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ABSTRACT In this work, a novel process monitoring method in a block-wised partitioning manor is
proposed for plant-wide processes which can be partitioned into several sub-blocks and monitored parallelly.
The focus of this method is to reduce the high complexity of global plant-wide process, while to improve the
efficiency of local feature extraction. In this method, considering that not all process knowledge is available
in the block division process strategy, a novel community discovery (CD) algorithms, based on the similarity
of neighbor node weighted Louvain, is introduced into the framework of the multi-block Bayesian inference
and principal component analysis (PCA) based plant-wide process monitoring scheme. Firstly, the complex
network (CN) theory is used to establish the network topology structure for the global variables of the
plant-wide process. Secondly, by analyzing the graph characteristic structure, considering the connection
strength between nodes, a more reasonable sub-block division is conducted according to the improved
Louvain algorithm. Then, PCA method is used to establish process monitoring model for each sub-block to
obtain sub-blockmonitoring statistics. Finally, the total joint statistics is obtained through Bayesian inference
for fault detection. The feasibility and effectiveness, in terms of the detection performance, of this method
are demonstrated in a simulated plant-wide process by compared with other state-of-the-art PCA based
monitoring methods.

INDEX TERMS Plant-wide process monitoring, complex networks, community discovery algorithms,
Bayesian inference, principal component analysis.

I. INTRODUCTION
Due to the improvement of product quality and safety in
modern industrial processes, industrial process monitoring
has become a hot topic of research [1]–[5]. As the continuous
development of modern data collection and storage tech-
nology, the types and quantities of industrial process data
have been greatly improved, and industrial processes have
entered the era of big data. Massive data contains impor-
tant process variable information. Recent decades, data-
driven approaches [6], especially multi-variable statistical
process monitoring (MSPM), have achieved increasingly
developments [7]–[9] with the help of the improvement of
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the computing power as well as the data analysis techniques.
Among them, PCA is commonly used in MSPM [10], which
is a dimension reduction algorithm, due to its efficiency and
understandability. The acquired data can be projected into
a relative lower-dimensional space to eliminate redundant
information between variables, which can process Gaussian
and linear data. Considering the possibility of linear and
nonlinear problems between variables, Xu proposed [11] a
nonlinear process monitoring and fault diagnosis based on
kernel principal component analysis (KPCA) and multiple
kernel learning support vector machines. In addition to PCA
and its extension methods, other process monitoring meth-
ods are also used in different monitoring domains. Zhong
proposed [12] a quality-related statistical process monitoring
method based on global and local partial least squares (PLS)
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projection. Zhou proposed [13] an improved PLS algorithm
to prove its robustness in process monitoring compared with
traditional methods. Wang proposed a novel statistical model
based on locality-preserving PLS to improve the nonlin-
ear processing capability of the system. Chen proposed an
improved canonical correlation analysis (CCA) to realize the
detection of multiplication faults in industrial processes [14].
Peng proposed [15] the combination of just-in-time learn-
ing and extreme learning machine (ELM) to deal with
non-Gaussian chemical processes. Tian proposed [16] to
combine average multivariate accumulation and residual
analysis with independent component analysis(ICA) to
realize fault detection of non-Gaussian process with periodic
disturbance. Du introduces [17] lazy learning (LL), sup-
port vector data description (SVDD), and modified recep-
tor density algorithm (MRDA) to online monitor nonlinear
multimode processes.

Furthermore, in modern industry, the plant-wide process
is characterized by its multiple function-oriented opera-
tion units, a large number of process variables and com-
plex variable relationships. Consequently, this kind of com-
plexity will cause unsatisfactory monitoring performance if
merely traditional MSPM methods are applied. In this case,
the establishment of a global monitoring model, such as
global PCA, may mask local fault information and reduce
the complexity and accuracy of the plant-wide process mon-
itoring. Therefore, in order to overcome the complexity of
process variables in the plant-wide process and extract the
suitable local variable information of process data, block-
wised partitioning manor or distributed monitoring is an
effective solution. Westerhuis et al. proposed the plant-wide
process monitoring methods of multi-block PCA (MBPCA)
or multi-block PLS [18]–[20]. Ma et al. proposed [21] a
novel key performance indicator oriented hierarchical mon-
itoring and propagation path identification framework for
complex industrial processes. This approach uses a new gap
measurement approach for monitoring key performance indi-
cator (KPI) oriented faults in the block level. Jiang et al.
proposed [22] to combine the randomized algorithm (RA)
with evolutionary optimization-based data-driven distributed
local fault detection scheme to achieve the efficient moni-
toring of multi-unit chemical processes. At the same time,
Kohonen et al. demonstrated the efficiency and difference
between the multi-block PLS approach and conventional
PLS [23], priority regression in the plant-wide process mon-
itoring results. Ge et al. proposed [24] a plant-wide pro-
cess monitoring method based on distributed PCA, in which
variables with high contribution rate in the same principal
component(PC) direction were automatically divided into the
same block. Xie et al. proposed [25] a process monitoring
and fault isolation scheme for shrinkage PCA. Jiang et al.
proposed sub-block division based on Hellinger distance
between variables [26]. Zhang et al. proposed a novel plant-
wide process monitoring framework [27] based on distributed
Gap-support SVDD with adaptive radius, and divided the
plant-wide process variables into different subblocks by using

mixed similarity measure to deal with complex coupled pro-
cess variables. Huang et al. proposed [28] a multi-block parti-
tioning method based on mutual information (MI). Tian et al.
proposed the use of copula correlation analysis and Bayesian
inference based multi-block principal component analysis for
decentralized monitoring of large-scale processes [29], [30].
Zeng et al. proposed [31] mutual information-based sparse
multi-block dissimilarity method for incipient fault detection
and diagnosis in plant-wide process. By taking advantage of
the complex relationships between variables and the connec-
tions between subblocks, subblocks are generated that are
easily interpreted by the process mechanism.

Nevertheless, all the aforementioned studies obtained cor-
responding detection results. However, considering the pos-
sibility of cascading failures in process variables, when an
operating unit fails in a plant-wide process, it might affect
merely this specific unit and related neighbor units. Thus,
a small portion of process variables are affected by this fails.
It is necessary to fully understand the structural characteris-
tics of process variables throughout the plant-wide process
during the block partitioning process. Therefore, the commu-
nity discovery algorithm of complex network becomes the
evaluation basis of the quality of block division. After Girvan
and Newman proposed the community evaluation standard
of modularity is a typical edge betweenness-based separation
algorithm [32]–[34], it really opened the door to the research
of complex network community discovery algorithm. Sub-
sequently, Tatsuro et al. proposed the greedy algorithm to
solve the degree of modularity function and obtained the
approximate optimal result [35]. Gao et al. proposed [36]
the swarm intelligence algorithm to detect community struc-
ture. Sieyum proposed [37] a clustering algorithm combin-
ing k-means algorithm and genetic algorithm, Benita et al.
proposed [38] a clustering scheme based on Louvain. The
clustering algorithm of Louvain is used to cluster the variable
feature graphs, which can not only quickly process the net-
work with hundreds of millions of nodes, but also improve
the quality of the community partition. Therefore, a plant-
wide process monitoring algorithm based on multi-block
PCA analysis based on complex network community
discovery-Louvain (CNCDL-MBPCA) is proposed in this
paper.

Although the existing method has successfully imple-
mented the fault detection of industrial processes, the follow-
ing major problems still need to be solved for block division
in the whole process monitoring:

(1)Although based on prior process knowledge block divi-
sion methods proposed in [18]–[20] improved the plant-wide
process monitoring results, they relied too much on prior pro-
cess knowledge in terms of block-wised partitioning, given
that the process knowledge is not always available in the
process of partitioning.

(2)These data-driven [26], [28] methods can automatically
partition blocks, however, only the relationship between vari-
ables is considered in the partition of blocks, and the interac-
tion between sub-blocks is not considered.
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(3)The method by [29], [30] not only the similarity
between variables, but also the association pattern between
sub-blocks are considered. But it takes a lot of computing
time to process large networks. For the traditional Lou-
vain algorithm [39], the default weight value of the relation
between two variables is 1, and the influence of variable
behavior is ignored, the variables with the same correlation
degree may have different correlation pattern, resulting in
inaccurate results of community partitioning and effecting the
monitoring performance.

To solve these problems, the following work has been done
this study:

(1)Via complex network community discovery algo-
rithm [38], the graph feature-based clustering can not
only consider the relation between variables, process vari-
ables with similar characteristics are automatically clustered
through the characteristics carried by the graph itself, but
consider the correlation degree between blocks. It can also
effectively avoid the limitation and misdirection caused by
over-reliance on process knowledge.

(2)Based on the cosine similarity of neighbor node
weighted Louvain, is used for block division. Weighted net-
work structure and attribute information fusion, not only
consider the existence of the edges between nodes, and con-
sidering the close correlation between the variables, avoid
missing information of process variables in the process of
block partitioning to obtain better block partitioning results
so as to obtain better monitoring results.

The major procedure include the following:
First, the cosine similarity between variables is calculated

to build a complex network model.
Second, the variable similarity matrix is used to determine

the weights of variables and to divide the sub-blocks, so as to
avoid the loss of information.

Third, PCA model [40] was established for the process
variables of each sub-block for monitoring and analysis.
Since Gaussian or non-Gaussian distribution phenomenon
existed in the process data set, the confidence limit of PCA in
each sub-block was determined by kernel density estimation
(KDE).

Lastly, by using Bayesian inference [41], the detection
results of each sub-block are fused to obtain the final statis-
tics to realize the comprehensive evaluation of monitoring
results.

The rest of the paper is organized as follows. The
second part briefly reviews the related work. The third
part briefly introduces complex network for block divi-
sion, principal component analysis process monitoring and
Bayesian inference for statistics combination. The fourth part
introduces case study. Through the analysis of TE bench-
mark process, the effectiveness of this method is verified.
PCA, sparse PCA (SPCA), MBPCA, multi-block sparse
PCA (MBSPCA) are selected to compare with the pro-
posed method in this paper to verify the effectiveness of the
method. Finally, in the fifth part, the conclusion is drawn and
discussed.

II. RELATED WORK
In order to reduce the failure risk of industrial process and
improve product quality requirements, process monitoring
is essential in industrial operation. The plant-wide process
monitoring is widely used to analyze the complex relationship
of process variables. However, the global variables collected
through plant-wide process are modeled, these local behav-
iors of variables is often ignored, leading to information loss.
By turning the variables into several sub-blocks, the local
behaviors [26], [42], [43] of the variable can be well demon-
strated and the hidden characteristics of the local behavior can
be explored.

For the partition of blocks, MacGregor et al. proposed [44]
a multi-block projection method to detect each sub-block
and the entire process. This method is realized by analyzing
the prior process knowledge, but the process knowledge is
not universal. Tong et al. proposed [45] distributed statisti-
cal process monitoring based on four-subspace construction
and Bayesian inference. The subblocks are divided accord-
ing to the correlation or irrelevance between process vari-
ables and principal component space (PCS) and the residual
subspace. Block partitioning is limited to linear correlation.
Jiang et al. proposed [43] a fully data-driven distributed non-
linear plant-wide process monitoring method. Sub-block par-
tition is realized by mutual information - spectral clustering.
It can consider both the linear relationship between variables
and the nonlinearity of variables. However, in the process of
block partition, only the relation between sub-block variables
is considered, and the association mode between sub-blocks
is not considered. Since the plant-wide industrial process
is characterized by multiple operating units, there may be
some connections between units or within units. Tong et al.
proposed an improved MBPCA algorithm [42] for extracting
block fractions with respect to the specificity of each block
and the correlation between different blocks. Chen et al.
proposed [46] a fault detection method for plant-wide pro-
cess monitoring based on distributed canonical correlation
analysis, and realized block partitioning by using correlation
information of the neighboring nodes. The uncertainty of
local process is reduced by making use of the correlation
relations with other subsystems. Therefore, in this paper,
the cosine similarity between variables is calculated to ana-
lyze the similarity relation of neighbor nodes to realize the
partition of blocks.

III. METHODOLOGY
The proposed monitoring scheme for a multi-block plant-
wide process consists of three parts: complex network for
block division, principal component analysis process moni-
toring, Bayesian inference for statistics combination. These
parts are introduced in this section.

A. COMPLEX NETWORK FOR BLOCK DIVISION
Considering the multi-operation units and the complexity
between variables of the plant-wide process, the problem of
ignoring local behaviors in the global model and excessively
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relying on process knowledge for sub-block partitioning was
solved, and only considering the correlation analysis of vari-
ables in the existing block partitioning process. and set out
to solve the block partition problem through graph theory.
Through the network topology diagram (i.e., the plant-wide
process. By connecting the variables of the plant-wide pro-
cess in a specific way), the representation can not only intu-
itively reflect the rich resources and hidden internal relations
among variables, but also present a clear network topology
structure. This diagram is known as the complex network
model.

Inmany real networks, the nodes are grouped in the form of
subgraphs, and the network is made up of several ‘‘communi-
ties’’ with relatively tight connections between nodes within
each community but sparse connections between communi-
ties. For the high dimensional complex data information col-
lected in the plant-wide process, the sub-blocks are divided
by the community discovery algorithm, not only deal with
the linear relationship between variables, but also consider
the nonlinear relationship between variables. As the structure
and attribute information of the original unweighted network
are fused, only the existence of edges between nodes is
considered. Based on this problem, the pre-existing Louvain
algorithm was optimized in this paper, and a novel commu-
nity discovery algorithm based on the similarity weighting
of neighbor nodes was proposed to divide the community
by using a weighted network, not only consider whether
or not a connection between nodes, but also consider the
associated closely degree between nodes and correlation anal-
ysis between sub-blocks are also considered. By considering
the weights allocated according to the similarity between
nodes, the nodes are divided the node into the community
with which it is most closely connected so that it is more
tightly connected to the same community. According to the
cosine similarity of the feature vectors of the nodes, the
transition probability of the nodes joining the neighbor nodes
is obtained. The cosine similarity of the two variables x1, x2
is calculated as follows [47]:

cos 〈x1, x2〉 =

n∑
i=1

x1ix2i√
n∑
i=1

x21i

√
n∑
i=1

x22i

(1)

where, x1i, x2i represents the ith sample value of variables x1
and x2, respectively.
For a given number of samples, cosine similarity between

variables can be calculated to quantify the relationship
between variables. This quantization should not just con-
sider the linear correlation, as well as consider the nonlinear
relationship between variables. Strongly correlated variables
have greater cosine similarity, whereas weakly correlated
variables have less cosine similarity. According to the set
threshold value to determine the tightness of the variables,
establish the adjacency matrix. Since cosine similarity has
positive and negative values, when | cos 〈x1, x2〉 | is defined

to be greater than or equal to the threshold, then adjacency
matrix elements is rx1x2 = rx2x1 = | cos 〈x1, x2〉 |, otherwise
rx1x2 = rx2x1 = 0. Here, rxixi = 0 ignores the autocorrelation
of variables. On this basis, the adjacency matrix R is gener-
ated of Equation (1) with [48], [49]:

R =


r11 r12 · · · r1n
r21 r22 · · · r2n
...

...
...

...

rn1 rn1 · · · rn1

 (2)

where, c represents the number of samples and m represents
the number of variables.

If the adjacency matrix element is greater than or equal to
the threshold value, then there are edges between variables;
otherwise, there are no edges between variables, which are
called isolated nodes. According to the adjacency matrix,
the weights of the edges between the nodes are initialized,
and the undirected weight network is constructed. The cor-
responding module degree is calculated to select the neigh-
bor node most closely associated with the current node for
community partition via the transfer probability obtained.
Modularity degree is defined as follows [34], [37]:

Q =
1
2m

∑
i,j

[
rij −

KiKj
2m

]
δ
(
ci, cj

)
δ (u, v) =

{
1, when (u == v)
0, when (u! = v)

(3)

where, rij represents the weight of edge of the connect-
ing node i (i = 1, 2, · · · , n) an j (j = 1, 2, · · · ,m), Ki repre-
sents the sum of the weight of edge connected with node i,
and ci represents the community to which node i belongs.
m = 1

2

∑
i,j
rij represents the total number of edges of the

network structure.
Louvain algorithm determines whether to join another

community according to the modularity gain of the node.
When node i is distributed to neighborhood node j belongs
to the community c, the modularity gain is [36]:

1Q =

[∑
in+ Ki,in
2m

−

(∑
tot + Ki
2m

)2
]

−

[∑
in

2m
−

(∑
tot

2m

)2

−

(
Ki
2m

)2
]

(4)

where,
∑
in represents the sum of the weights of all the edges

in community c; Ki,in represents the sum of edge weights
between nodes i and nodes in the community c;

∑
tot repre-

sents the sum of the weights of edges between external nodes
of community c and community c. 1Q is divided into two
parts, the first part represents the degree of modularity after
adding node i to community c, and the second part represents
the degree of modularity of node i as independent community
and community c.

For block division, as shown in Fig. 1 and Fig. 2, a complex
networkmodel is established for the collected normal training
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FIGURE 1. Block division step 1.

FIGURE 2. Block division step 2.

data of the plant-wide process. Step 0, each node is initialized
as an independent community. The number of communities
is equal to the number of nodes, also called the number of
process variables; step 1, for each node i, try in turn to assign
node i to the community where each of its neighbor nodes
is located, and calculate the modularity changes 1Q before
and after allocation. And when 1Q is the largest, record
neighbor nodes, if max1Q > 0, the node i is assigned to
the community, where the neighbor node has the greatest
modularity change, otherwise remain unchanged, this node
i is defined as an independent node; until the community of
all nodes no longer changes; step 2, all nodes in the same
community are compressed into a new node, The weight of
the edge between nodes in the community is transformed into
the weight of the ring of the new node, and the weight of
the edge between communities is transformed into the weight
of the edge between new nodes. Repeat step 1 and step 2,
when the modularity of the entire graph does not change,
the iteration terminates.

B. PRINCIPAL COMPONENT ANALYSIS PROCESS
MONITORING
Assuming that given a sample data set X ∈ Rn×m, where
n represents the sample number of each variable and m
represents the observation variable. Through the division of
complex network communities, the data set becomes

X = [X1,X2, · · ·XB] , (5)

where, B represents the number of sub-blocks, and for the bth
sub-block Xb ∈ Rn×mb , where mb is the number of variables

of the bth sub-block (b = 1, 2, · · · ,B). PCA is a fundamental
MSPM method, which projects the sample data set from the
high-dimensional feature space to the low-dimensional fea-
ture space to eliminate redundant information and represent
the original data set information in the low-dimensional space
as far as possible. PCA model is established in each subspace
as follows [50]:

Xb = TbPTb + Eb (6)

where, pb ∈ Rmb×kb represents that the bth sub-block is
projected onto the load matrix of PCS, which is obtained
by singular value decomposition (SVD). kb is the number
of principal elements of the bth sub-block is determined by
cumulative percentage variance (CPV). Tb is the scorematrix,
and the score vectors are orthogonal to each other. Eb is
the residual vector to extract random noise and model error
information.

After the PCA model is established, based on the purpose
of process monitoring, the corresponding monitoring statis-
tics T 2

b and SPEb are constructed to monitor the changes of
the dominant and residual subspaces respectively. Given a
new observation variable xb ∈ Rmb×1, the two statistics are
calculated as follows, respectively [42], [50]:

T 2
b = xTb Pb (3b)

−1 PTb xb ≤ T
2
b,lim (7)

SPEb = eTb eb ≤ SPEb,lim

eb =
(
I − PTb Pb

)
xb (8)

where, 3b ∈ Rkb×kb represents a diagonal matrix composed
of eigenvalues corresponding to the previous kb principal ele-
ment; eb is residual vector; T 2

b,lim and SPEb,lim is confidence
limits for statistics. In the traditional method, the mechanism
of solving the above control limit is derived from the complex
mathematical statistics, but every event has its own specific
density distribution form. In the present study, KDE is often
used to determine the confidence limit. This paper selects the
Gaussian kernel function which is widely used. The expres-
sion of the Gaussian kernel density estimation function is as
follows [29], [51], [52]:

f̂ (x) =
1

nh
√
2π

n∑
i=1

exp

(
−
(x − xi)2

2h2

)
(9)
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where, xi is the observation variable and is n the sample
number of the observation variable; h is the bandwidth,
which greatly affects the accuracy of KDE. When h is small,
the number of samples in the region is sparse and individ-
ual factors are amplified, which cannot better reflect the
overall characteristics of the samples. When h is too large,
the regional scale becomes larger, and the overall characteris-
tics of the sample dominate, partial information of the original
data is ignored.

C. BAYESIAN INFERENCE FOR STATISTICS COMBINATION
Theoretically, the corresponding control limit and statistics
can be obtained by establishing PCA monitoring model for
each sub-block. And each sub-block gets a different number
of principal component through CPV. Therefore, for a new
monitoring data set xnew, it is difficult to merge the different
detection results that are composed of subspaces directly into
the final monitoring strategy. Therefore, to solve the problem
that different sub-blocks may get different number of prin-
cipal component, this paper adopts the Bayesian inference
strategy and combines the detection results of all subspaces
with the probability of failure. The fault probability of the T 2

statistics corresponding to the subspace Xb is calculated as
follows [43], [53]:

PT 2 (F |Xb) =
PT 2 (Xb|F)PT 2 (F)

PT 2 (Xb)
(10)

PT 2 (Xb) = PT 2 (Xb|N )PT 2 (N )

+PT 2 (Xb|F)PT 2 (F) (11)

Here, the conditional probability PT 2 (Xb|N ) and
PT 2 (Xb|F) are defined as follows:

PT 2 (Xb|N ) = exp

(
−
T 2
b,new

T 2
b,lim

)

PT 2 (Xb|F) = exp

(
−
T 2
b,lim

T 2
b,new

)
(12)

where, N and F represent normal conditions and failure con-
ditions respectively; PT 2 (N ) and PT 2 (F) represents the prior
probability under normal and failure conditions, When the
confidence level α is determined to be, value of PT 2 (N ) and
PT 2 (F) are determined as α and 1− α; T 2

b,new is the statistic
of the bth sub-block of the new detection data set; finally,
the total joint statistics can be calculated by combining the
detection quantities of all different sub-block by Bayesian
inference as follows [42], [45]:

BICT 2 =

B∑
b=1


PT 2 (Xb|F)PT 2 (F |Xb)

B∑
b=1

PT 2 (Xb|F)

 (13)

Similarly, the failure probability of SPE statistics corre-
sponding to the subspace is calculated as follows:

PSPE (F |Xb) =
PSPE (Xb|F)PSPE (F)

PSPE (Xb)
(14)

PSPE (Xb) = PSPE (Xb|N )PSPE (N )

+PSPE (Xb|F)PSPE (F) (15)

Here, the conditional probability PSPE (Xb|N ) and
PSPE (Xb|F) are defined as follows:

PSPE (Xb|N ) = exp
(
−
SPEnew
SPElim

)
PSPE (Xb|F) = exp

(
−
SPElim
SPEnew

)
(16)

The total joint statistics SPE are calculated as follows:

BICSPE =
B∑
b=1


PSPE (Xb|F)PSPE (F |Xb)

B∑
b=1

PSPE (Xb|F)

 (17)

When the value of BICT 2 and BICSPE exceeds the confi-
dence limit of the statistic, an industrial failure is considered
to have occurred; otherwise, the industrial process can run
normally. Based on the performance of existing methods,
the fault detection rate is used to measure. The detection rate
is calculated as follows:

DRT 2 =

NF(T 2)

N ◦

DRSPE =
NF(SPE)
N ◦

(18)

where, DRT 2 , DRSPE represents the fault detection rate of T2

and SPC statistics respectively. N
◦

represents the number of
fault variables in the sample data set. NF(T 2) represents the
number of BICT 2 data set that exceeded the confidence limit
of the BICT 2,lim statistic, NF(SPE) represents the number of
BICSPE data set that exceeded the confidence limit of the
BICSPE,lim statistic.

D. METHOD IMPLEMENTATION
In this paper, monitoring is divided into two parts: offline
modeling and online monitoring. The purpose of offline mod-
eling is to obtain the confidence limits of each sub-block
statistic and the total joint indicator statistic, online moni-
toring is to detect the running state of the online system.
The monitoring flow chart of this method is shown in Fig. 3,
the implementation steps of this method are as follows:

(1) Off-line modeling
1. Carry out data standardization and normalization pre-

processing for the data set under normal conditions of
the plant-wide process.

2. Block division the data set after standard process-
ing by using complex network community discovery
algorithm-Louvain.

3. PCA monitoring model was established for each sub-
block.

4. Calculate the confidence limit of the monitoring statis-
tics of each sub-block PCA model by Equations (7)
and (8), and then fuse them to calculate the confidence
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FIGURE 3. TE process flow chart.

limit of the statistics of the total joint indicators through
Bayesian inference by Equations (13) and (17).

(2) On-line monitoring
1. After standard processing of the current sample set,

block division is conducted according to the sub-block
division results of offline modeling.

2. Calculate the statistics of each sub-block and fuse the
statistics through Bayesian inference.

3. Compare the confidence limits of BICT 2,lim and
BICSPE,lim calculated by off-line modeling with the
values of BICT 2 and BICSPE to judge whether the
industrial process fails.

E. SOME REMARKS
Compared with the global process monitoring method, in this
method, multiple subspace models are established, and the
complex network community discovery algorithm is adopted
to divide the sub-blocks. Divide closely related variables
into the same sub-block, simultaneously, the variable fault
information of an operation unit can be divided into the same
sub-block to improve the failure probability of process moni-
toring. In this paper, the similarity threshold is set to 0.1 when
building the complex network model. A small number of
independent nodes will exist under the threshold result. In this
paper, independent nodes are divided into the same sub-
block. Through principal component analysis, the redundant
information is deleted by selecting feature variables with
CPV ≥ 85% rule. The subblocks monitor statistics T 2

b and
SPEb calculated, and the two statistics were respectively used
to monitor the changes of the dominant subspace and the
remaining subspace. Since the variables cannot be guaranteed
to be Gaussian, KDE is used to determine the confidence
limit of the subspace. Since it is difficult to fuse the detection
results of different subspaces, Bayesian inference is used to
transform the statistical information into the problem of fault
probability, where the confidence level α is 0.99. In the fourth

section, the experimental results show that this method can
effectively improve the monitoring results compared with the
global processmonitoring, and there is no substantial increase
in the computational complexity. It is superior to PCA, SPCA,
other MBPCA and MBSPCA.

IV. CASE STUDIES ON THE BENCHMARK PROCESS
A. TE PROCESS MODEL
In this part, based on the processmonitoring scheme proposed
in this paper, this paper selects the Tennessee Eastman (TE)
benchmark process to analyze the whole process indus-
trial process data. The Tennessee Eastman benchmark pro-
cess is a simulation example of a chemical process first
proposed by Downs and Vogel and is widely used in
the field of industrial process monitoring. The simulation
experiment data from http://depts.washington.edu/control/
LARRY/TE/download.html.

TE process is mainly composed of five conversion units:
reactor, condenser, compressor, separator and stripper. This
process conforms to the characteristics of the whole process
studied in this paper, so this TE process is selected for sim-
ulation study. The process flow chart is shown in Fig. 4.
It simulates complex industrial processes, and its dimensions
are quite rich, in which the data set consists of measure-
ment variable and operation variable. Among them, 11 oper-
ation variables and 41 measurement variables of which the
measurement variables are divided into 22 continuous pro-
cess variables, and 19 component measurement variables.
A detailed description of the TE process is available in the
literature [18].

FIGURE 4. TE process flowchart.

TE process data every run for 48 hours, running a total
of 22 times, the training sample and monitoring samples
of the sampling interval is set to 3 min. For the first time,
the normal data set was obtained under the condition of no
fault. When the fault condition was simulated, the process
started to run under the condition of no fault. After 8 hours
of smooth operation, the fault was introduced. (i.e. the first
160 sample points for trouble-free samples). To verify the
monitoring method, 21 industrial faults simulated by TE
process were selected. Gaussian noise was added to 21 fault
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process variables. Once the industrial process fails, most
variables may be interfered. As shown in Table 1. Among,
faults 1-7 are step type faults, faults 8-12 are random fault
types, faults 13 are caused by slow drift of reaction dynamics,
faults 14, 15 and 21 are caused by viscous action of valve, and
the rest are unknown faults.

TABLE 1. 21 fault STAES.

B. TE PROCESS SIMULATION BASED ON MULTI-BLOCK
CNCDL-MBPCA
In order to establish the monitoring model, this paper selects
the process data set as 960 × 52, where, 52 represents the
number of process variables and 960 represents the number of
sampling points for each variable. Firstly, as shown in Fig. 3,
the whole process variablesX = [x1, x2, · · · , x52] are divided
into six sub-blocks by using the community discovery algo-
rithm of the complex network, and the results are shown
in Table 2. According to the result of block division, PCA
monitoring model was established. The number of principal
components was determined by the CPV greater than 85%.

TABLE 2. Subblock division resultes.

Based on the confidence limit of detection statistics obtained
by KDE, first, T2 and SPE values are calculated using normal
operation data. Secondly, KDE is used to estimate the density
function of normal T2 and SPE values. Finally, the mean inte-
gral square error is used to select the optimal h value. In this
paper, the threshold value of bandwidth h in Equation (9) is
set as 1.

First, the data sets of 21 fault states are analyzed and the
detection rate of each fault state is tested. The existingmethod
and the method presented in this paper were selected for the
test, and the test results were shown in Table 3. It can be
seen from Table 3 that faults 3, 9 and 15 are difficult to
detect in all methods. All methods for faults 1, 2, 6, 8, 12,
13 and 14 detect high failure rates. In step fault (except for
failure 3), failure detection rates above 0.85 can be obtained in
all multi-block process monitoring. In particular, CMBPCA
and CNCBL-MBPCA obtained 0.937 and 0.904 fault detec-
tion rates respectively. In faults 4, 5, 10 and 17, compared
with the traditional global model, decentralized process mon-
itoring can detect the local behavior of process variables
well and improve the monitoring performance of the whole
system. In addition, PCA and SPCA detection results show
that PCA fault detection rate is superior to SPCA algorithm
0.073. In multi-block process monitoring, MBSPCA detec-
tion results are also better thanMBPCA algorithm. Therefore,
this paper chooses the factory-wide process monitoring based
onmulti-block principal component analysis. Compared with
other methods, the error detection rate of CNCDL-MBPCA
algorithm for most monitoring results is relatively low. The
following sections analyze the performance results for both
faults 5 and 10.

Fault 5 in TE process reflects a step change of inlet tem-
perature of condenser cooling water. When the temperature
presents the trend of step change, it will lead to the step
change of condenser cooling water flow. When the fault
occurs, the flow velocity from the outlet of the condenser
to the vapor/liquid separator will increase, resulting in an
upward trend in the temperature of the vapor/liquid separa-
tor and increasing in the outlet temperature of the cooling
water of the separator. The control loop system can easily
compensate the fault state and pull the temperature of the
separator back to the default temperature. Fig. 5(a) - (h) are
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TABLE 3. The detection rate of different algorithm.

the monitoring results of PCA, SPCA, MBPCA, LMBPCA,
MBSPCA, CMBPCA, and CNCDL-MBPCA for fault 5.

Where, as shown in Fig. 5(a), PCA is used to monitor the
fault. It can be seen clearly, the fault signal can be obviously
detected when the fault is introduced after sample 160, but
after sample 350 or so, within a certain error range, it can
be considered that the reaction control loop will almost pull
the statistics back to the normal level. As shown in Table 3,
the miss rate of statistics is 0.771, and that of SPE statistics is

0.685. As shown in Fig. 5(f), in order to visually explain the
fault, the outlet temperature of the separator cooling water
(reference value is 77.297) fluctuates in the reference value
through the control loop compensation, but the condenser
cooling water flow (reference value is 18.114) is still higher
than the reference value in the 350 sample data collected.
Failure results are still not detected in Fig. 5(b). When global
PCA and SPCA are used for process monitoring, the local
characteristics of variables are not taken into account, so the
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TABLE 4. The false alarm rate of different algorithm.

failure condition that the inlet temperature of condenser
cooling water is still higher than the normal value after the
control circuit is compensated cannot be detected effectively.
Considering the adoption of fault detection method based on
multi-block division, see Fig. 5(c)-5(g). It can be intuitively
seen from the detection results of statistics BICSPE that faults
can still be detected after the 350th point. The failure miss
rate is closely 0. MBSPCA monitoring algorithm is shown
in Fig. 5(e). Although it can detect faults, it has a high false
alarm rates, as shown in Table 4.

A fault is considered to have occurred as long as either of
the statistics BICT 2 and BICSPE exceeds the threshold values
of the statistics BICT 2,lim and BICSPE,lim.

Fault 10 is a typical fault of monitoring variable C feed for
random temperature changes in stream 4. The inlet tempera-
ture of the reactor produces a random change, which causes
the flow rate of the reactor to oscillate, resulting in a certain
range of fluctuations in the reactor temperature. Fig. 6(a) - (g)
are the monitoring results for fault 10. As can be seen
from Table 3, the miss rate of CNCDL-MBPCA statistics
BICT 2 is 0.274 lower than that of PCA, and correspondingly,
the detection rate of statistics BICSPE is 0.241 higher. Com-
pared with the detection results of global PCA and SPCA,
the detection performance is also greatly improved. However,
MBPCA was superior to MBPCA in T2 statistics, although
it had a high false detection rate. The fault detection rate
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FIGURE 5. Fault 5 in TE process: (a) PCA, (b) SPCA, (c) MBPCA, (d) LMBPCA, (e) MBSPCA, (f) CMBPCA,
(g) CNCDL-MBPCA (h) sample changes.
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FIGURE 6. Fault 10 in TE process: (a) PCA, (b) SPCA, (c) MBPCA, (d) LMBPCA, (e) MBSPCA, (f) CMBPCA, (g) CNCDL-MBPCA.
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of CNCDL-MBPCA is 0.228 higher than that of LMBPCA,
which proves that the fault detection rate can be effectively
improved through weighted network topology.

V. CONCLUSION
This paper proposes a novel plant-wide process monitor-
ing algorithm based on network community discovery and
Bayesian inference, which effectively reduces the complexity
of process variables and improves the performance of fault
detection. Louvain, a novel network community discovery
algorithm, and consequently, the structural characteristics and
complexity of variables are fully considered. The original
data set collected in the plant-wide process is divided into
blocks. After sub-blocks partition, process monitoring based
on PCA model is carried out for each sub-block. Because the
high-correlation variables are divided into the same sub-block
by using the block division technology, the local behaviors
among variables are well considered, and the disadvantages
of the traditional methods are solved. Therefore, it is easier to
find faults, better explain the monitoring results, and improve
the detection performance. By combining the fault detection
results of each module with Bayesian reasoning, the final
joint index is obtained to provide intuitive monitoring results.
The effectiveness of this method is verified through the analy-
sis via the experiment in a simulated industrial TE benchmark
process.

Although the variable relationship is analyzed through
the complex network topology, the fault detection is real-
ized effectively. But the method in this paper has one dis-
advantage: when blocks are divided among variables, not
all process variables are divided by the complex network
community discovery algorithm. Therefore, in the future,
process monitoring based on complex network partitioning
should be improved to fully consider the similarity between
all variables. In the real industrial process, fault diagnosis is
also very important, it can determine the cause of the fault
to eliminate the fault. Therefore, fault diagnosis based on
complex network can be studied in the future. By analyzing
the topology of the network, it can be determined whether the
fault is caused by a certain node or jointly with its neighbor
nodes.
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