., 2010, pp. 1–5.

[52] S. K. Harikarthik, V. Palanisamy, and P. Ramanathan, ‘‘Optimal test suite
selection in regression testing with testcase prioritization using modified
ann and whale optimization algorithm,’’ Cluster Comput., vol. 22, no. S5,
pp. 11425–11434, Sep. 2019.

[53] B. S. Ahmed, L. M. Gambardella, W. Afzal, and K. Z. Zamli, ‘‘Handling
constraints in combinatorial interaction testing in the presence of multi
objective particle swarm and multithreading,’’ Inf. Softw. Technol., vol. 86,
pp. 20–36, Jun. 2017.

[54] J. Stardom, ‘‘Metaheuristics and the search for covering and packing
arrays [microform],’’ Ph.D. dissertation, Dept. Math., Simon Fraser Univ.,
Burnaby, BC, Canada, 2001.

[55] B. S. Ahmed, K. Z. Zamli, and C. P. Lim, ‘‘Constructing a t-way interaction
test suite using the particle swarm optimization approach,’’ Int. J. Innov.
Comput., Inf. Control, vol. 8, no. 1, pp. 431–452, 2012.

[56] A. R. A. Alsewari and K. Z. Zamli, ‘‘Design and implementation of
a harmony-search-based variable-strength t-way testing strategy with
constraints support,’’ Inf. Softw. Technol., vol. 54, no. 6, pp. 553–568,
Jun. 2012.

[57] S. Esfandyari and V. Rafe, ‘‘A tuned version of genetic algorithm for
efficient test suite generation in interactive t-way testing strategy,’’ Inf.
Softw. Technol., vol. 94, pp. 165–185, Feb. 2018.

[58] A. K. Alazzawi, H. Md, and S. Basri, ‘‘ABCVS: An artificial bee colony
for generating variable T-Way test sets,’’ Int. J. Adv. Comput. Sci. Appl.,
vol. 10, no. 4, pp. 259–274, 2019.

[59] J. Czerwonka, D. Butt, and C. Gens, ‘‘Pairwise testing in real word: prac-
tical extensions to test case generators,’’ in Proc. 24th Pacific Northwest
Softw. Qual. Conf., 2006, pp. 419–430.

[60] J. Torres-Jimenez and J. C. Perez-Torres, ‘‘A greedy algorithm to con-
struct covering arrays using a graph representation,’’ Inf. Sci., vol. 477,
pp. 234–245, Mar. 2019.

[61] T. Mahmoud and B. S. Ahmed, ‘‘An efficient strategy for covering array
construction with fuzzy logic-based adaptive swarm optimization for soft-
ware testing use,’’ Expert Syst. Appl., vol. 42, no. 22, pp. 8753–8765,
Dec. 2015.

[62] S. Mirjalili, ‘‘SCA: A sine cosine algorithm for solving optimization
problems,’’ Knowl.-Based Syst., vol. 96, pp. 120–133, Mar. 2016.

[63] R. Venkata Rao, ‘‘Jaya: A simple and new optimization algorithm for
solving constrained and unconstrained optimization problems,’’ Int. J. Ind.
Eng. Comput., vol. 7, no. 1, pp. 19–34, 2016.

[64] X.-S. Yang, ‘‘Flower pollination algorithm for global optimization,’’
in Proc. Int. Conf. Unconventional Comput. Natural Comput. Berlin,
Germany: Springer, 2012, pp. 240–249.

[65] A. H. Gandomi, X.-S. Yang, and A. H. Alavi, ‘‘Cuckoo search algorithm:
AMetaheuristic approach to solve structural optimization problems,’’ Eng.
with Comput., vol. 29, no. 1, pp. 17–35, Jan. 2013.

[66] E. K. Burke and Y. Bykov, ‘‘The late acceptance hill-climbing heuristic,’’
Eur. J. Oper. Res., vol. 258, no. 1, pp. 70–78, Apr. 2017.

[67] I. Segall, R. Tzoref-Brill, and E. Farchi, ‘‘Using binary decision dia-
grams for combinatorial test design,’’ in Proc. Int. Symp. Softw. Test.
Anal. (ISSTA), 2011, pp. 254–264.

[68] A. Yamada, A. Biere, C. Artho, T. Kitamura, and E.-H. Choi, ‘‘Greedy
combinatorial test case generation using unsatisfiable cores,’’ in Proc.
31st IEEE/ACM Int. Conf. Automated Softw. Eng. (ASE), Sep. 2016,
pp. 614–624.

[69] A. Sabbaghi and M. R. Keyvanpour, ‘‘A novel approach for combinatorial
test case generation using multi objective optimization,’’ in Proc. 7th Int.
Conf. Comput. Knowl. Eng. (ICCKE), Oct. 2017, pp. 411–418.

ALI ABDULLAH HASSAN was born in
Hadhramout, Yemen, in 1987. He received the
B.Sc. degree in computer science from the Inter-
national Islamic University Malaysia, in 2012,
and the M.Sc. degree in computer science from
Universiti Teknologi Malaysia, in 2014. Since
2018, he has been a Researcher with the Data
Mining and Optimization Research Group, Center
for Artificial Intelligence Technology, Faculty of
Information Science and Technology, Universiti

Kebangsaan Malaysia (UKM), Malaysia. His research interests include arti-
ficial intelligence, particularly machine learning, optimization algorithms,
and Software testing applications.

SALWANI ABDULLAH received the B.Sc. degree
in computer science from Universiti Teknologi
Malaysia, the master’s degree specializing in
computer science from Universiti Kebangsaan
Malaysia (UKM), and the Ph.D. degree in com-
puter science from The University of Nottingham,
U.K. She is currently a Professor of computational
optimization with the Faculty of Information Sci-
ence and Technology, UKM. Her research inter-
ests include artificial intelligence and operation

research, particularly computational optimization algorithms (heuristic and
meta-heuristic, evolutionary algorithms, local search) that involve different
real world applications for single and multi-objective continuous and com-
binatorial optimization problems, such as timetabling, scheduling, routing,
nurse rostering, dynamic optimization, data mining problems (feature selec-
tion, clustering, classification, time-series prediction), intrusion detection,
and search-based software testing.

KAMAL Z. ZAMLI (Member, IEEE) received the
B.Sc. degree in electrical engineering from the
Worcester Polytechnic Institute, USA, in 1992,
the M.Sc. degree in real-time software engineer-
ing from Universiti Teknologi Malaysia, in 2000,
and the Ph.D. degree in software engineering
from Newcastle University, Newcastle upon Tyne,
U.K., in 2003. He is currently a Professor
attached to the Faculty of Computing, Univer-
sity Malaysia Pahang. His main research interests

include search-based software engineering, combinatorial software testing,
and computational intelligence.

ROZILAWATI RAZALI is currently an Associate
Professor in information system with the Faculty
of Information Science and Technology, Univer-
siti Kebangsaan Malaysia. Her research interests
include software engineering, human–computer
interaction, and information systems (business
informatics).

VOLUME 8, 2020 192303

