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ABSTRACT Location awareness and navigation promote varieties of emerging applications of mobile
collaborative multiple uncrewed aerial vehicles (UAVs). Cooperative UAVs fuse the global position system
(GPS), inertial navigation systems (INS), peer to peer ranging radios derived from relative navigation of
ultra-wideband (UWB) under complicated environments. Those information sources can be incorporated
into spatiotemporal cooperation posited by the intra-user measurement of INS and GPS, and the inter-user
measurement of the relative navigation of swarm UAVs. This paper considers the localization and navigation
of multiple collaborative UAVs in networks with GPS/INS/UWB jammers in the case that the measurements
are missed or randomly delayed by a sampling period. In a navigation situation with a partially denied
navigation signals (e.g.GPS Jammers for some UAVs, UWB jammers for others, etc.), we propose an
improved method of cooperation location for the swarm, allowing measurement jammers concerning the
normal sigma point belief propagation (SPBP). This algorithm integrates message passing based on the
Bayesian framework, a sigma point belief propagation of random packet loss (SPBP-RPL) to exploit
spatiotemporal cooperation and measurement knowledge. Compared with existing general sigma point
belief propagation, the advantages of the novel method are validated through a simulation of swarm
UAVs with GPS/INS/UWB. Results show that the algorithm of combining spatiotemporal cooperation with
measurement knowledge reduces the location uncertainty of swarm UAVs agents and improves location
accuracy remarkably.

INDEX TERMS Collaborative networks belief propagation, location awareness and navigation for swarm
UAVs, randomly delayed measurements, message-passing, sigma point belief propagation.

I. INTRODUCTION
Collaborative location awareness and navigation of
assembled agents promote emerging applications of mobile
multiple uncrewed aerial vehicles (UAVs) in scientific
research [1], autonomous driving [2], [3], maritime situ-
ational awareness [4], communication relay [5] and bat-
tlefield surveillance [6]. Collaborative swarm UAVs can
ensure the agents work collectively toward a common goal
safely and reliably [4]. The Collaborative UAVs fuse GPS,
inertial navigation systems (INS) [7], and peer to peer
ranging-measurements derived from relative navigation of
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ultra-wideband (UWB) under complicated environments.
Those information sources can be incorporated into spa-
tiotemporal cooperation posited by the intra-user measure-
ment of INS and GPS, and the inter-user measurement
of the relative navigation of swarm UAVs. Especially in
GPS-denied environments, the tightly coupled technology
of UWB and INS are substantially efficient for short and
intermediate-range localization [8]. The IoT techniques are
essential for enabling those agents to share the mentioned
measurements and messages amongst themselves [9].

The powerful collaborative localization algorithms have
been mapped on graphical models by extensive measures,
developing various message passing and sequential estima-
tion strategies on Bayesian strategy.
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A net message-passing schedule algorithm, in particular,
the sum-product algorithm over a wireless network
(SPAWN), is a general Bayesian framework of the col-
laborative location. The accuracy of the algorithm was
determined by the belief propagation of message-passing
[10]. Various belief propagations exhibit superior empirical
results in different scenarios. The sigma point belief prop-
agation (SPBP) message passing scheme was proposed to
approximate Bayesian estimation’s marginalization corre-
sponds to loopy factor graphs. SPBP requires significantly
fewer computations and communications compared with
existing nonparametric (particle-based) BP [11].

Meanwhile, Sigma point belief propagation (SPBP) was
introduced into a scalable algorithm for network localiza-
tion and synchronization [12]. Unfortunately, due to the net-
work congestion of communication, message transmission
misadventure may come along measurements transmission
delays, packet dropouts and missing in an application envi-
ronment. Message passing algorithms have been enabled by
multitarget tracking, which can cope with missed, clutter
detections [13]. Self-tuning algorithms were developed using
belief propagation for multi-sensor and multitarget track-
ing for unknown model parameters, which dealt with the
unknown association measurements affected by false alarms
and missed-detections [14].

Due to an unknown number of objects and agents,
Multitarget tracking (MTT) has to infer the states of these
agents obligatorily from measurements, which is different
from collaborative navigation. Those swarm UAVs serve as
the Communication and Navigation Networks (CNN), and
navigation autonomously is an exact understanding number
of static andmoving cooperative agents. The fusion algorithm
used for jammers measurement plays a critical role in the
state-of-the-art swarm UAVs. A large number of scholars
in UAVs have conducted relevant research in recent years,
including GPS with distance measuring sensors [15], [16],
machine learning [10], and filtering techniques [17]. The
researchers have proposed an algorithm of re-localizing UAV
with a malfunction in its GPS receiver, which equipped the
most of any other healthy UAVs [10]. However, the algo-
rithm did not mine additional information about the jammer
measurements for the scenario.

A Variational Bayesian (VB) based adaptive Kalman fil-
ter was designed with unknown the Bernoulli random vari-
able and probabilities measurement noise [18]. However, the
algorithm-established a master-slave cooperative localization
framework, which was unpractical for network localization
and navigation (NLN) due to decentralized network topol-
ogy and the limited wide-scale in parallel. Moreover, UAVs
are interestingly foresighted as an essential element of the
Internet of Things, aiming at enabling measuring anything
anytime and anywhere. The body of swarm UAVs should be
considered a virtual entity, or UAVs -IoT [15]. Generally, col-
laborative multiple UAVs location and navigation in-network
with jammers are planned for physical applications. Bayesian
algorithms dealing with the localization of GPS jammers

and a receiver’s network were proposed in [19], [20]. The
proposed algorithms for multiple GPS jammers formulated a
bipartite graph to the weighted Gaussian probability hypoth-
esis density based on particle belief propagation, required
from the computational and communication resources. To our
knowledge, in general, real-time must be compulsory. There
is still short of a unified framework to fully simultaneously
collaborate, localize, and measure intermittently for swarm
UAVs. To solve the mentioned matter above, we propose a
sigma point belief propagation of random packet loss (SPBP-
RPL) to exploit spatiotemporal cooperation andmeasurement
knowledge.

In our prior work [21], the Gaussian filter framework
with intermittent measurements [22] was established, and
the sequence of conditional error covariance was proved
to be stochastically bounded. In this paper, the techniques
address the message passing scheme on belief propagation
with measurement jammers. In a navigation situation with
partially denied navigation signals (e.g., GPS Jammers for
some UAVs, UWB jammers for others, etc.), we propose an
improved cooperation location for the swarm, allowing mea-
surement jammers concerning the expected sigma point belief
propagation (SPBP) [23]. We developed a graphical frame-
work swarm UAVs with multiple measurement jammers
intermittently based on spatiotemporal cooperation and mea-
surement knowledge. We derived an SPBP-RPL filter, which
formulates ameasurement-estimation resolution involving all
the UAVs augmented agent states.

Our contributions are presented as follows.
1. SPBP-RPL calculates the posterior probability dis-

tribution of the measurement jammer process. The noise
state of multiple measurement jammers is expanded as
association variables. A further principle is a definition
of ‘‘UAVs augmented agent states,’’ which involves all
the UAVs agent states and multiple measurement jammer
variables.

2. SPBP-RPL approximates the localization precision of
SPBP when measurement vectors arrive on time and in
orderly. SPBP-RPL with measurement jammers can degrade
to the standard SPBP without measurement jammers while
the probability of delay is zero.

The novel method’s advantages are validated through a
simulation of swarm UAVs with GPS/INS/UWB compared
with that of existing general sigma point belief propaga-
tion. The paper is organized in the following. In Section II,
we develop the system model of swarm UAVs and formu-
late the problem. In Section III, we elaborate on the SPBP-
RPL message-passing scheme, including a graphical model
of measurement jammers, collaborative relative navigation
using belief propagation algorithm, and SPBP-RPL correc-
tion operation. Section IV verifies the proposed theoretical
proposal. We conclude in Section V with a discussion.

II. SYSTEM MODEL AND PROBLEM FORMULATION
UAVs’ collaborative navigation and positioning systems
are modeled as multiple mobile agent nodes and various
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anchor points. Each mobile node self localizes in scenarios.
Its intra-user measurements are obtained from the accelera-
tion and angular velocity of inertial navigation systems (INS)
to perform strap-down calculations. GPS signals are fed
to correct the accumulated errors by the INS. Besides,
UWB systems, namely inter-user measurements, accomplish
robust communication and precision relative measurements
simultaneously. UAVs in IoT have the capability of self-
location and relative measure independent of the intra-user
measures.

A. SYSTEM MODEL
We use relative measurements to modify the following
errors of INS. Consider a general Gaussian process, X =
{x(t)1 , · · · , x

(t)
k · · · , x

(t)
K } is a stochastic variable, whose real-

ization x = {x(t)1 , · · · , x
(t)
k · · · , x

(t)
K } is swarm UAVs vari-

able labeled finite sets of agent state. The state of the
k-th UAV in the agent network is indicated by the vector
x(t)k ∈ Nk at continuous time t , x(n)k at discrete-time n ∈
{0, 1, 2, . . .}, and its neighbor is Nk = {l1, l2, . . . , l|Nk |}.
We denote PDFs as f (·) and h(·), which are error estima-
tion state equations and measurement equations of integrated
navigation, respectively. Swarm UAVs using GPS generates
measurements subducted intra-user measurements of INS,
which is denoted as zself = {z

(t)
self,1, · · · , z

(t)
self,k · · · , z

(t)
self,K }.

It z(t)self,k is the GPS measurement of goal UAV k at time t,
which is a general positioning or velocity match in this
paper.

Inter-user measurements obtained via UWB ranges among
users subducted intra-user measures of INS denotes zrel =
{z(t)rel,1, · · · , z

(t)
rel,k · · · , z

(t)
rel,K }. UAVs are distributed nutrition

among its victims as well as to coordinate the operations of
relief teams. For each agent k ∈ {1, 2, . . . ,K } and its team,
li ∈ {1, 2, . . . ,K }\{k} k ∈ {1, 2, . . . ,K }{k, li} ∈ εg(·) is the
UWB measurement PDF.

We consider pairwise measurements as two cases follow.
Case 1. Swarm UAVs may be mobile and pairwise mea-

surements between UAV agents and anchors are given.

z = g(xk,li ) = g(xk , xli )+ v(t)rel,k,li
= norm(pINSk − panchorli )− norm(pagent_UWB

k − panchorli )

+ v(t)rel,k,li (k, li) ∈ ε (1)

Those swarm UAVs are mobile agents labeled
‘‘agent_UWB,’’ and those stationary UAVs are the anchors.
These UAVs fitting in GPS/INS/UWB are unifiedmathemati-
cal coordinated frames as ENU. ENU=East, North, Up. pINSk,j
is the position calculated by the intra-user measurement of
INS and GPS, and that delta δpk,j is the position error of the
state of INS integrated navigation. The physical ranges got
from UWB here are labeled the norm (pagent_UWB

k − panchorli ).
The navigation platform provides high-precision positioning
via UWB, which can be obtained to compensate for the
position calculated by INS or GPS / INS combined navigation

FIGURE 1. The system of multiple swarm UAVs using GPS/INS/UWB.

as follows.

norm(pagent_UWB
k − panchorli )

=

√ ∑
j=E,N ,U

(p
UAV

k,j + δpk,j)− p
anchor
li,j )2 (2)

Case 2. Swarm UAVs may be mobile, and measurements in
pairs between cooperative UAV agents are formulated during
runtime as follows.

z = g(xk , xli )+ v(t)rel,k,li
= norm(pINSk − pINSli )− norm(pagent_UWB

k − pagent_UWB
li )

+ v(t)rel,k,li (k, li) ∈ ε (3)

norm(pINSk − pINSli ) is the relative ranging between the goal

agent navigation platform and its team. norm(pagent_UWB
k −

pagent_UWB
li ) is the relative reaching via UWB, and the

navigation platform provides high-precision positioning via
UWB, which can be obtained through position compensation
through INS solution or GPS / INS combined navigation
solution according to

norm(pagent_UWB
k − pagent_UWB

li )

=

√ ∑
j=E,N ,U

((p
UAV

k,j + δpk,j)− (p
UAV

li,j + δpli,j))
2 (4)

B. PROBLEM STATEMENT
The swarm UAVs navigation schedule is given in Figure 1,
which is illustrated as a general message schedule for col-
laborating navigation and location in GPS/INS/UWB het-
erogeneously. Figure 1 introduces a message schedule that
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UAV node self-locates thanks to GPS/INS in absolute par-
allel navigation, and multiple navigation agents compute for
relative location in collaboration. Both intra-user GPS/INS
measures and inter-user UWB/INS measures constraint of
the spatial and temporal message transfer. When intra-user
measures or inter-user measures suffer from intermittent jam-
mer, GPS/INS individual infers to intermittent measurement
update in parallel, and all UWB/INS conclude to intermittent
measurement update in collaborative. Our previous paper has
proposed the Gaussian filter for an individual platform with
intermittent measurement based on the Bayes framework.
We develop a Bayesian scheme for spatiotemporal collabora-
tive navigation (the corresponding red estimator, defined as
SPBP-RPL) due to heterogeneous measurement intermittent
jammers.

Some fundamental assumptions have illustrated as follows,
which are rational in this context.

a) The agents’ state is independent priority and movement
in the way of the memoryless random walk.

p
(
x(0)

)
=

∏N

i=1
p(x(0)i );

p
(
x(0:T )

)
= p

(
x(0)

) T∏
t=1

p(x(n)|x(n−1));

p(x(n)|x(n−1)) =
N∏
i=1

p(x(n)i |x
(n−1)
i ) (5)

b) Cooperative localization consists of absolute internal
navigation and relative location, independent, considering the
states.

p
(
z(1:T )rel |z

(0:T )
rel , x(0:T ), z(1:T )self

)
= p

(
z(1:T )rel |z

(0:T )
rel , x(0:T )

)
(6)

The state vector of a collaborative platform of kth goal
agent and the neighbors on the communication link is xnk =
{xTk x

T
l1
xTl2 · · · x

T
l|Nk |
} where {k, li} ∈ εk ∈ {1, 2, . . . ,K }li ∈

{1, 2, . . . ,K }\{k}.
The posterior probability of Bayesian estimation is estab-

lished for a collaborative navigation filter [11].
p
(
x(0:T )|z(1:T )

)
∝ p

(
x(0:T ), z(1:T )self

)
p
(
z(1:T )rel |x

(0:T )
)
is fac-

torized as:

p
(
x(0:T )|z(1:T )

)
∝ p(x(0))

T∏
t=1

{p
(
x(t)|x(t−1)

)
× p

(
z(t)self|x

(t), x(t−1), z(t−1)self

)
× p

(
z(t)rel|x

(t), z(t−1)rel

)
} (7)

p(x(t)|x(t−1)) is independent movement from p(z(t)self|x
(t),

x(t−1), z(t−1)self ) and p(z(t)self|x
(t), z(t−1)self ), hence partial expression

in (7) can be factorized as.

p
(
z(t)self|x

(t), x(t−1), z(t−1)self

)
=

T∏
n=1

p
(
x(t)|x(t−1)

)
× p

(
z(t)self|x

(t), z(t−1)self

)
(8)

FIGURE 2. The factor graph of p
(
x(0:2)|z(1:2)

rel , z(1:2)
self

)
.

p
(
z(t)rel|x

(t), z(t−1)rel

)
=

T∏
n=1

p
(
z(t)rel,k |x

(t), z(t−1)rel,k

)
(9)

The factor graph p
(
x(0:2)|z(1:2)

)
in collaboration navigation

filter is structured as Figure 2.
Some simplified form in f (x(0)) = p(x(0)) and

h(t−1)k = p
(
x(t)k |x

(t−1)
k

)
p
(
z(t)self,k |x

(t), x(t−1)k z(t−1)rel , z(t−1)self,k

)
.

The vertices in the corresponding red factor in Figure 2,
t = 1, 2. p

(
z(t)rel|x

(t), z(t−1)rel , z(t−1)self

)
= p

(
z(t)rel,k |x

(t), z(t−1)rel,k

)
=∏

l
g(zk,l |xk , xl)

The Co-navigation filter in the red box is to establish the
posterior probability of Bayesian estimation

f (x|z) ∝
K∏
k=1

f (xk )
K∏

k ′,l∈ε
k ′>l

g(zk ′,l |xk ′ , xl) (10)

c) The measurement z (Here z(t)rel,k is the relative mea-
surement using UWB and is abbreviated as z) transmit-
ting to the filter may suffer multi-step packet dropout or
delay [8][9][24]. Considering the process of fundamental
principles and derivation simplification, we adopted a 1-step
delay model as follows.

y(n) = (1− r (n))z(n) + r (n)z(n−1) n = 0 : T , y(1) = z(1)

(11)

z(n) ∈ Rm is ideal measurement output; y(n) ∈ Rm is a
measured value in reality;r (n) is assumed to be a sequence
of Bernoulli distribution, and its values are 0 and 1, and
Prob{r (n)}is associated with p(n). When r (n) = 0, the system
has obtained the actual observation measurement, and the
observation noise is a presupposed value; when r (n) = 1,
the system has not received the physical observation mea-
surement, and the system uses the measurement value of the
previousmoment instead. It is necessary to estimate theUAVs
state at the current moment and associated observation noise.
SPBP message passing scheme should be modified due to
transmission delays, multiple packet dropouts, and correlated
noises.
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III. SPBP-RPL MESSAGE PASSING SCHEME
Firstly, we elaborate on the SPBP-RPL algorithm that
integrates message-passing based on the Bayesian frame-
work, a sigma point belief propagation of random packet
loss to exploit spatiotemporal cooperation and measurement
knowledge. Secondly, we present the algorithm on the base
of the SPBP-RPL message-passing scheme. Both problem
formulation and assumptions [10] about the Bayesian coop-
erative will be considered. For the sake of the illustration,
we address the graphical model of measurement jammers.
We then deduce the collaborative relative navigation algo-
rithm with GPS/INS/UWB jammers using belief propagation
algorithm. The steps of SPBP-RPL correction operation are
detailed following.

A. THE SPBP-RPL MESSAGE PASSING SCHEME
A marginal approximation is established by using the factor
graph of BP message passing [11][12], and the belief of
variable agent kth b(p)(xnk ) is approximate by a posterior dis-
tribution f (xnk

∣∣znk ), which is suitable for timely measurement,
and p is the number of message iterations.

b(p)(xnk ) ≈ f (xnk
∣∣znk ) (12)

The measured value of cooperative relative navigation filters
z(t)rel,k is abbreviated as z(t)k = [z(t)k z(t)l1 z

(t)
l2
· · · z(t)l|Nk |

]T, which
represents the observationalmeasurement with the navigation
platform kth; the measurement value is composed of the pair-
wise measure of the corresponding platform lth associated
with the navigation platform kth:

z(t)rel,k,l = g(xk , xl)+ v(t)rel,k,l {k, li} ∈ ε (13)

z(t)rel,k,l abbreviated as z(t)k,l and discretized z(n)k,l , and fulfilled
g(xk , xl) = g(xl, xk ).
Relative measurements are depending on the adjacent time

slot based on the states of all agents.

p
(
z(1:T )rel |x

(1:T )
)
=

T∏
n=1

p(z(n)rel |z
(n−1)
rel , x(n)k ) (14)

Since the BP message passing in (14) is the physical obser-
vation measurement form. It is difficult to use this method
directly due to the intermittent with unknown measurement
jammers. It is necessary to gather intermittent measurement
information and estimate UAVs state at the current moment,
associated observation noise. (14) is rearranged as

p
(
z(n)rel |z

(n−1)
rel , x(n)

)
=

N∏
i=1

∏
j∈2(n)
→i

p
(
z(n)j→i|z

(n−1)
j→i , r

(n−1)
j→i , x

(n)
k , x

(n)
j

)
(15)

2
(n)
→i is the set of agent nodes. Node i may receive a message

from which during time slot n. z(n)j→i presents that platform i
receives relative ranging observations from platform j.

A posteriori distribution can be described as

p
(
x(0:T ), v(0:T )|z(1:T )rel

)
=

T∏
n=1

p
(
x(n), v(n)|z(n)rel

)
=

T∏
n=1

p
(
x(n), v(n)|z(n)rel , z

(n−1)
rel

)
(16)

The direct posterior PDF p
(
x(n), v(n)|z(n)rel , z

(n−1)
rel

)
is infea-

sibly obtained the state of the mean vector and covari-
ance matrix. In such a situation, one turn to BP message
passing bx(·).

p
(
z(n)rel , z

(n−1)
rel |x

(n), v(n)
)

=

N∏
k=1

∏
j∈2(n)
→k

p
(
z(n)j→k |z

(n−1)
j→k , x

(n)
k , v

(n)
k , x

(n)
j , v

(n)
j

)
(17)

We define x(n)a = [x(n)k v(n)k ]T (17) is rearranged as

p
(
z(n)rel , z

(n−1)
rel |x

(n)
a

)
=

N∏
k=1

∏
j∈2(n)
→k

p
(
z(n)j→k |z

(n−1)
j→k , x

(n)
a,k , x

(n)
a,j

)
(18)

The joint PDF can obtain BP message passing

b(p)(x(n)a,k ) ∝ f (x
(n)
a,k |z

(n)
a,k )

=

∫
b(p)(x(n)a,k )dx

∼k
a,k

=

∫
g(z(n)a,k

∣∣∣x(n)a,k , z(n−1)a,k )f (p−1)(x(n)a,k )dx
∼k
a,k (19)

where x(n)a,k =
[
[x(n)a,k ]

T [x(n)a,Nk1 ]
T [x(n)a,Nk2 ]

T
· · · [x(n)aNk ]

T
]T

x(n)a,Nk1
is the first collaborative platform adjacent to the goal platform
k. x∼ka,k is express x(n)a,k after removing [x(n)k v(n)k ]T . Define
its neighbor set as Nk = {l1, l2,. . . l|Nk |} of node k ∈
{1, 2, · · ·K } include all l ∈ {1, 2, · · ·K }\{k}. f (p−1)(x(n)a,k )

and g(z(n)a,k

∣∣∣x(n)a,k , z(n−1)a,k ) in (19) can be approximate as the
following.

f (p−1)(x(n)a,k ) ∝ f (xa,k )
∏
l∈Nk

n(p−1)l→k (xa,k ) (20)

g(z(n)a,k |x
(n)
a,k , z

(n−1)
a,k ) =

∏
l∈Nk\{k}

g(z(n)k,l

∣∣∣z(n−1)k,l , x(n)a,k , x
(n)
a,l) (21)

B. THE GRAPHICAL MODEL OF MEASUREMENT
JAMMERS
Bayesian estimation of the belief of node k at iteration p is
deduced in [ [24]] for the sake of SPBP

b(p)
x(n)k
∝ f (x(n)k )

∏
i∈N (n)

k

m(p)

n(n)i→k→x(n)k
(x(n)k )
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FIGURE 3. SPBP-RPL using information interaction factor diagram due to
jammers measured.

where m(p)

n(n)i→k→x(n)k
(x(n)k ) =

∫
g(z(t)l→k |x

(t)
l , x

(t)
k )n(p−1)l→k (x(t)l )dxl

l ∈ Nk with

n(p−1)l→k (x(t)l ) = f (xl)
∏

i∈N (t)
k \{k}

m(p−1)

n(t)i→k→x(t)k
(x(t)k ) (i, k) ∈ ε

It is initialized the recursion by setting n(0)l→k (x
(t)
l ) as the

prior of x(0)l . Whenmeasurement jammers occur during infor-
mation interaction with relative navigation, the proposed
SPBP-RPL message passing differs from the standard SPBP.
The interaction factor diagram of SPBP-RPL message pass-
ing is shown in Figure 3. The arrow represents the direction
of information transfer. The schedule includes the prediction
operation and correct operation. Considering the jammers
in the case that the measurements are missed or randomly
delayed by a sampling period, this algorithm extends the state
of the mean state vector and the measurement noise vector.
We substitute x(n)a,k for x(n)k , gather intermittent information
about the relationship of two adjacent measurement periods
and elaborate the logic of technical research.

The message mh(n−1)k →x(n)k
(·) is computed on the state

model p(x(n)k |x
(n−1)
k ), the message mg(n−2)k ,g(n−1)k →x(n−1)k

(·),

and the absolute measurement likelihood function p(z(n)self,k |

x(n−1), z(n)k ) for the formal prediction operation. For the lat-
ter correction operation, the message mg(n−1)k ,g(n)k →x(n)k

(·) is
computed on the appointed node kth relative measurements
g(z(n)l→k

∣∣∣z(n−1)l→k , x
(n)
a,l, x

(n)
a,k ) between all other nodes and all the

messages n(p)l→k (x
(n)
a,l). The message n(p)l→k (x

(n)
a,l) is computed

on p(x(n)k |x
(n−1)
k ) and the message mn(n)i→k ,n

(n−1)
i→k →x(n)k

(·). The

message m(p)

n(n)l−k ,n
(n−1)
l→k

(·) is required to deliver information in

all nodes, not only the moment but also the last moment.

m(p)

n(n)l→k ,n
(n−1)
l→k

(x(n)k )

=

∫
g(z(t)l→k |z

(t−1)
l→k , x

(t)
a,l, x

(t)
a,k )n

(p−1)
l→k (x(t)a,l)dxa,l (22)

n(p−1)l→k (x(t)a,l)

= f (xa,l)
∏

i∈N (t)
k \{k}

m(p−1)

n(t)i→k ,n
(t−1)
i→k →x(t)k

(x(t)a,k ) (i, k) ∈ ε (23)

The initial n(0)l→k (x
(t)
a,l) = f (x(0)a,l)

b(p)
x(n)a,k
= f (x(n)a,k )

∏
i∈N (n)

k

m(p)

n(n)i→k ,n
(n−1)
i→k →x(n)a,k

(x(n)a,k ) (24)

When zkrel,l→k = zkrel,k→l it concludes that n(p)i→k (x
(n)
a,l) =

b(p)(x(n)a,k ), and (22) can be formulated as

m(p)

n(n)i→k ,n
(n−1)
i→k →x(n)k

(x(n)a,k ) = b(x(n)a,k ) (25)

Since (22) denotes the m(p)

n(n)i→k ,n
(n−1)
i→k →x(n)k

(x(n)a,k ) at iteration p,

we need to calculate (23)

n(p−1)l→k (x(t)a,l)

=

∫
g(z∼k,(t)rel,l→k

∣∣∣x∼k,(t)a,l , z∼k,(t−1)rel,l→k )f (p−1)(x∼ka,k )dx
∼k
a,k (26)

According to(22), (24) can be formulated as

b(p)
x(n)a,k
=

∫
g(z(t)rel,k |x

(t)
a,k , z

(t−1)
rel,k )f (p−1)(x(t)a,k )dx

∼k
a,k (27)

and g(z∼k,(t)rel,l→k

∣∣∣x∼k,(t)a,l , z∼k,(t−1)rel,l→k ) can be driven by

g(z∼k,(t)rel,l→k

∣∣∣x∼k,(t)a,l , z∼k,(t−1)rel,l→k )

=

∏
k ′∈Nl\{k}

g(z(n)k ′,l

∣∣∣z(n−1)k ′,l , x(n)a,k ′ , x
(n)
a,l) (28)

g(z(t)rel,k |x
(t)
a,k , z

(t−1)
rel,k ) in (27) is formulated accordingly (21).

Employing (20)-(28), b(p)
x(n)a,k

can be calculated recursively

and x(n)a,k intercepted x(n)k to update the navigation platform
information.

C. COLLABORATIVE RELATIVE NAVIGATION WITH
GPS/INS/UWB JAMMERS USING BELIEF PROPAGATION
ALGORITHM
In our case, there are two classes of measurement:

a). The intra-usermessages of INS andGPS, h(ztk,self|z
t−1
k,self,

xtk ), including INS measurements obtained from acceleration
and angular velocity to perform strap-down calculations and
GPS associated with the position and velocity measurements.

b). The inter-user messages mn(n)i→k ,n
(n)
i→k

(x(n)k ), associated
measurements of the relative navigation of swarm UAVs
using UWB.

The proposed belief propagation concludes the sum
of sum-product messages and the SPBP-RPL correction
operation. The steps of belief propagation are developed
below.

step 1: for n = 1 to T do: (where T is Total time)
step 2: Initialize x(0)i ,∀i, p

(0), i ∈ Nk (where Nk is the Total
number of mobile navigation platform)
Absolute navigation platforms
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step 3: for node k = 1 to Nk in parallel

nhn−1
k
→xnk

(xnk )

∝

∫
f (xtk |x

t−1
k )nxt−1

k
→ht−1

k
(xtk )h(z

t
k,self|z

t−1
k,self, x

t
k )dx

∼l
l l ∈ Nk

step 4: end parallel
Cooperative Navigation Platforms

step 5: Initialize b(p=0)
x(n)a,k
= nh(n−1)a,k →x(n)a,k

(x(n)a,k )

step 6: for p = 1: Niter in iterationdo: (where Niter is the
Total iteration)

step 7: for node k = 1 to Nk in parallel
step 8: broadcast b(p−1)

x(n)a,k
(x(n)a,k ) to its neighbors l. {k, l} ∈

ε, l ∈ Nk→
step 9: receive b(p−1)

x(n)a,l
(x(n)a,l), from its neighbors l. {k, l} ∈

ε, l ∈ N→k
step 10: (22) is utilized to interact with the informa-

tion between adjacent navigation platforms and
m(p−1)

n(n)i→k ,n
(n−1)
i→k

(x(n)a,k ) is derived.

Step 11: (27) is utilized to renovate b(p)
x(n)a,k

and x(n)k is inter-

cepted form x(n)a,k .
step 12: end parallel
step 13: end iteration
step 14: nodes i = 1 to N , x(0)i ,∀i in parallel
step 15: cooperative navigation message update n(n)

x(n)k →h(n)k
(x(n)k ) = b(Niter )

x(n)k
(x(n)k )

step 16: end parallel
step 17: end for

The algorithm in step 5- step 16 is detailed in the following
SPBP-RPL correction operation.

D. SPBP-RPL CORRECTION OPERATION
Since the measurements are jammed, it needs to estimate
the posterior PDFs of the state from p(xn|zn), as well as
the posterior PDFs p(vn|zn). The expanded state is x(n)a =

[x(n)k v(n)k ]T , that is, the state vector of a collaborative platform
of goal agent k and the neighbors on the communication link
is x(n)a,k = [x(n)a,k , x

(n)
a,l1
, x(n)a,l2 , · · · , x

(n)
a,l|Nk |

]T .
(20) is approximated as follows.

f (p−1)(x(n)a,k ) ∝ f (xa,k )
n(p−1)l→k (xa,k )∏

l∈Nk
∼ N(µ

(p−1)
xa,k

,C(p−1)
xa,k

),

and the means and covariances in f (p−1)(x(n)a,k ) are µ
(p−1)
xa,k

and

C(p−1)
xa,k

, specified as

µ
(p−1)
xa,k

= (µ(p−1)T

x(n|n)a,k

µ
(p−1)T

x(n|n)a,l1→k

µ
(p−1)T

x(n|n)a,l2→k

. . .µ
(p−1)T

x(n|n)a,l|Nk |
→k

)T (29)

C(p−1)
xa,k

= diag(C(p−1)

x(n|n)a,k

C(p−1)

x(n|n)a,l1→k

C(p−1)

x(n|n)a,l2→k

. . .C(p−1)

x(n|n)a,l|Nk |
→k

)T (30)

The first element in (29) and (30) are the prior PDF f (x(p−1)a ).
The following components received messages from the
neighbors on the communication link. b(p)

x(n)a,k
in (27), it is

calculated accordingly b(p)
x(n)k
∼ N(µ

(p)

x(n|n)k

,C(p)

x(n|n)k

).

Expansion observed noise sequences as state variables
x(t)a,k = [x(t)k v(t)k ]T and discretization x(n)a,k = [x(n)k v(n)k ]T , and

we obtain an approximate SPBP-RPL of p(x(n)a,k

∣∣∣y(n)k ).

y(n) = (1−r (n))z(n) + r (n)z(n−1) n = 0 : N , y(1) = z(1)

(31)

SPBP-RPL describes multiple measurement jammers using
randomly delayed by one step, which is extended to randomly
delayed by two steps. Initialization agent expanded state,

x̂
(n)
a,k=

µ(p)

x̂
(n|n)
k

µ
(p)

v̂(n|n)k

 , C(p)

x̂
(n|n)
a,k

=

 C(p)

x̄x
(n|n)
k

C(p)

xv(n|n)k

(C(p)

xv(n|n)k

)T C(p)

vv(n|n)k

 (32)

Initialization swarm UAVs expended states, (33) and (34),
as shown at the bottom of the next page, And µ(p−1)

x̂
(n|n)
k

=

E[x̂
(n|n)
k |y(n)k ] and µ

(p−1)

v̂
(n|n)
k

= E[x̂
(n|n)
k |y(n)k ],C(p−1)

xv(n|n)k

=

E[x̃
(n|n)
k ṽ

(n|n)
k |y(n)k ], C(p−1)

x̄x
(n|n)
k

= E[x̃
(n|n)
k (x̃

(n|n)
k )T |y(n)k ] where we

define x̃
(n|n)
k = x(n|n)k −x̂

(n|n)
k and ṽ

(n|n)
k = v(n|n)k −v̂

(n|n)
k .

Generally, the derivation of the SPBP-RPL includes the
estimates of state and the measurement noise, which is
updated in each iteration p. We can derivate the functions
following the Bayesian framework of the Gaussian Filter
[22], [25].
Remark 1: Given xax,n+1|nk and Pax,n+1|nk of the mobile

nodes k in each iteration,

ẑ
ax,n+1|n
k =

∫
h(xax,n+1|nk )

×N (xax,n+1|nk ; x̂
ax,n+1|n
k ,Pax,n+1|nk )dxax,n+1|nk

P̂n+1|nzz,m =

∫
(h(xax,n+1|nk ))(·)T

×N (xax,n+1|nk ; x̂
ax,n+1|n
k ,Pax,n+1|nk )dxax,n+1|nk

− (E[zk+1|yk ])(·)T

ẑ
ax,n|n
m = E[zk |yk ]

=

∫
(h(xax,n+1|nk )+ vk )

×N (xax,n+1|nk ; x̂
ax,n+1|n
k ,Pax,n+1|nk )dxax,n+1|nk

P̂n+1|nzz,m =

∫
(h(xax,n+1|nk )+ vk )(·)T

×N (xax,n+1|nk ; x̂
ax,n+1|n
k ,Pax,n+1|nk )dxax,n+1|nk

− (ẑ
ax,n|n
m )(·)T

It can update the measurement noise associated parameters,
v̂
n+1
m , P̂n+1|n+1vv,m ,K n+1|n

v,m , ŷ
n+1|n
m , and P̂n+1|n

ȳy,m
.
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FIGURE 4. SPBP-RPL algorithm diagram due to jammers measure.

Remark 2: Given xax,n|nk and Pax,n|nk of the mobile nodes k
in each iteration,

x̂
ax,n+1|n
k =

∫
f (xax,n|nk )N (xax,n|nk ; x̂

ax,n|n
k ,Pax,n|nk )dxax,n|nk

P̂ax,n|nk =

∫
(f (xax,n|nk ))(·)T

×N (xax,n|nk ; x̂
ax,n|n
k ,Pax,n|nk )dxax,n|nk

− (x̂
ax,n+1|n
k )(·)T

P̂n+1,n|nxz,k =

∫
(f (xax,n|nk ))(h(xax,n+1|nk )+ vk )T

×N (xax,n|nk ; x̂
ax,n|n
k ,Pax,n|nk )dxax,n|nk

−(x̂
ax,n+1|n
k )(ẑ

ax,n|n
k )T

P̂n+1|nxz,k =

∫
(xax,n|nk )(h(xax,n+1|nk ))T

×N (xax,n|nk ; x̂
ax,n|n
k ,Pax,n|nk )dxax,n|nk

− (x̂
ax,n+1|n
k )(ẑ

ax,n+1|n
k )T

It can update the associated state parameters, x̂
ax,n+1|n+1
k ,

P̂n+1|n+1
x̄x,k

, K n+1|n
x,k , P̂n+1|n

x̄y,k
, and P̂n+1|n+1

¯xv,k
.

Remark 3: The expended state at pth iteration x̂
(n)
a,k =

[µ(p)

x̂
(n|n)
k

,µ
(p)

v̂(n|n)k

]T , including noise, is rearranged as the follow-

ing equations,

E[h(xax,n|nk )v(n|n)k |yk ]

=

∫
(h(xax,n|nk ))(v(n|n)k )TN (xax,n|nk ; x̂

ax,n|n
k ,Pax,n|nk )dxax,n|nk

E[f (xax,n|nk )v(n|n)k |yk ]

=

∫
(f (xax,n|nk ))(v(n|n)k )TN (xax,n|nk ; x̂

ax,n|n
k ,Pax,n|nk )dxax,n|nk

The right side of these equations is needed xax,n|nk , which can
be calculated recursively. The recursive algorithm diagram of
SPBP-RPL due to jammers’ measure is illustrated in Figure 4,
and the algorithm is detailed as follows.

The SPBP-RPL correction operation

Step 1: for n = 1 to T, do: (where T is the total time)
Step 2: for p=1 to Niter in iteration (Niter is the total num-

ber of iterations)
idx = −mod(Niter ,2) + 2;
idx1 = mod(p,2) + 1;
idx2 = −mod(p,2) + 2;

µ
(p−1)

x̂
(n|n)
a,k

=

[
µ
(p−1)T

x̂
(n|n)
k

µ
(p−1)T

v̂
(n|n)
k

µ
(p−1)T

x̂
(n|n)

l1→k

µ
(p−1)T

v̂
(n|n)

l1→k

· · · µ
(p−1)T

x̂
(n|n)

l|Nk |
→k

µ
(p−1)T

x̂
(n|n)

l1→k

]T
(33)

C(p−1)

x̂
(n|n)

a,k

= diag(C(p−1)
x̂(n|n)
a,k

C(p−1)
x̂(n|n)
a,l1→k

C(p−1)
x̂(n|n)
a,l2→k

. . .C(p−1)
x̂(n|n)
a,l|Nk |

→k

) (34)
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initial C(p−1)
xa,k
= C(p−1)

xa,k ,idx1
= C(p−1)

xa,k ,idx2
Step 3: ¬ for p = 1 (first iteration index)

Broadcast and receive b(p−1)
x(n)a,k

(x(n)a,k ) together with its

neighbors {k, l} ∈ ε in parallel, then Singular Value
Decomposition is factorized as:

[U, S, V] = svdC(p−1)
xa,k ,idx1

Construct and propagate Sigma points:

ξ
(p)n|n
a,k,i =

[
ξ
x̄,n|n
i,k

ξ
v̄,n|n
i,k

]
=U
√
Sξi+x̂

(p)n|n
a,k,i i = 1 : N ′p

(35)

χ
x̄,n+1|n
i,k = fk (ξ

x̄,n|n
i,k ),

λ
x̄,n+1|n
i,k = hk (ξ

x̄,n|n
i,k ), i = 1 : N ′p (36)

x̂
ax,n+1|n
k,idx =

N ′P∑
i=1

ωiχ
x̄,n+1|n
i,k (37)

P̂ax,n+1|nk,idx1 =

Np′∑
i=1

ωiχ
x,n+1|n
i,k (·)T − x̂

ax,n+1|n
k,idx1 (·)T + Q̂v

(38)

end first iteration ň.
Step 4: Propagate sigma points and calculate

x̂
ax,n+1|n
k,idx and P̂ax,n+1|nk,idx1

Do pth in parallel except for the first iteration (if
p!=1 then do)

x̂
ax,n+1|n
k,idx1 =

N ′P∑
i=0

ωiχ
ax,n+1|n
i,k i = 1 : N ′p (39)

P̂ax,n+1|nk,idx1 =

Np′∑
i=1

ωiχ
ax,n+1|n
i,k (·)T − x̂

ax,n+1|n
k,idx1 (·)T + Q̂k

(40)

End do p th in parallel
Do mobile nodes m=1: Nk in iteration
Considering the order of message passing and iter-
ation schedules, rearrange the element off x̂

ax,n+1|n
k,idx1

and P̂ax,n+1|nk,idx1 then reconstruct x̂
ax,n+1|n
m,idx and

C
(p−1)

x̂a,k,idx1
. Decomposed [U, S, V] = svdC(p−1)

x̂a,k ,idx1

ξ
ax,n+1|n
k,m = U

√
Sξi + x̂

ax,n+1|n
m,idx1 i = 1 : N ′p (41)

2
ax,n+1|n
i,m = hk (ξ

ax,n+1|n
i,m ) i = 1 : N ′p (42)

State and measurement noise estimation update

ẑ
ax,n+1|n
m =

Np′∑
i=0

ωi2
ax,n+1|n
i,m (43)

P̂n+1|n
z̄z,m

=

Np′∑
i=1

ωi2
x,n+1|n
i,m (·)T − ẑ

ax,n+1|n
m (·)T + R̂v

(44)

ẑ
ax,n|n
m =

N ′p∑
i=1

ωi(χ
x̄,n+1|n
i,k + ξ

v̄,n|n
i,k ) (45)

P̂n|n
z̄z,m
=

Np∑
i=1

ωi(χ
x,n+1|n
i,m + ξ

v,n|n
i,k )(·)T

− ẑ
ax,n+1|n
m (·)T+R̂v (46)

P̂n+1|n
x̄z,m

=

Np∑
i=1

ωiξ
ax,n+1|n
k,m (2x,n+1|n

i,m )T

− x̂
ax,n+1|n
k,idx1 (ẑ

ax,n+1|n
m )T (47)

P̂n+1,n|n
x̄z,m

=

Np∑
i=1

ωiχ
x,n+1|n
i,m (χx,n+1|n

i,m + ξ
v,n|n
i,k )T

− x̂
ax,n+1|n
k,idx1 (ẑ

ax,n|n
m )T (48)

According to an agent state vector and measure-
ment vector, the first partition P̂n+1,n|nxz,m is stripped
from P̂n+1,n|n

x̄z,m
, and that of P̂n+1|nxz,m is P̂n+1|n

x̄z,m
, respec-

tively.
taking P̂n+1|n

v̄y,m
= (1− pn)R̂v

P̂n+1|n
ȳy,m

= (1− pn)P̂
n+1|n
z̄z,m

+ pnP̂
n|n
z̄z,m

− (1− pn)pn(ẑ
ax,n+1|n
m − ẑ

ax,n|n
m )(·)T

(49)

K̂ n+1|n
v,m = P̂n+1|n

v̄y,m
(P̂n+1|n

ȳy,m
)−1 (50)

ŷ
n+1|n
m = (1− pn)ẑ

ax,n+1|n
m + pnẑ

ax,n|n
m (51)

P̂n+1|n+1vv,idx2,m = Rv − K̂
n+1|n
v,m P̂n+1|n

ȳy,m
(K̂ n+1|n

v,m )T (52)

v̂
n+1
m,idx2 = K̂ n+1|n

v,m (yn+1m − ŷ
n+1|n
m ) (53)

P̂n+1|nxy,m = (1− pn)P̂n+1|nxz,m + pnP̂
n+1,n|n
xz,m (54)

K̂ n+1|n
x,m = P̂n+1|nxy,m (P̂n+1|n

ȳy,m
)−1 (55)

x̂
ax,n+1|n
m,idx2 = x̂

ax,n+1|n
m,idx1 + K̂

n+1|n
x,m (yn+1 − ŷ

n+1|n
m )

(56)

The m-th partition stripped from P̂ax,n+1|nk,idx1 is

P̂ax,n+1|nk,idx1 , which is fed as follows.

P̂ax,n+1|nk,idx2 = P̂ax,n+1|nk,idx1 − K̂ n+1|n
x,m P̂n+1|n

ȳy,m
(K̂ n+1|n

x,m )T

(57)

then P̂ax,n+1|nk,idx2 is stuck into C(p−1)
x̄xa,k ,idx2

as the m-th

partition, as well P̂ax,n+1|nk,idx1 = P̂ax,n+1|nk,idx

P̂n+1|nxv,idx2,m = −K̂
n+1|n
v,m P̂n+1|n

ȳy,m
(K̂ n+1|n

v,m )T (58)

x̂ax,n+1|n+1m,idxi is stuck into x̂ax,n+1|n+1m,idxi , and P̂n+1|nxv,idx2,m

is trapped into C(p−1)
xva,k ,idx2

as the m-th partition,

P̂n+1|nvv,idx2,m is wedged into C(p−1)

vv(n|n)k

as well, and then
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iteration ordinal number p is increased gradu-
ally. Board and receive messages b(p)

x(n)a,k
(x(n)a,k ) among

UAVs.
End Do m in iteration
End p in iteration

Step 5: if p ==Niter then do
x̂ax,n+1|n+1m,idxi and v̂

ax,n+1|n+1
m,idxi are fed to (33), formu-

lated themean of the extended state vector.C(p)
xa,k ,idxi

andC(p)
xva,k ,idxi

have concluded, and then x̂ax,n+1|n+1m,idxi

and C(p)

x(n|n)a,k

can be recomputed in Eq. (32).

End for

Remark 4: This paper conducts the collaborative jammer
problem in case the measurements are missed or randomly
delayed by a sampling period, and the proposed algorithm
integrates message passing based on the Bayesian framework
of the Gaussian Filter, SPBP-RPL to exploit spatiotemporal
cooperation and measurement knowledge.

IV. SIMULATIONS AND RESULTS
Our paper develops the proposed algorithm’s perfor-
mance requirements in two dynamic scenarios; furthermore,
we investigate the quantifiability of the SPBP-RPL by com-
paring it with the SPBP [12] in network localization and
swarm UAVs collaborative navigation, respectively. The pro-
posed SPBP-RPL algorithm is compared with SPBP if the
measurements are Bernoulli missed or randomly delayed.
Bernoulli’smeasurement sequence is detailed in Figure 5, and
the packet loss probability(r(n) = 1) is up to 80%. When the
agent has not received the physical observation, the agentmay
utilize the previous moment’s measurement value instead.
All two methods make use of the SPAWN message-passing
schedule.

FIGURE 5. The measurement sequence of Bernoulli distribution, its
values 1 signify measurement jammer and vice versa.

A. DYNAMIC SCENARIOS IN-NETWORK WITH UWB
JAMMERS
The simulation is a simple model of cooperative location
for verifying the correctness of the algorithm. The sce-
nario [12] using two anchors and three agents are simulated.
SPBP-Full is the method in [12] when measurement vec-
tors arrive on time and orderly. SPBP is the general SBPP
method suffering from measurement jammers in-network; in

FIGURE 6. The algorithms error of RMSE position and velocity in-network
self-localization.

other words, when the system has not received the physical
observation measurement, the system uses the measurement
value of the previous moment instead. SPBP-RPL is the
proposed method copping with measurement jammer, and
SPBP-RPL-5 and SPBP-RPL-1 differentiate in the iteration
number, respectively.

(a) the position error of the x-axis and the y-axis; (b) the
velocity error of the x-axis and the y-axis.

The average elapsed time of those four implementations
on Intel(R) Core(TM)-i7-7Y75 CPU of Matlab + toolbox
for 100 steps of one-run simulation is about 0.6530 s,
0.6370 s 2.7980 s, and 0.9581 s corresponding to SPBP-
Drop, SPBP-Full, SPBP-RPL-5, and SPBP-RPL-1, respec-
tively. The average RMSE position errors are 1.4850 m,
0.0835 m, 0.0915 m, and 0.0933 m. The first 80 seconds error
curve is shown in Figure 6. Thus, the curve of SPBP-Drop is
severely divergent, and accurate positioning cannot be com-
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FIGURE 7. The trajectory of swarm UAVs.

pleted due to measurement jammers of UWB. SPBP-RPL
is approximate to the self-localization precision of SPBP-
Full, which is capable of handing measurement jammer prob-
lems. SPBP-RPL will build up precision by the number of
iterations comparing SPBP-RPL-5 with SPBP-RPL-1. How-
ever, SPBP-RPL is more complicated than SPBP methods
due to gather intermittent measurement information and esti-
mate UAVs state at the current moment, associated with
observation noise. Thus SPBP-RPL requires significantly
more compute the speed of computer hardware than general
SPBP.

B. DYNAMIC SCENARIOS IN COLLABORATIVE
NAVIGATION OF SWARM UAVs WITH GPS/INS/UWB
JAMMERS
We simulated a cooperative, decentralized, dynamic swarm
UAVs with GPS/INS/UWB navigation using a network of
K = 6, where there are three UAV agents and three anchors.
The absolute navigation outputs of three UAVs swarming
include the position and the velocity, and the altitude. The
state of the system is xk = [δL δλδH δVe δVn δVu ϕeϕnϕu
εxεyεz∇x∇y∇z]T, corresponding to the errors of position,
the velocity and the attitude angle, the constant gyro drift,
the accelerator offset. The trajectory is shown in Figure 7.
The initial position central of swarm UAVs is North latitude
34.25◦ and East longitude 108.91◦ and height 380 m. The
swarm UAVs relative locations are {[0 0 0], [125 625 0],
[625 125 0]}. The static UWB anchors are {[18 20 0],
[20 57 0], [55 18 0]}. The parameters of the IMU sensors
are = 100 ug, w = N (0,(0.001g)2) and ε = 0.3◦/h,

FIGURE 8. The SPBP-Full algorithm error sequence diagrams of position
and velocity in swarm UAVs of three agents.

FIGURE 9. The SPBP- Drop algorithm error sequence diagrams of position
and velocity in swarm UAVs due to measurement jammers.

FIGURE 10. The SPBP-RPL algorithm error sequence diagrams of position
and velocity in swarm UAVs due to measurement jammers.

wε = N (0,(0.1◦/h)2).The GPS signal receiver accuracy
is 5 / 5/ 30 m, which is fed to integrated navigation and
matched the position errors with INS’s intra-user measure-
ments. TheUWBmeasurement error is 0.1m. The probability
of measurement jammers is 80%.
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We compare the proposed SPBP-RPL with SPBP-Full and
SPBP-Drop. The position and velocity errors of the swarm
UAVs versus time are shown in Figure 8-10. Three UAVs
average RMSE position errors of SPBP-Full in Figure 8 are
0.12/0.50 m, 0.32/0.31 m, and 0.3/0.51 m, and the std errors
of which are 0.32/0.52 m, 0.71/0.58 m, and 1.10/0.91 mwhen
all measurements arrive timely. However, the average RMSE
of SPBP-Drop 0.8/1.6 m, 4.0/3.0 m, and 2.5/5.5 m and the
std errors of which are 3.4/8.0 m, 48/65 m and 8.0/8.6 m
in Figure 9 severely divergently due to measurement jam-
mers. In Figure 10, those of SPBP-RPL are 0.36/0.53 m,
0.35/0.37 m, 0,50/0.55 m, and 0.36/0.68 m, 0,75/0.90 m,
1.21/1.00 m, respectively when suffering the same scenario
of measurement jammers. Thus SPBP-RPL can deal with
measurement interference.

V. CONCLUSION
We proposed SPBP-RPL methodology for the case that the
navigation in spatiotemporal cooperative agents suffering
measurement jammer. SPBP-RPL is derived from a Bayesian
framework and based on recurrent measurements and previ-
ous moment measurements. We develop a message passing
of distributed belief propagation on sigma point-based, gath-
ering intermittent measurement information, and estimating
system state at the current moment and associated observa-
tion state. Our simulations validated that the algorithm can
significantly improve collaborative agents’ location precision
in the case of network congestion of communication. The
proposed methodology can be extended to a scalable swarm
involving an unknown specific number of cooperative and
noncooperative navigation agents. Our future work direction
will focus on using an immune optimization algorithm for
network collaboration in a particular range and reducing the
computational burden of the system and extending its flexi-
bility concerning the net swarm size. In future work, we will
experimentally validate results.
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