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ABSTRACT This paper presents a novel low-complexity sequential, blind, pilot-assisted estimator for the
sampling frequency offset (SFO) and the carrier frequency offset (CFO), for orthogonal frequency-division
multiplexing (OFDM) communications. The proposed algorithm processes the received subcarriers to obtain
a cost function which depends only on a single unknown parameter at a time, either the SFO or the CFO,
as well as on a specifically designed auxiliary parameter, while ignoring the noise. Then, by computing the
cost function at a few selected values of the auxiliary parameter, an explicit estimator for each unknown
parameter is derived, thereby avoiding the need for a search. To the best of our knowledge, this is the first
time such a deterministic approach is applied to the joint estimation of the SFO and the CFO. Moreover,
the proposed estimator does not require knowledge of the channel coefficients at the pilot subcarriers,
and achieves good performance with a relatively small number of pilot symbols, which results in a low
computational complexity. Simulation results show that at low computational complexity, there are many
scenarios in which the new estimator achieves smaller estimation errors compared to other existing methods.

INDEX TERMS OFDM, synchronization, carrier frequency offset, sampling frequency offset.

I. INTRODUCTION
Orthogonal frequency-division multiplexing (OFDM) is a
multicarrier modulation scheme which is widely used in
current wireless and wireline communications standards,
and is also a major candidate for future communications
networks [1], [2]. In practical OFDM communications sys-
tems, offsets between the frequencies of the RF oscillators
and of the sampling clocks at the transmitter and at the
receiver, referred to as carrier frequency offset (CFO) and
sampling frequency offset (SFO), respectively, result in a
loss of orthogonality between the subcarriers of the received
OFDM symbols, which induces a loss in communications
performance. It follows that facilitating high rate, reliable
OFDM communications requires a fast and accurate SFO and
CFO estimation [3].

The sensitivity of OFDM performance to SFO and to
CFO has motivated a very large body of works on SFO
and CFO estimation. In the following we focus only on
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a few of the most closely related works: The work in [4]
proposed a pilot-aided blind suboptimal maximum likelihood
(ML)-oriented algorithm for estimating the CFO and the
SFO in OFDM systems, using a one-dimensional grid search,
which leads to an algorithm of a practical complexity. In [5],
data-aided estimation of the CFO and the SFO was realized
based on the Taylor expansion of theML cost function, which
replaced the grid search with the task of finding the roots of
a polynomial. The work in [6] derived an efficient blind CFO
estimator using three values of a cost function, obtained by
oversampling a single OFDM symbol and then applying a
time-shift followed by downsampling, leading to two separate
OFDM symbols used for generating the cost function. In [7]
a low complexity CFO estimator is derived by summing
the products of the magnitudes of received subcarriers over
two consecutive OFDM symbols. Each subcarrier used by
the estimator is constrained to using constant modulus sig-
naling. The estimate is then obtained by computing a cost
function at three distinct values. In [8], a joint estimator of
the SFO and the sampling phase offset is derived by using
an approximate log-likelihood function derived by imposing
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Gaussianity on the received signal component. Then, a least-
squares estimator is derived by further approximating the
log-likelihood function. In [9] SFO and CFO estimation is
derived by using non-uniformly distributed continual pilots.
As non-uniformity of the pilot distribution introduces bias
into the resulting least-squares estimators, the authors sug-
gest to partition the pilots into two subsets such that the
bias is eliminated. Lastly, the work in [10] proposed a blind
CFO and SFO estimator based on taking two fast Fourier
transform (FFT) windows within the same OFDM symbol,
a synchronized window and a shifted window, fromwhich the
conditional distribution of the shifted version given the syn-
chronized version is derived. Then, an estimator for the SFO
based on a single dimensional grid search is obtained and
a further simplified solution is proposed. Subsequently, the
CFO is estimated as a deterministic function of the estimated
SFO. In the current paper we utilize the approach proposed
in [6] for CFO estimation, to derive a very low complexity
blind estimator for the SFO and the CFO. The estimator uses
a small number of pilot symbols for estimating first the SFO.
Then, the estimated SFO is used for eliminating its impact on
the received signal in order to facilitate CFO estimation via a
subsequent low complexity function.

A. MAIN CONTRIBUTIONS
In this work we derive a blind, pilot-assisted, sequential SFO
and CFO estimation scheme. As the optimal joint SFO and
CFO estimation scheme has a high computational complex-
ity, see e.g., [4], our focus in this work is on deriving an
estimation algorithm whose performance is superior to that
of the state-of-the-art, while maintaining a low computational
complexity, as compared to the state-of-the-art. The proposed
estimation scheme applies a specifically designed processing
to the received signal, while ignoring the additive noise, and
assuming the channel remains approximately the same over
two subsequent symbols. The first processing eliminates the
dependence of the processed samples on the CFO and leads to
an explicit SFO estimator. Subsequently, the estimated SFO is
used by a second processing to obtain two explicit estimators
for the CFO. By obtaining explicit expressions the complexity
associated with a search is avoided. The processing applies
specifically designed phase shifts to the processed samples,
modifying and extending the idea employed in [6] for CFO
estimation, in which the cost function was obtained from
a single OFDM symbol, by summing over all frequency
domain values of a function of the oversampled received sym-
bol and a test signal. The idea of [6] is extended and adapted
to joint SFO and CFO estimation using only specific subcar-
riers over two subsequent symbols. Thus, our cost functions
are completely different from those used in previous joint
SFO/CFO estimation works, e.g., in [9], as is evident from the
numerical evaluations: There are many channels in which our
newly proposed estimator is superior to the baseline scheme
of [9] and there are channels in which the baseline scheme is
superior to our proposed estimator. It follows that the main
novelty lies in the proposed processing which facilitates a

simple extraction of the SFO and the CFO, while maintaining
an overall low computational complexity.

The rest of this paper is organized as follows: Section II
presents the model of the received OFDM signal. Section III
derives the new low-complexity estimator for the SFO as
well as two new low-complexity estimators for the CFO.
Section IV reviews in detail the baseline schemes, suggests
an improvement to one of these schemes, and presents a
detailed analysis of the computational complexity for the
proposed estimators as well as for the existing methods.
Simulation results and numerical performance are presented
in Section V together with a discussion. Lastly, conclusions
are highlighted in Section VI.

B. NOTATIONS
We denote the convolution operator with ‘?’, and use δ[n] to
denote the Kronecker impulse function. Stochastic expecta-
tion and complex conjugate are denoted with E{·} and (·)∗,
respectively. The sets of integers and of real numbers are
denoted by Z and R, respectively. For an arbitrary set A,
we use |A| to denote its cardinality.

II. MODEL OF THE RECEIVED OFDM SIGNAL
LetNsc denote the number of subcarriers in an OFDM symbol
and Dm,k denote the complex random data symbol modu-
lating the k-th subcarrier of the m-th OFDM symbol, k ∈
[0,Nsc − 1], m ∈ Z . We assume that the data symbol Dm,k
is selected uniformly from a finite, zero mean and proper
complex set of constellation points D, in an independent and
identically distributed (i.i.d) manner over k and m. Thus,

E{Dm,kD∗m̃,k̃} = σ
2
D · δ[m− m̃] · δ[k − k̃] (1a)

E{Dm,k} = 0, E{Dm,kDm̃,k̃} = 0 (1b)

The m-th OFDM symbol is generated from {Dm,k}
Nsc−1
k=0 by

applying an inverse discrete Fourier transform (IDFT) of
size Nsc and then adding a cyclic prefix (CP) of length
Ncp samples at the beginning of the IDFT output sequence.
It follows that the length of the resulting OFDM symbol
in time samples is Nsym = Nsc + Ncp. Letting T (s)

samp be
the sampling interval at the transmitter (where the super-
script ‘(s)’ stands for ‘synchronous’), we define Tsc ,
NscT (s)

samp,Tcp , NcpT (s)
samp and Tsym = Tsc+Tcp. The transmit-

ted complex baseband OFDM signal s(t) can be expressed as
[5, Eqns. (1)-(2)] (the reference time for the phase is
set to the end of the CP of each OFDM symbol, see,
e.g., [11, Eqn. (1)]):

s(t) =
1
√
Tsc

∞∑
m=−∞

Nsc−1∑
k=0

Dm,k e
j
2πk(t−Tcp−mTsym)

Tsc

· p(t − mTsym) (2)

where the real-valued pulse shaping function p(t) satisfies
p(t) = 1 for 0 ≤ t < Tsym and p(t) = 0 otherwise.
Denoting the channel impulse response (CIR) by h(t), the off-
set between the frequencies of the carrier oscillators at the
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transmitter and at the receiver by 1f [Hz], and the sampling
time offset (STO) by τ > 0 [sec], the baseband received
channel output signal is expressed as

r(t) =
(
h(t) ? s(t − τ )

)
· ej2π1ft + w(t), (3)

where w(t) denotes a circularly symmetric proper complex
Normal noise process [5]. When the sampling interval at the
receiver, T (a)

samp, is different from that at the transmitter (where
the superscript ‘(a)’ stands for ‘asynchronous’), it results in

an SFO represented as δ ,
T (a)samp−T

(s)
samp

T (s)samp
. We denote the CFO

at the receiver normalized by the synchronous sampling time,
T (s)
samp, with ε , 1f · T (s)

samp. In the current model we do not
make any additional assumptions on the relationship between
the sampling clock and the carrier oscillator. It is noted that
there are works which assume that both the sampling clock
and the carrier oscillator are generated from a single clock,
which induces a deterministic relationship between the SFO
and the CFO, see e.g., [12]. Typically, such an assumption
is used for motivating further model simplifications, such
as neglecting the impact of the the SFO on the phase of
the frequency domain representation, see e.g., [12], [13],
and [14].

In the current paper, we consider estimation of the residual
CFO and SFO, which takes place after coarse acquisition has
been applied at the beginning of the reception of the OFDM
frame, leaving a relatively small CFO and SFO. Using the
approximation kδ + ε + δε ≈ ε + kδ, see [5, Sec. II], and
further normalizing the CFO ε by Nsc to obtain εn , Nscε,
where the useful range for residual CFO estimation, denoted
Aεn , will be identified explicitly for each estimator in the
simulation study in Section V, the received signal in the
frequency domain can be expressed as [4, Eqn. (2)]:

Rm,k = Dm,k H̃m,k
sin
(
π (εn + kδ)

)
Nsc sin

(
π (εn+kδ)

Nsc

)
· ej

π
Nsc

(
(Nsc−1)+2Ncp+2mNsym

)
(εn+kδ)e−j2π

τ
Tsc k

+ ICIm,k +Wm,k , (4)

where ICIm,k represents the intercarrier-interference (ICI)
at the k-th subcarrier of the m-th OFDM symbol and
Wm,k ∼ CN (0, σ 2

W ) represents an i.i.d circularly symmetric
complex Normal random process with variance σ 2

W , inde-
pendent over m and k , which results from the application
of the DFT to blocks of Nsc samples of w(t), where at each
OFDM symbol duration, a single block of Nsc samples is
taken. We observe that the effect of the STO on the frequency
domain signal is a different phase offset at each subcarrier k ,
which is a function of k but is independent of m. Therefore,
the impact of the STO can be absorbed into the unknown
frequency domain channel coefficients, denoted H̃m,k , andwe
can denote the resulting product by Hm,k , H̃m,ke

−j2π τ
Tsc k .

From [4, Sec. VI] and [5, Sec. II], it is observed that

E{|ICIm,k |2} ≈ σ 2
D|H̃m,k |

2 π
2ε2n
3 , hence, for values of εn and δ

relevant to practical scenarios [15], the term ICIm,k is negligi-
ble compared to the noise termWm,k : As a numerical example
for this point, consider a normalized CFO of εn ∼= 0.02, and
let T (a)

samp = T (s)
samp, corresponding to δ = 0. Assuming, in addi-

tion, |H̃m,k |2 = 1, we obtainE{|ICIm,k |2} ≈ σ 2
D ·1.316·10

−3.
Requiring the noise power to be at least 10 times stronger than
the ICI power to be able to neglect the ICI, we obtain that for
σ 2D
σ 2W

< 19 [dB] the ICI can be neglected. This approximation

leads to the following approximate received signal model:

Rm,k ∼= Dm,kHm,k5k (εn, δ)ej2m,k (εn,δ) +Wm,k , (5)

where

5k (εn, δ) =
sin
(
π (εn + kδ)

)
Nsc sin

(
π (εn+kδ)

Nsc

)
2m,k (εn, δ) =

π

Nsc

(
(Nsc − 1)+ 2Ncp + 2mNsym

)
(εn + kδ).

Note that while the CFO is assumed sufficiently small to
allow neglecting the ICI, it still affects the received sig-
nal component through the magnitude term 5k (εn, δ) and,
more significantly, through the phase term2m,k (εn, δ). Thus,
leaving the CFO uncompensated will necessarily result in a
degradation in the performance of the OFDM decoder, due
to an accumulated phase rotation in the frequency domain,
hence CFO estimation absolutely necessary.

III. LOW COMPLEXITY ESTIMATION ALGORITHM FOR
THE SFO AND THE CFO
Begin by rewriting the phase term 2m,k (εn, δ) as:

2m,k (εn, δ) =
π

Nsc
(2mNsym + 2Ncp + Nsc − 1)kδ

+
π

Nsc
(2mNsym + 2Ncp + Nsc − 1)εn. (6)

Observe that at them-th OFDM symbol, the coefficient of the
CFO εn is constant over all subcarrier indices k whereas the
coefficient of the SFO δ varies linearly with the subcarrier
index k . For sufficiently high SNR we can derive estimators
for the SFO and the CFO based on (5) while ignoring the addi-
tive noise component of the received signal, via the basic idea
of [6]. The impact of the noise will be later evaluated in the
simulations study in Section V. The estimators use a setKp of
pilot subcarriers, such thatKp contains all subcarriers indexes
used for pilot transmission. The pilots are embedded into two
consecutive OFDM symbols, where it is further assumed that
the channel remains constant over two consecutive OFDM
symbols. The receiver is assumed to know only the modulator
parameters Nsc and Ncp as well as the indexes of the pilot
subcarriers.

A. ESTIMATION OF THE SFO
Consider OFDM symbols m and m + 1 (we assume the
actual value of m is unknown to the receiver): Assuming
the channel vary sufficiently slow such that subcarriers with
the same indices experience the same channel coefficients,
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we obtain (recall that we ignoreWm,k )

Rm,k
Rm+1,k

∼=
Dm,k
Dm+1,k

Hm,k
Hm+1,k

5k (εn, δ)
5k (εn, δ)

·
ej

π
Nsc (2mNsym+2Ncp+Nsc−1)kδ

ej
π
Nsc (2mNsym+2Nsym+2Ncp+Nsc−1)kδ

·
ej

π
Nsc (2mNsym+2Ncp+Nsc−1)εn

ej
π
Nsc (2mNsym+2Nsym+2Ncp+Nsc−1)εn

(a)
=

Dm,k
Dm+1,k

e−j
π
Nsc 2Nsymkδe−j

π
Nsc 2Nsymεn (7)

where in (a) we used the assumption Hm,k ∼= Hm+1,k . Con-
sider two subcarrier indices k1 and k2, both belong to Kp:
From (7) we obtain, after ignoring the noise:

Rm,k1
Rm+1,k1

∼=
Dm,k1
Dm+1,k1

· e−j2π
Nsym
Nsc k1δ

· e−j2π
Nsym
Nsc εn (8a)

Rm,k2
Rm+1,k2

∼=
Dm,k2
Dm+1,k2

· e−j2π
Nsym
Nsc k2δ

· e−j2π
Nsym
Nsc εn (8b)

Next, define the cost function Gm,k1,k2 (1ϕ) as follows:
Gm,k1,k2 (1ϕ)

,

∣∣∣∣ Rm,k1Rm+1,k1
−

Rm,k2
Rm+1,k2

e−j1ϕ
∣∣∣∣2

∼=

∣∣∣∣ Dm,k1Dm+1,k1
e−j2π

Nsym
Nsc k1δ

· e−j2π
Nsym
Nsc εn

−
Dm,k2
Dm+1,k2

e−j
(
2π

Nsym
Nsc k2δ+1ϕ

)
e−j2π

Nsym
Nsc εn

∣∣∣∣2
=

∣∣∣∣e−j2π Nsym
Nsc εne−j2π

Nsym
Nsc k1δ

∣∣∣∣2
·

∣∣∣∣ Dm,k1Dm+1,k1
−

Dm,k2
Dm+1,k2

ej
(
2π

Nsym
Nsc (k1−k2)δ−1ϕ

)∣∣∣∣2. (9)

Let constellation symbols at subcarriers k1 and k2 of OFDM
symbol m + 1 be selected such that Dm+1,k1 = Dm,k1 and
Dm+1,k2 = Dm,k2 , i.e., Dm+1,k1 and Dm+1,k2 can be con-
sidered as pilot symbols inserted to facilitate SFO estima-
tion. Therefore,

Dm,k1
Dm+1,k1

=
Dm,k2
Dm+1,k2

and Gm,k1,k2 (1ϕ) can be
expressed as:

Gm,k1,k2 (1ϕ) =

∣∣∣∣1− ej( 2π
Nsc Nsym(k1−k2)δ−1ϕ

)∣∣∣∣2
= 2

(
1− cos

(
2π

Nsym

Nsc
(k1 − k2)δ −1ϕ

))
. (10)

For 1ϕ = −π2 we obtain

Gm,k1,k2
(
−
π

2

)
= 2

(
1+ sin

(
2π

Nsym

Nsc
(k1 − k2)

)
δ

)
,

and for 1ϕ = π
2 we obtain

Gm,k1,k2
(π
2

)
= 2

(
1− sin

(
2π

Nsym

Nsc
(k1 − k2)δ

))
,

therefore

1Gm,k1,k2 =
1
4

(
Gm,k1,k2

(
−
π

2

)
−Gm,k1,k2

(π
2

))
= sin

(
2π

Nsym

Nsc
(k1 − k2)δ

)
(11)

It follows that an estimator of the SFO δ can be obtained as

δ̂k1,k2 =
1
2π
·

Nsc

(k1 − k2)Nsym
· sin−1

(
1Gm,k1,k2

)
. (12)

Using the set of pilot subcarriers Kp, it follows that the
maximal number of pairs of subcarriers which can be used for
generating SFO estimates is |Kp|(|Kp|−1)

2 , yet it may as well be
that the estimator does not need all these pairs, and it uses only
a set NSFO of pairs of subcarriers, 1 ≤ |NSFO| ≤

|Kp|(|Kp|−1)
2 ,

to compute estimates, where the output is obtained as the
mean of these estimates:

δ̂ =

∑
(k1,k2)∈NSFO

δ̂k1,k2

|NSFO|
(13)

where δ̂k1,k2 is an SFO estimate obtained via Eqn. (12).

B. ESTIMATION OF THE CFO
In this section, we propose twoCFO estimators, both ofwhich
utilize the estimated δ̂ for pre-processing the received signal
stated in Eqn. (5).

For the first CFO estimator, consider the cost function
Fm,k1 (1ϕ) for subcarrier k1 ∈ Kp (recall that we ignore
Wm,k1 ):

Fm,k1 (1ϕ) ,
∣∣∣Rm+1,k1 · e−j2π Nsym

Nsc k1 δ̂
· ej1ϕ − Rm,k1

∣∣∣2 (14)

Recalling the assumption Hm,k1 ∼= Hm+1,k1 and the assign-
ment Dm,k1 = Dm+1,k1 , we can express Fm,k1 (1ϕ) as:

Fm,k1 (1ϕ) ∼=
∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)

∣∣2
·

∣∣∣∣ej πNsc (2(m+1)Nsym+2Ncp+Nsc−1)(k1δ+εn)
· e−j2π

Nsym
Nsc k1 δ̂

· ej1ϕ

− ej
π
Nsc

(
2mNsym+2Ncp+Nsc−1

)
(k1δ+εn)

∣∣∣∣2
=
∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)

∣∣2
·

∣∣∣∣ej πNsc (2mNsym+2Ncp+Nsc−1)(k1δ+εn)∣∣∣∣2
·

∣∣∣∣ej
(
2π

Nsym
Nsc

(
k1(δ−δ̂)+εn

)
+1ϕ

)
− 1

∣∣∣∣2
(a)
∼= 2

∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)
∣∣2

·

(
1− cos

(
2π

Nsym

Nsc
εn +1ϕ

))
, (15)

where in (a) we used δ ∼= δ̂. Observe that
Nsym
Nsc

> 1. Now,
we proceed by obtaining the values of Fm,k1 (1ϕ) at three
points: At 1ϕ = 0 we have

Fm,k1 (0) = 2
∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)

∣∣2
·

(
1− cos

(
2π

Nsym

Nsc
εn

))
,
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at 1ϕ = −π2 we obtain

Fm,k1
(
−
π

2

)
= 2

∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)
∣∣2

·

(
1− cos

(
2π

Nsym

Nsc
εn −

π

2

))
= 2

∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)
∣∣2

·

(
1− sin

(
2π

Nsym

Nsc
εn

))
,

and at 1ϕ = π we obtain

Fm,k1
(
π
)
= 2

∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)
∣∣2

·

(
1+ cos

(
2π

Nsym

Nsc
εn

))
.

Using these quantities we can compute F (I )
m,k1

and F (Q)
m,k1

defined as

F (I )
m,k1
= Fm,k1

(
π
)
− Fm,k1 (0)

= 4
∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)

∣∣2 · cos (2π Nsym

Nsc
εn

)
(16)

and

F (Q)
m,k1
= Fm,k1

(
π
)
+ Fm,k1 (0)− 2Fm,k1

(
−
π

2

)
= 4

∣∣Hm,k1 ∣∣2∣∣Dm,k1 ∣∣2∣∣5k1 (εn, δ)
∣∣2 · sin (2π Nsym

Nsc
εn

)
.

(17)

Hence, the first CFO estimator proposed in this work is
obtained as:

ε̂
(1)
n,k1
=

1
2π
·
Nsc

Nsym
· tan−1

(F (Q)
m,k1

F (I )
m,k1

)
. (18)

A second CFO estimator is proposed based on the fraction
in Eqn. (7):

Rm,k1
Rm+1,k1

∼=
Dm,k1
Dm+1,k1

e−j2π
Nsym
Nsc k1δe−j2π

Nsym
Nsc εn .

Recall that constellation symbols at the k1-th subcarriers of
OFDM symbols m and m + 1 have been selected such that
Dm+1,k1 = Dm,k1 . Then, applying the same pre-processing
used to obtain the CFO cost function in (14) we arrive at

Rm,k1
Rm+1,k1

ej2π
Nsym
Nsc k1 δ̂ ∼= e−j2π

Nsym
Nsc k1(δ−δ̂)e−j2π

Nsym
Nsc εn .

Assuming successful SFO estimation, i.e., δ ∼= δ̂, we further
obtain

Rm,k1
Rm+1,k1

ej2π
Nsym
Nsc k1 δ̂ ∼= e−j2π

Nsym
Nsc εn

and finally, the second CFO estimator is obtained as

ε̂
(2)
n,k1
= −

1
2π
·
Nsc

Nsym
· arg

{
Rm,k1
Rm+1,k1

ej2π
Nsym
Nsc k1 δ̂

}
(19)

Recalling that the set of pilot subcarriers is Kp, then the
final estimate with each of the proposed CFO estimators,
of Eqn. (18) and of Eqn. (19), is obtained by averaging over
the estimates computed for the |Kp| pilots, i.e.

ε̂(i)n =

∑
k1∈Kp

ε̂
(i)
n,k1

|Kp|
(20)

where ε̂(i)n,k1 , k1 ∈ Kp, are the |Kp| CFO estimates obtained
via Eqn. (18) or Eqn. (19) for i = 1, 2, respectively.

C. SUMMARY: STEPS OF THE SFO AND CFO ESTIMATION
ALGORITHM
1) INITIALIZATION
• Let Kp be the set of pilot subcarriers.
• Let NSFO be the set of pairs of subcarriers used for
SFO estimation.

• Let Nsc and Ncp be the number of subcarriers
in an OFDM symbol and the length of the CP,
respectively.

2) STEPS OF THE ALGORITHM
1) The algorithm receives the samples of two subsequent

OFDM symbols. Arbitrarily index these symbols as
OFDM symbol number m and OFDM symbol number
m + 1, since the actual value of m does not impact the
estimator. For each symbol, the CP is removed and a
DFT of size Nsc is applied.

2) For each pair of subcarriers (k1, k2) ∈ NSFO:

a) Compute Gm,k1,k2 (1ϕ) via Eqn. (9) for 1ϕ =
−
π
2 and for 1ϕ = π

2 .
b) Estimate δ̂k1,k2 via Eqns. (11)-(12).
c) Obtain the final SFO estimate δ̂ by averaging

all δ̂k1,k2 , via Eqn. (13).

3) The CFO can now be estimated either via ε̂(1)n,k1
or

via ε̂(2)n,k1

• For applying CFO estimator ε̂(1)n,k1
the following

steps are taken for each subcarrier k1 ∈ Kp:

a) Using the estimated SFO δ̂, compute the cost
function Fm,k1 (1ϕ) via Eqn. (14) for 1ϕ =
−
π
2 , 1ϕ = 0 and 1ϕ = π .

b) Use Fm,k1 (−
π
2 ), Fm,k1 (0) and Fm,k1 (π ) to com-

pute F (I )
m,k1

and F (Q)
m,k1

via Eqns. (16) and (17),
respectively.

c) Use F (I )
m,k1

and F (Q)
m,k1

to compute ε̂
(1)
n,k1

via
Eqn. (18).

• For applying CFO estimator ε̂(2)n,k1
, use the esti-

mated SFO δ̂ to compute ε̂(2)n,k1
via Eqn. (19).

4) Obtain the final CFO estimate by averaging the

per-subcarrier estimates (obtained either via ε̂(1)n,k1
or

via ε̂(2)n,k1
) via Eqn. (20).
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IV. COMPUTATIONAL COMPLEXITY ANALYSIS
OF THE PROPOSED ALGORITHM AND THE
REFERENCE ALGORITHMS
In the simulation study in Section V we compare our esti-
mation algorithms with the algorithms presented in [9] and
in [10]: The work in [9] proposed a modified version of the
conventional least-squares estimator (LSE) of the CFO and
the SFO, in which a subset of pilot subcarriers is selected
to achieve unbiased SFO and CFO estimates. To compute
the estimates, the algorithm first computes the phase differ-
ences between the subcarriers from two consecutive OFDM
symbols. Then, the LSE computes two summations over
these phase differences, from which the SFO and the CFO
estimates are finally obtained. This estimator is referred to in
this work as the LSE estimator. The ML estimation algorithm
proposed in [10] does not use pilot symbols. Instead, it uses
the phase difference between two FFT windows within a
single OFDM symbol, such that one window contains inter-
symbol interference (ISI)-free CP samples. In the following,
we refer to this window as the shifted window. Then, based
on the conditional distribution of the shifted window given
the synchronized (non-shifted) window, an SFO estimator
employing a single dimension grid search is presented in
[10, Eqn. (35)]. Subsequently, the CFO is estimated via a
closed-form expression [10, Eqn. (33)], which depends on
the SFO estimate. The estimator of [10] is referred to in the
following as the LHHYW (Li-Hu-Heng-Yu-Wang) estimator.
Lastly, we note that the work in [10] also presents an approx-
imate estimator for the SFO which avoids the grid search.

A. MODIFICATION TO THE CFO ESTIMATOR OF
THE LSE METHOD
The CFO estimator proposed in [9, Eqn. (14)] uses the quan-
tity 31 in [9, Eqn. (10)], which constrains the selection of
pilot subcarrier indexes in order to avoid bias in the estimated
parameters. We propose to use the SFO estimator of (13) in
order to obtain an unbiased CFO estimate without restricting
the pilot subcarrier indexes used by the CFO estimator. To that
aim, recall first the result of the summations in [9, Eqn. (10)]:

31 = 2πNp
Nsym

Nsc
εn +

∑
k∈S

w̃m,k + 2π
Nsym

Nsc
δ
∑
k∈S

k (21)

where w̃m,k is the appropriate noise term, which arises in
the computation of the argument, as stated after [9, Eqn.
(3)], and where S is a selected subset of pilot subcarriers,
whose cardinality is |S| = Np. As noted in [9], the term
2π

Nsym
Nsc

δ
∑

k∈S k induces a bias in the LSE CFO and SFO
estimates, whose value depends, among others, on δ. To avoid
this bias, we propose to first estimate the SFO using (13) and
then use the estimated SFO δ̂ to remove the impact of the
SFO on the quantity Ym,k , defined in [9, Eqn. (2)]. Letting
Ỹm,k denote the processed Ym,k , we write:

Ỹm,k = R∗m,kRm+1,k · e
−j2π

Nsym
Nsc k δ̂

∼= |Hm,k |2|Dm,k |2e
j2π

Nsym
Nsc (εn+kδ)e−j2π

Nsym
Nsc k δ̂

+ W̃m,k · e
−j2π

Nsym
Nsc k δ̂

= |Hm,k |2|Dm,k |2e
j2π

Nsym
Nsc

(
εn+k(δ−δ̂)

)
+ W̃m,k · e

−j2π
Nsym
Nsc k δ̂ (22)

where W̃m,k is the noise term, which is concluded from
[9, Eqn. (3)]. Using Ỹm,k instead of Ym,k in [9, Eqn. (10)],
we obtain the following modified expression for 31,
denoted 3̃1:

3̃1=2πNp
Nsym

Nsc
εn+

∑
k∈S

˜̃wm,k + 2π
Nsym

Nsc
(δ − δ̂)

∑
k∈S

k (23)

where ˜̃wm,k is the appropriate noise contribution after the new
processing. Assuming successful SFO estimation, i.e., δ̂ ∼= δ,
it follows the term 2π

Nsym
Nsc

(δ − δ̂)
∑

k∈S k ∼= 0 for any
subset of pilot subcarriers. Thus, using 3̃1 in the CFO esti-
mator of [9, Eqn. (14)] instead of the original 31 defined in
[9, Eqn. (10)], we obtain that the CFO estimator is unbiased
regardless of the selection of subcarrier indexes. In this work
we refer to this method as the ‘Modified LSE’, and we empha-
size that the SFO is estimated via Eqn. (13).

B. DETAILED COMPUTATIONAL COMPLEXITY ANALYSIS
In this section we provide a detailed computational com-
plexity analysis for the proposed algorithms. The complexity
analysis for the LSE and the LHHYW algorithms is detailed
in Appendix A and Appendix B, respectively. We assume
that a real division (RD) is implemented iteratively using
the Newton-Raphson method, see [16], with 2i + 1 real
multiplications (RMs) and i real additions (RAs), where i rep-
resents the number of iterations required to obtain sufficient
accuracy.1 We assume that a complex division (CD) requires
3 RMs, 3 RDs and 3 RAs [17]. Thus, with the RD complexity
of [16], the complexity of a CD is 6i+6 RMs and 3i+3 RAs.
We also recall that a complex multiplication (CM) requires
4 RMs and 2 RAs. For simplicity, we assume the trigonomet-
ric functions sin(·), cos(·), sin−1(·) and tan−1(·) are approx-
imated via a 5’th order Taylor series expansion, therefore
computing the functions sin(·), sin−1(·) and tan−1(·), each
requires 5 RMs and 2 RAs, while computing the function
cos(·) requires 3 RMs and 2 RAs. Lastly, recall that a complex
exponent is computed via Euler’s formula, ejx = cos(x) +
j sin(x), where x ∈ R, which requires in total 8 RMs and
4 RAs when using the approximated 5’th order Taylor expan-
sions for sin(x) and for cos(x).

We consider first SFO estimation: Assuming that
|NSFO| ≥ 1 pairs of pilot subcarriers are used for estimating
δ, the final estimate is the mean of the |NSFO| estimated SFOs,
where one estimate is generated with each pair. To com-
pute these estimates, we first apply |Kp| CDs, requiring
|Kp|(6i+ 6) RMs and |Kp|(3i+3) RAs. Then, for computing

1For b ∈ R, the iterative Newton-Raphson division formula for comput-
ing 1/b is [16, Eqn. (21)]: xi+1 = xi · (2 − b · xi), where for a sufficient
number of iterations one obtains xi+1 ≈ 1/b. Note that for computing a/b
for a ∈ R an additional RM is necessary, which is considered in this paper.
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the cost function Gm,k1,k2 (1ϕ) in Eqn. (9) for1ϕ = π/2 and
for 1ϕ = −π/2, we apply for each 1ϕ a computation of a
complex subtraction followed by a complex norm at an over-
all cost of 2 RMs and 3 RAs. Therefore, evaluating the cost
function at both 1ϕ values for all δ̂k1,k2 estimates requires
4|NSFO|RMs and 6|NSFO|RAs. Note that the multiplication by
e−j1ϕ does not incur complexity as it entails a switch between
the real and the imaginary parts with possible sign reversals.
Next, in Eqn. (11), we apply a real subtraction per SFO
estimate, which requires 1 RA, therefore the total complexity
for Eqn. (11) is |NSFO| RAs. Note that the division by 4 does
not require RMs or RAs since we assume it is implemented
via a shift. Subsequently, in Eqn. (12), the inverse sine,
sin−1(·), is computed, which requires 5 RMs and 2 RAs,
followed by a real multiplication by a constant. Accordingly,
the overall complexity of Eqn. (12) for all δ̂k1,k2 estimates
is 6|NSFO| RMs and 2|NSFO| RAs. Note that we assume the
constant, Nsc/

(
2π (k1 − k2)Nsym

)
, used in Eqn. (12), was

a-priori computed. The overall complexity for computing
|NSFO| SFO estimates is |Kp|(6i + 6) + 10|NSFO| RMs and
|Kp|(3i+ 3)+ 9|NSFO| RAs. The estimator outputs the mean
of the estimates via Eqn. (13) bringing the total complexity
of the SFO estimation to |Kp|(6i + 6) + 10|NSFO| + 1 RMs
and |Kp|(3i+ 3)+ 10|NSFO| − 1 RAs.

Next, consider CFO estimation via the three proposed
CFO estimators. Consider first the estimator ε̂(1)n,k1

, stated
in Eqn. (18), and recall that the CFO estimate is obtained
by averaging over the |Kp| ε̂

(1)
n,k estimates computed via

Eqn. (18), as specified in Eqn. (20). To compute each of
the |Kp| estimates ε̂(1)n,k1

, we first apply a real multiplica-
tion to obtain the argument of the exponent in Eqn. (14),

e−j2π
Nsym
Nsc k1 δ̂ , in which the SFO estimate is multiplied by

a constant at an overall cost of |Kp| RMs. Note that we
assume the constants, 2πNsymk1/Nsc, in the argument of the
exponent in Eqn. (14) have already been computed. Then,
we apply amultiplication ofRm+1,k1 by the complex exponent

e−j2π
Nsym
Nsc k1 δ̂ , for which the exponent is expressed in Carte-

sian form using Euler’s formula. Subsequently, for each of the
three phase shift values1ϕ = 0, π/2 and1ϕ = π , we apply
a complex subtraction and a complex norm. The overall
complexity for computing (14) for all |Kp| pilot subcarriers
and the three phase shifts is 18|Kp| RMs and 15|Kp| RAs.
Note that the multiplication by ej1ϕ does not incur com-
plexity as it entails a possible switch between the real
and the imaginary parts with possible sign reversals. Next,
in Eqns. (16) and (17), we apply two real subtractions and one
real addition, therefore, the total complexity of this step for
all |Kp| estimates is 3|Kp| RAs. Note that we do not account
for the multiplication by 2 in Eqn. (17) since we assume that it
is implemented via a shift. Subsequently, the CFO estimator
of ε̂(1)n,k1

in Eqn. (18) applies a real division ((2i + 1) RMs,
iRAs), an inverse tangent, tan−1(·) (5 RMs, 2 RAs), followed
by a multiplication by a constant. Accordingly, the overall
complexity is |Kp|(2i + 7) RMs and |Kp|(i + 2) RAs. Note
that the constant, Nsc/(2πNsym), has been a-priori computed.

The overall complexity for obtaining |Kp| estimates ε̂(1)n,k1
is

|Kp|(2i+ 26) RMs and |Kp|(i+ 20) RAs, and the complexity
of the output CFO estimate obtained by averaging the |Kp|

ε̂
(1)
n,k1

estimates via Eqn. (20) to achieve the final CFO estimate

ε
(1)
n is |Kp|(2i+ 26)+ 1 RMs and |Kp|(i+ 21)− 1 RAs.
Next, we analyze the computational complexity of the sec-

ond CFO estimator, ε̂(2)n,k1
, stated in Eqn. (19). Note that the

divisions Rm,k1/Rm+1,k1 do not incur a cost in computa-
tional complexity, since they have already been computed
at the SFO estimation step, see Eqn. (9). Next, note that

arg
{

Rm,k1
Rm+1,k1

ej2π
Nsym
Nsc k1 δ̂

}
= arg

{
Rm,k1
Rm+1,k1

}
+ 2π

Nsym
Nsc

k1δ̂, and

that the CFO estimate is given by Eqn. (20):

ε(2)n =
1
|Kp|

∑
k1∈Kp

(
−

1
2π

Nsc

Nsym

)

· arg
{

Rm,k1
Rm+1,k1

ej2π
Nsym
Nsc k1 δ̂

}
= −

1
2π

Nsc

Nsym|Kp|

( ∑
k1∈Kp

arg
{

Rm,k1
Rm+1,k1

}

+ 2π
Nsym

Nsc

( ∑
k1∈Kp

k1

)
δ̂

)
.

Thus, the estimate can be computed by taking |Kp| argu-
ments, each requires an RD ((2i+1) RMs, iRAs) and tan−1(·)
(5 RMs, 2 RAs) at a total complexity of |Kp|(2i + 6) RMs
and |Kp|(i+ 2) RAs. Then, the SFO estimate δ̂ is multiplied

by a constant 2π
Nsym
Nsc

(∑
k1∈Kp

k1
)
at a cost of 1 RM and

summed with |Kp| arguments, bringing the total complexity
to |Kp|(2i+6)+1 RMs and |Kp|(i+3) RAs. Finally, an RM is
applied to compute the final CFO estimate resulting in a total
of |Kp|(2i+ 6)+ 2 RMs and |Kp|(i+ 3) RAs.
Lastly, we analyze the computational complexity of the

modified LSE method presented in Sec. IV-A. To com-
pute the CFO estimate, we compute arg

{
Ỹm,k

}
=

arg
{
R∗m,kRm+1,ke

−j2π
Nsym
Nsc k δ̂

}
= arg

{
R∗m,kRm+1,k

}
−

2π
Nsym
Nsc

k δ̂. Then, we compute the summation term 3̃1

in Eqn. (23), 3̃1 =
∑

k∈Kp
arg

{
Ỹm,k

}
=

∑
k∈Kp

arg
{
R∗m,kRm+1,k

}
− 2π

Nsym
Nsc

δ̂
∑

k∈Kp
k . To that aim, we first

compute arg
{
R∗m,kRm+1,k

}
using complex multiplication

(4 RMs, 2 RAs), real division ((2i + 1) RMs, i RAs) and
tan−1(·) (5 RMs, 2 RAs). The overall complexity of com-
puting |Kp| arguments is |Kp|(2i+ 10) RMs and |Kp|(i+ 4)
RAs. Then, the |Kp| arguments are summed at a complex-
ity of 0 RMs and |Kp| − 1 RAs, and, assuming the term
2π

Nsym
Nsc

∑
k∈Kp

k has been a-priori computed, it follows that

computing the term
(
2π

Nsym
Nsc

∑
k∈Kp

k
)
δ̂ takes 1 RM. Even-

tually the latter term is added to the sum of the arguments
at a complexity of 0 RMs and 1 RA. Lastly, obtaining the
CFO estimate via [9, Eqn. (14)] requires 1 RM, assuming
the constant Nsc/(2πNsym|Kp|) has already been computed.
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Thus, the total complexity is |Kp|(2i + 10) + 2 RMs and
|Kp|(i+ 5) RAs.

V. NUMERICAL PERFORMANCE EVALUATION
A. SIMULATION PARAMETERS
The performance of the estimation algorithms presented in
this work are evaluated for communications with parameters
corresponding to the IEEE 802.11ax standard operating with
a 20 MHz transmission bandwidth at the 2.4 GHz band
[18, Sec. III]: The number of subcarriers is set to Nsc =

256, and the CP is set to Ncp = 32 samples, which results
in Nsym = 288 for a single OFDM symbol; Indexing the
subcarriers of an OFDM symbol by {0 , 1 , 2, . . . , 255},
the set of pilot subcarriers is selected for each scheme to
maintain approximately the same complexity, as detailed
later. We assume a slowly varying frequency selective fading
channel with a maximum delay spread of Tch = 1050 [nsec]
and a Rician factor of K = 6 [dB] such that the channel
remains (approximately) constant over two consecutive trans-
mitted OFDM symbols. In the simulations, we investigate
the performance of the algorithms for two different channel
realizations, denoted CH12 and CH2.3 We let the data and
the pilot symbols be drawn from a quadrature phase-shift
keying (QPSK) constellation. For the baseline scenario we
use a normalized residual CFO of εn = 0.01 and a normalized
SFO of δ = 2 · 10−4, which corresponds to 200 [ppm].
These residual CFO and SFO values are in linewith the values
used in previous works.4 We note that typically, the residual
CFO considered in CFO synchronization works is taken to
be smaller than half the subcarrier spacing, [19, Section II],
[12], [13]. For the simulation scenario parameters used in this
section, this corresponds to a maximal CFO of εmax

n = 0.5.
Therefore, in the numerical evaluation we also test estima-
tors’ performance over this entire range. The estimation of
the CFO and the SFO is based on two consecutive OFDM
symbols. For each data point in the figures, we carried out

2The taps for the channel CH1 are H = [0.1946 + 0.0122j, 0.0837
+ 0.1256j, −0.1152 − 0.0816j, 0.0719 − 0.3107j, 0.1711 + 0.0297j,
−0.0833 + 0.3317j, −0.2358 − 0.116j, −0.07668 − 0.4499j, 0.2839 −
0.1825j, 0.3178+ 0.0873j, 0.0048+ 0.2977j,−0.1350+ 0.1747j,−0.1132
− 0.0077j, −0.0178 − 0.0346j, 0.0643 + 0.0457j, 0.0296 + 0.0436j,
−0.0609 − 0.0362j, −0.0448 − 0.0333j, −0.002 − 0.0134j, −0.0052 +
0.0195j, 0.0115 + 0.0065j, 0.0000 + 0.0053j, −0.005 + 0.0131j, −0.0046
+ 0.0000j,−0.0036− 0.0056j, 0.0072+ 0.0026j, 0.0055+ 0.0011j, 0.0008
+ 0.0015j]T . Note that |H|2 = 1.

3The taps for the channel CH2 are H = [0.0022 + 0.0060j, −0.0059-
0.0093j, 0.0111+ 0.0140j,−0.0179− 0.0194j, 0.0267+ 0.0263j,−0.0419
− 0.0407j, 0.0763+ 0.0839j, 0.2135+ 0.0670j, 0.0009− 0.6324j, 0.0155+
0.0985j,−0.0361+ 0.4056j, 0.1087− 0.0703j, 0.1055+ 0.2581j,−0.1558
− 0.2530j,−0.0433− 0.0254j, 0.3096+ 0.1242j, 0.0174− 0.0002j, 0.0527
− 0.0985j, −0.0063 + 0.0219j, −0.0555 + 0.1701j, −0.0004 + 0.0141j,
−0.0099 − 0.0320j, −0.0337 − 0.0419j, 0.0203 + 0.0087j, −0.0394 +
0.0017j,−0.0509+ 0.0160j, 0.0131− 0.0059j,−0.0069+ 0.0034j, 0.0140
− 0.0622j, −0.0028 + 0.0013j, 0.0020 − 0.0004j, −0.0012 + 0.0003]T .
Note that |H|2 = 1.

4In [4] the CFO used in the simulations is εn ≈ 0.02 and
δ corresponds to 100 [ppm]; in [5] δ corresponds to 100 [ppm] and
εn = 0.02; in [9] the simulations are carried out for εn =

0.02 with δ corresponding to 20 [ppm] and for εn = 0.08 with
δ corresponding to 80 [ppm]; and lastly, in [10] εn = 0.112 is used while
δ corresponds to 30 [ppm].

10000 Monte-Carlo experiments. We define the signal-to-

noise (SNR) as SNR ,
|Hm,k |2|5(εn,δ)|2σ 2D

E{|Wm,k |2}
and the SNR-per-

bit Eb/N0 , SNR
log2(M ) where the cardinality of the QPSK

constellation set is M = 4. The received signal is subject to
an unknown STO of τ = 100 [nsec].

In the simulations we compare the proposed estima-
tors with the LSE and with the LHHYW estimator.
For the proposed estimators we use pilot subcarriers

Kproposed
p = {49, 238} for estimating the SFO and the CFO,

i.e., |Kproposed
p | = 2. To maintain the same computational

complexity for all algorithms, the LHHYW estimator uses
K = 14 subcarrier indices, which correspond to subcarrier
frequency indexes K = {121, . . . , 127 , 129, . . . 135} for
estimating the SFO and the CFO with a single dimensional
search applied to the SFO estimation. The search resolution
for the SFO estimator is 1δ = 2 · 10−5 and we evaluate the
cost at 500 grid search points around the true δ, with L = 8.
The LSE of [9] is implemented using a symmetric subset of 6
pilot subcarriersKLSE

p = {17, 49, 127, 129, 207, 238} in the
set of subcarriers {0, 1, . . . , 254, 255}, to avoid possible bias
of the estimates. We note that since the LSE and the LHHYW
algorithms are derived assuming the set of subcarrier indexes
is symmetric around 0, then for computing these estimates we
mapped the set of pilot indexes of the LSE,KLSE

p , and the set
of subcarrier indexes of the LHHYW, K, to the appropriate
values by subtracting 128 from the values of the indexes.

B. SIMULATION RESULTS
The performance of the proposed estimators as well as of the
baseline estimators of [9] and [10] are compared in terms
of the mean-squared error (MSE), defined as MSE(δ) ,
E
{
(δ − δ̂)2

}
and MSE(εn) , E

{
(εn − ε̂n)2

}
. The MSE plots

also depict the Cramer-Rao lower bound (CRB) which is
an inherent lower bound on the MSE of the estimated SFO
and CFO, see [5]. The CRB expressions are obtained from
[5, Eqn. (9)], which specify the CRB for the case of an
unknown CIR. We note that in [5] the received model
[5, Eqn. (4)] uses the approximation 5k (εn, δ) ≈ 1, which
is appropriate also for the current setup (although it is not
required by the estimation schemes). Fig. 1 and Fig. 2 depict
MSE(δ) versus Eb/N0 for CH1 and for CH2, respectively,
for the proposed SFO estimator of Eqn. (13), the LSE and
the LHHYW, as well a the corresponding CRB. We observe
in Fig. 1 that the proposed algorithm achieves the smallest
MSEwhile in Fig. 2 the LSE achieves the smallestMSE. Note
that in both Figs. 1 and 2 the LHHYW performs very poorly,
as the number of subcarriers it uses for estimating the SFO, set
to maintain fairness of comparison, is not sufficient for this
algorithm to achieve a small MSE. We also observe that none
of the algorithms approaches the CRB, which is expected as
the algorithms use a very small number of symbols (2 OFDM
symbols) and a small number of pilot subcarriers, hence
asymptotic conditions required for obtaining the CRB are
not satisfied. Moreover, the focus in the current algorithms
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FIGURE 1. MSE(δ) vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH1.

FIGURE 2. MSE(δ) vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH2.

is on good performance at low computational complexity
and not on the asymptotic case, thus, the goal is to obtain
performance improvement compared to previously proposed
schemes, which is indeed achieved by the current work.

Figs. 3 and 4 depictMSE(εn) versusEb/N0 for CH1 and for
CH2, respectively, as well as the corresponding CRB. In both
figures, ε̂(1)n , is referred to as ‘Proposed - Eqn. (18) + (20)’,
and ε̂(2)n , is referred to as ‘Proposed - Eqn. (19) + (20)’;
Both ε̂(1)n and ε̂(2)n use the estimated δ̂ obtained via Eqn.
(13). Comparison also includes the modified LSE, the LSE
and the LHHYW CFO estimators. Observe that for CH1,
the two proposed CFO estimators and the modified LSE
achieve a smaller MSE than the LSE and the LHHYW while
for CH2 the LSE achieves a smaller MSE compared to the
proposed CFO estimators. The LHHYW achieves the worst
performance in both CH1 and CH2, which is expected as its
CFO estimate depends on its SFO estimate, which has a poor
performance as shown in Figs. 1 and 2. Note that also here,
the estimators do not attain the CRB due to their subopti-
mal processing as well as the distance from the asymptotic
situation.

FIGURE 3. MSE(εn) vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH1.

FIGURE 4. MSE(εn) vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH2.

It follows from the SFO and the CFO estimation results
in Figs. 2 and 4 that for CH2, the LSE algorithm achieves a
lower MSE than the proposed algorithms. This is explained
by noting that the LSE algorithm relies on phase computation
while the proposed algorithms have a stronger dependence
on the magnitude of the subcarriers as they apply a complex
division. The difference in estimators’ performance for the
two channels follows by observing the magnitudes of the
discrete-time Fourier transforms (DTFTs) of the CIRs for
CH1 and for CH2 at the pilot subcarriers used by the proposed
estimators, marked with the red circles in Fig. 5. Observe
that the magnitudes of the pilot subcarriers are stronger in
CH1 compared to CH2, hence the superior performance of
the proposed estimators in CH1.

Next we study the impact of the value of the normalized
CFO on the CFO estimation performance. To that aim we
considered a residual SFO of δ = 2 · 10−4 at Eb/N0 =

15 [dB], and depict the MSE vs. εn in Fig. 6, and the mean
estimate vs. εn in Fig. 7, for εn ∈ [−0.5, 0.5). Note that as the
results are symmetric around εn = 0, than Fig. 6 depicts MSE
only for the positive half of the range of εn. It is observed
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FIGURE 5. Magnitude of the DTFT of the CIR for CH1 (top) and for
CH2 (bottom). The circles mark the subcarriers used by the proposed
estimators.

FIGURE 6. MSE of the CFO estimates vs. the value of the normalized CFO
with δ = 2 · 10−4 for CH1, at Eb/N0 = 15 [dB].

FIGURE 7. Mean of the CFO estimates vs. the value of the normalized CFO
with δ = 2 · 10−4 for CH1, at Eb/N0 = 15 [dB].

from the figures that, for the given scenario, the proposed
CFO estimator ε̂(2)n of Eqns. (19) + (20) and the modified
LSE of Section IV-A are useful (here we refer to usefulness
as having a relatively small bias and no jump in MSE) in
the range εn ∈ [−0.4, 0.4), the CFO estimator of the LSE

has a useful range of εn ∈ [−0.35, 0.35), the proposed CFO
estimator ε̂(1)n of Eqns. (18) + (20) has a useful range of εn ∈
[−0.15, 0.15), and the LHHYW CFO estimator has a useful
range of εn ∈ [−0.5, 0.5). It is also observed from Fig. 6 that
the MSE of ε̂(2)n and of the modified LSE at εn = 0.01 and at
εn = 0.35 differ by a factor smaller than 15, while the value
of εn is increased by a factor of 35 in this range, implying
the relative MSE has decreased as εn has increased. We also
repeated the simulations for Eb/N0 = 10 [dB], and observed
that contrary to the situation for Eb/N0 = 15 [dB], the CFO
estimators of the LSE and the LHHYW exhibit a bias also for
small normalized CFOs, e.g., in the range [−0.05, 0.05). Note
that the bias of the LSE estimator is not due to the term from
[9, Eqn. (10)]: 2π

Nsym
Nsc

δ
∑

k∈KLSE
p

k , since the pilot subcarri-
ers were selected a-priori to guarantee∑

k∈KLSE
p

k = 0. Hence, the LSE estimator bias may

be inherent. The LHHYW bias may be due to its poor
SFO estimate which might directly affect the corresponding
CFO estimate. It was also verified that all SFO estimators
are unbiased (the last two simulations are not included here
for brevity). It thus follows that the proposed estimators are
useful over a large range of residual CFO values, and in
particular, ε̂(2)n is useful over nearly the entire relevant range
of residual CFOs, and its combination with the proposed SFO
estimator results in an excellent candidate for joint residual
CFO and SFO estimation in many OFDM scenarios.

Comparing Figs. 1, 2, 3 and 4, it follows that there are
channels in which the new SFO and CFO estimators are
superior to that of the LSE, e.g., CH1 used in Figs. 1
and 3, while there are channels in which the opposite is
true. To better understand this points, we carried out a sim-
ulation in which we used the built-in MATLAB function
‘wlanTGaxChannel’ from the ‘WLAN System Toolbox’ to
generate random channels specifically for the IEEE 802.11ax
system, setting the parameters ‘DelayProfile’ to ‘Model-F’,
‘ChannelBandwidth’ to ‘CBW20’, ‘NormalizeChannelOut-
puts’ to 1, ‘NormalizePathGains’ to 1 and ‘SampleRate’ to
1/T (a)

samp
∼= 19.96 [MHz]. For the numerical evaluation we

generated 11000 random channel realizations, and for each
channel realization we tested the performance at three values
of Eb/N0 = {5, 25, 45} [dB], where at each Eb/N0 we carried
out 1000 Monte-Carlo experiments to measure the MSE of
the SFO estimate and of the CFO estimate for both the pro-
posed estimators as well as for the LSE estimator. In order to
identify which estimator is superior we used a majority rule.
From this test we observe that the proposed SFO estimator
was superior to the LSE in 57% of the realizations, while the
proposed CFO estimators were superior to the LSE, in about
half the realizations at which the proposed SFO estimator was
superior to the LSE. We can conclude that the proposed CFO
estimator is more sensitive to pilot subcarriers selection while
the SFO estimator is more robust, and that neither algorithms
in uniformly superior. If thus seems that a combination of
both the LSE and the proposed algorithms could be the best
approach.
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TABLE 1. Comparison of the computational complexity.

Lastly, as the performance of communications systems
are predominantly measured via bit error-rate (BER) at the
receiver, it is of interest to characterize the BER perfor-
mance resulting from applying the different algorithms. Fig. 8
depicts the BER results vs. Eb/N0 for uncoded QPSK trans-
mission over CH1. The estimation of the SFO and the CFO
is applied while the coefficients of CH1 are unknown, but at
the symbol decoding step it was assumed that the coefficients
of CH1 are known exactly by the decoder. The BER plot for
the maximum likelihood symbol decoder over an additive
white Gaussian noise (AWGN) channel with the SFO and
the CFO completely compensated is included as a reference
for comparison (labeled as ‘Ideal’). It can be observed the
two proposed estimators and the modified LSE achieve lower
BER than the LSE and the LHHYW estimators. This is
expected, since the two proposed estimators and the modified
LSE achieve lower CFO and SFOMSEs than the LSE and the
LHHYW estimators for CH1, as observed in Figs. 1 and 3.
It can be observed that above Eb/N0 = 8 [dB] the two
proposed estimators and the modified LSE BER curves prac-
tically coincide with the BER curve of the maximum like-
lihood symbol detector, which demonstrates the superiority
of the proposed estimators over the LSE and the LHHYW
estimators for CH1. We observe that the larger the MSE in
SFO and CFO estimators the higher is BER, which is also as
expected. For completeness, we depict the BER performance
for CH2 in Fig. 9. We observe from Fig. 9 that for CH2,
the BER plot is mirroring the observations from Fig. 8: The
BER with both the proposed estimators and the LSE decrease
as the SNR increases, and because the LSE has a smaller SFO
and CFOMSEs compared to the proposed estimators, then its
corresponding BER values are smaller than the BER values
obtained with the proposed estimators. It is also observed that
as the SNR increases, then eventually the MSE of proposed
estimators is sufficiently small such that their BER curves
approach the BER curve obtained with the LSE.

C. COMPARISON OF COMPUTATIONAL COMPLEXITY AND
A-PRIORI INFORMATION
From the numerical performance evaluations, we note that
there are scenarios in which the proposed SFO and the CFO
estimators achieve superior MSE performance as depicted
in Figs. 1 and 3, while there are scenarios in which the LSE
algorithm achieves lower MSE as depicted in Figs. 2 and 4.
In order to make a fair and complete comparison of the
different algorithms, it is necessary to consider their com-
putational complexity. Table 1 summarizes the computa-
tional complexity of the algorithms in terms of RMs and
RAs. The LHHYW algorithm uses a grid search, hence its

FIGURE 8. BER vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH1.

FIGURE 9. BER vs. Eb/N0 with εn = 0.01 and δ = 2 · 10−4 for CH2.

complexity is stated per grid search point. Note that the pro-
posed approximated version of the SFO estimator presented
in [10, Eqn. (37)] does not require a grid search, however its
computational complexity in terms of RMs and RAs remains
very high for the considered scenario, therefore, we imple-
mented the single dimension grid search SFO estimator
[10, Eqn. (35)]. The complexity evaluation for [10, Eqn. (37)]
is briefly summarized in Appendix B.

We compare the computational complexity of the different
estimationmethods via the required number of RMs, asmulti-
plications dominate the computational complexity [20]. From
Table 1, we note that the complexity of the LSE has a linear
dependence on |Kp|, while the complexity of the proposed
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FIGURE 10. MSE of the SFO and of the CFO estimates vs. the number of
RMs, with εn = 0.01, and δ = 2 · 10−4 for CH1, at Eb/N0 = 20 [dB].

estimators depends on |NSFO|, and can vary from linear to
quadratic dependence on |Kp|. In the numerical performance
evaluations we use 2 pilot subcarriers for the SFO and the
CFO estimators in the proposed algorithms. In [21, Tab. 2]
it was suggested that the number of iterations needed to
achieve a sufficient accuracy for a real division is 2, therefore,
we obtain that the complexity of proposed SFO estimator
combined with the proposed CFO estimator ε̂(1)n , totals at
116 RMs, the proposed SFO estimator combined with the
proposed CFO estimator ε̂(2)n , has a complexity of 77 RMs,
and the proposed SFO estimator combined with the modified
LSE algorithm has a complexity of 86 RMs. Note that in the
proposed CFO estimators, ε̂(1)n and ε̂(2)n , the multiplication by
the constant 1/|Kp| = 0.5 in the computation of the average
estimate does not incur computational complexity, since it
can be implemented by shifting. Also note that as |NSFO| = 1,
multiplication by 1/|NSFO| = 1 in the proposed SFO esti-
mator, δ̂, does not incur computational complexity. The LSE
operates with 6 pilot subcarriers resulting in a complexity
of 92 RMs. Lastly, the LHHYW operates with K = 14 sub-
carriers, which results in a complexity of 130 RMs for a single
grid search point, while its approximated SFO estimator ver-
sion requires 2906 RMs, see Appendix B.We observe that the
computational complexities of the new algorithms are consid-
erably lower than that of LHHYW algorithm, and are similar
to that of the LSE algorithm. However, the new algorithms
do not restrict the pilot subcarrier indexes and can work
for any set of OFDM subcarrier indexes. Next, we examine
the relationship between MSE performance and the com-
putational complexity of the different schemes, by varying
the number of pilots and evaluating the performance of the
different estimators. To reduce clutter, we present here only
the performance of the LSE and of the proposed algorithms
with the SFO estimated via (13) and the CFO estimated via
either (18) or (19) as well as via the modified LSE based on
Eqn. (23). From Fig. 10 we observe that for CH1, the per-
formance of the LSE as well as of the proposed algorithms

FIGURE 11. MSE of the SFO and of the CFO estimates vs. the number of
RMs, with εn = 0.01, and δ = 2 · 10−4 for CH2, at Eb/N0 = 20 [dB].

improve as the RM complexity increases, however, for both
the SFO estimate and the CFO estimate, the performance
of the proposed estimators are consistently better than those
of the LSE estimator in the tested range. In fact, for SFO
estimation, as RM complexity increases, the MSE of the LSE
floors at a higher value than theMSE of the proposed scheme.
For the CFO estimate, as RM complexity increases, the MSE
performance of the LSE CFO estimate approaches that of
the proposed schemes, yet, it remains higher than that of the
proposed schemes in the tested range. We note that further
increasing the RM complexity we obtain that the MSE of the
LSE CFO estimator crosses that of Eqn. (18) at some higher
RM complexity, but remains higher than the MSEs of the
other CFO estimators. For CH2, it is observed from Fig. 11
that, while performance of both the proposed estimators and
of the LSE estimator improve as the computational complex-
ity increases, the LSE is superior to the proposed schemes for
the entire range of RM complexity tested. We observe that
when RM complexity increases, performance improves until
it reaches a floor. For CH2, the proposed CFO estimator has a
higher floor compared that the LSE estimator, likely because
of ignoring the noise in the derivation of the cost function.
We conclude that the proposed SFO and CFO estimators
of Eqns. (13) and (19) are superior to the LSE for many
scenarios, at any RM complexity, yet there are scenarios in
which the situation is reversed. As the focus is naturally on
low complexity, we maintain that there is a strong motivation
for the proposed algorithm.

In terms of the required a-priori information by the new
SFO and the CFO estimation algorithms, we conclude that
partial a-priori information on the magnitudes of the channel
frequency response at the transmitter can improve the per-
formance of the SFO and the CFO estimators in terms of
their MSEs, by facilitating selection of strong pilot subcar-
riers. On the other hand, the numerical performance evalua-
tions show that the new estimators can achieve good perfor-
mance also without any a-priori information on the channel
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frequency response. Both the LSE algorithm and the
new algorithms require a-priori information regarding the
pre-defined pilots sets, while the LHHYW does not require
any a-priori information as its SFO and CFO estimations
are not based on pilots subcarriers, yet it requires a-priori
information about the ISI duration, as the LHHYW algo-
rithm needs to identify a shifted FFT window which contains
ISI-free CP samples.

VI. CONCLUSIONS
In this paper, we derived low complexity algorithms for the
estimation of CFO and SFO based on known pilots in OFDM
systems, assuming the channel remains constant over two
consecutive OFDM symbols. The algorithm first estimates
the SFO and then proceeds to estimate the CFO for which
we propose two new estimators, as well as a modification to
that of [9]. Numerical evaluations show that there are many
scenarios in which the new estimators are superior to the
current schemes, but there are also many scenarios in which
the opposite is true. Further research is required in order
to find ways to combine the two estimators to benefit from
their advantages in all scenarios. In recent years, machine
learning (MCL) has been considered for multiple problems
in which the expert systems (ESs) have a high computational
complexity. We note that application of MCL to estimation of
physical parameters have been largely unexplored. Recently,
several works have studied parameter estimation based on
machine learning, such as [19], in which three classes of
deep neural network (DNN)-based CFO estimation for IEEE
802.11ah, were proposed. The tests carried out in [19] showed
that the expert system has outperformed the MCL-based esti-
mator. In [22], a DNN was developed for estimating the pitch
frequency for noisy speech or music signals. It was observed
that the proposed DNN pitch estimator achieves performance
similar to the expert systems. Some works did report superior
performance over that of the ES, e.g., the frequency estima-
tion works in [23], [24], however, complexity of the different
schemes was not reported, and applicability to modulated
signals was not discussed in [23].We thus conclude that while
there is no conclusive evidence to the usefulness of MCL for
parameter estimation, it is definitely a research direction that
we are considering in our current research, presently focusing
on model-based approaches.

APPENDIX A
COMPUTATIONAL COMPLEXITY ANALYSIS
FOR LSE METHOD
The LSE estimator first computes complex multiplications
of pairs of symbols, see [9, Eqn. (2)], Ym,k = R∗m,kRm+1,k ,
which requires 4|Kp| RMs and 2|Kp| RAs for |Kp| ≥ 2.
Then, the summation term 31 in [9, Eqn. (10)], 31 =∑

k∈S1
arg{Ym,k} +

∑
k∈S2

arg{Ym,k}, where S1 and S2 are
a partition of the set of pilot subcarrier indexes, is evalu-
ated using the inverse trigonometric function tan−1(·), which
requires a real division for computing the argument, after
which the arguments are summed. Thus, computation of 31

entails an overall cost of |Kp|(2i + 6) RMs and |Kp|(i +
3) − 1 RAs. Next, the CFO estimate in [9, Eqn. (14)], ε̂n =
31/(2πρNp) is evaluated (where ρ = Nsym/Nsc) with a single
real multiplication by a constant, 1/(2πρNp), which requires
1 RM,where it is assumed that 1/(2πρNp) has been computed
previously. Subsequently, the summation term, 32, in [9,
Eqn. (12)],32 =

∑
k∈S1

k · arg{Ym,k} +
∑

k∈S2
k · arg{Ym,k}

is evaluated at an overall cost of |Kp| RMs and |Kp|−1 RAs.
Note that the terms arg{Ym,k} have already been evaluated for
computing31. Then, the SFO estimate in [9, Eqn. (15)], δ̂ =
32/(2πρMp), is evaluated with a single real multiplication
by the constant 1/(2πρMp), Mp ,

∑
k∈S1

k2 +
∑

k∈S2
k2,

which requires 1 RM, again assuming that 1/(2πρMp), has
been previously computed. Thus, the overall complexity is
|Kp|(2i+ 11)+ 2 RMs and |Kp|(i+ 6)− 2 RAs.

APPENDIX B
COMPUTATIONAL COMPLEXITY ANALYSIS
FOR THE LHHYW METHOD
A. A SINGLE DIMENSION GRID SEARCH FOR THE LHHYW
SFO ESTIMATOR
The LHHYW estimator first computes the term 2(δ̃) in [10,
Eqn. (31)], 2(δ̃) =

∑K/2
k=−K/2,k 6=0 R

∗
m,k,LRm,k e

−j 2πNsc kL(1+δ̃),
K = |Kp|, which requires two complex multiplications for
each summand, as well as a complex summation over K − 1
subcarriers. Therefore, this step requires 8K RMs and 6K−2
RAs, assuming the complex exponents e−j2πkL(1+δ̃)/Nsc have
already been computed (note that δ̃ is a grid search point).
Then, implementing of the argmax [10, Eqn. (34)]; δ̂ =
argmaxδ |2(δ̃)|2, requires a complex norm operation at each
grid search point, which uses 2 RMs and 1 RA. Next, the CFO
estimate in [10, Eqn. (33)], ε̂n = Nsc ·arg{2(δ̂)}/

(
2πL(1+δ̂)

)
is evaluated using a real division of the imaginary part by
the real part (2i + 1 RMs, i RAs) followed by the inverse
trigonometric function tan−1(·) (5 RMs, 2 RAs). Then, a real
addition (0 RMs, 1 RA) and a real division (2i + 1 RMs,
i RAs) involving the SFO estimate are applied for obtain-
ing arg{2(δ̂)}/(1 + δ̂), and lastly, a real multiplication by
a constant Nsc/2πL is applied (1 RM, 0 RAs), assuming
the constant Nsc/2πL has been a-priori evaluated. The total
complexity of the CFO estimate is thus 4i+8 RMs and 2i+3
RAs. Thus, the overall complexity is 8K + 4i+ 10 RMs and
6K +2i+2 RAs. Note that the computational complexity for
LHHYW was evaluated for a single grid search point.

B. APPROXIMATED LHHYW SFO ESTIMATOR
We present a brief summary of the computational com-
plexity for the approximated LHHYW SFO estimator: The
LHHYW first computes the term in [10, Eqn. (37)], f (δ0) =∑

p6=q(p − q)R∗m,p,LRm,pRm,q,LR
∗
m,qe

j 2πNsc L(p−q)(1+δ0), which
requires K (5K − 1) RMs and K (5K − 3) RAs (δ0 is a known
initial value). Then, the term in [10, Eqn. (39)], w = δ0 −

f (δ0)/f ′(δ0), requires K (K − 1) + 2i + 1 RMs and 2K (K −
1)+ i+ 1 RAs. Lastly, the SFO estimate is obtained via: [10,
Eqn. (38)], δ̂ = w − f (w)f ′(w)/

((
f ′(w)

)2
− f (w)f ′′(w)/2

)
,
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which requires 19K (K−1)/2+2i+4 RMs and 9K (K−1)+
i + 3 RAs. Thus, the overall complexity combined with the
CFO estimator in [10, Eqn. (33)] is K (31K −23)/2+8i+13
RMs and K (15K − 13)+ 4i+ 7 RAs.
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