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ABSTRACT With the increasing public attention on sustainability, conservation of energy and materials
has been a general demand for wastewater treatment plants (WWTPs). To meet the demand, efficient
optimal management and decision mechanism are expected to reasonably configure resource of energy and
materials.In recent years, advanced computational techniques such as neural networks and genetic algorithm
provided data-driven solutions to overcome some industrial problems. They work from the perspective
of statistical learning, mining invisible latent rules from massive data. This paper proposes energy and
materials-saving management via deep learning for WWTPs, using real-world business data of a wastewater
treatment plant located in Chongqing, China. Treatment processes are modeled through neural networks,
and materials cost that satisfies single indexes can be estimated on this basis. Then, genetic algorithm is
selected as the decision scheme to compute overall cost that is able to simultaneously satisfy all the indexes.
Empirically, experimental results evaluate that with the proposed management method, total energy and
materials cost can be reduced by 10%-15%.

INDEX TERMS Wastewater treatment, energy and material-saving, deep learning, optimal management,
genetic algorithm.

I. INTRODUCTION
In recent years, the rapid development of society and
economy have led to a proportional increase in wastewater
production, bringing growing business pressure wastewater
treatment plants (WWTPs) [1]. At the same time, the pol-
lutant discharge standards of WWTPs have been raised for
sustainable development [2], [3]. In this context, excessive
chemicals are used during the treatment processes by many
WWTPs, leading to meaningless waste of energy and mate-
rials [4], [5]. In fact, such high consumption of energy and
materials go against the thought of sustainability to some
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extent. Therefore, it is of great significance to reasonably
schedule energy consumption amount under the condition of
meeting the discharge standard [6], [7].

However, the wastewater treatment process is a highly non-
linear industrial process system. The wastewater parameters
of influent are uncertain, and the various biochemical reac-
tions are associated with operating conditions. As a result,
the wastewater treatment process is extremely complicated,
suffering from lagging management, difficult operations and
serious interference [8], [9]. Traditional mechanism-based
models are reliable on physics process and biochemical reac-
tions, which lead to difficulties during wastewater treatment
process. Owing to the prevalence of sensors and Internet
of Things (IoT), a huge amount of business data can be
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collected from industrial processes, which can be used to
guide industrial decision making from a novel insight [10].
To this end, this research manages to deal with optimal
decision of WWTPs with respect to consumption amount
of energy and materials, with the aid of data-driven meth-
ods [11]. Since useful information can be discovered from
large amounts of historical data through robust analysis mod-
els [12], [13], they never need to deal with the complex
physical process [14]–[16], biochemical reactions and math-
ematical equations. Therefore, they have been used in many
typical industrial scenarios [17], [18].

In this research, dataminingwas introduced to optimize the
specific WWTP, in order to minimize consumption of energy
andmaterials, under the condition of discharge standard. This
paper proposes energy and materials-saving management via
deep learning for WWTPs. Particularly, a novel mechanism,
named principal component analysis-convolutional neural
network-long-short-term memory neural network (PCA-
CNN-LSTM), was proposed for this purpose. Such hybrid
neural network method determines the relationship between
input and output, which is variable based on large amount of
historical data. And it can be used to predict effluent param-
eters under new influent conditions. Then, it was reformed
by feedback regulation and iterations to calculate optimized
energy and materials consumption. Moreover, genetic algo-
rithm (GA) was also introduced to optimize energy and mate-
rials consumption under multi-target of effluent parameters.
Main contributions of this paper can be summarized as:

1) A new hybrid neural network (PCA-CNN-LSTM)
model based on deep neural network was proposed.
It was trained by masstive real-world historical data
from aWWTP, and it can be used to predict the effluent
parameters.

2) The PCA-CNN-LSTM was modified to optimize
energy and materials consumption, and genetic algo-
rithms was introduced to reduce the total cost of energy
andmaterials under multi-target of effluent parameters.

3) The efficiency and stability of the proposed PCA-
CNN-LSTM model on a real-world dataset was
evaluated.

II. OVERVIEW
A. FRAMEWORK
This research put forward a new combined model to opti-
mize the energy consumption and materials consumption of
WWTPs. The technology road-map of prediction and opti-
mization process is shown in Figure 1. The system includes
prediction process, optimization process and inspection
process.

1) The prediction process is to predict the effluent value
according to the inflow conditions, energy consumption and
materials consumption.

2) After prediction, data is transmitted to the optimization
model, and the optimization process is responsible for opti-
mizing the consumed energy and materials of the predicted
effluent value.

FIGURE 1. Technology road-map of prediction and optimization process.

3) Finally, in the testing process, the predicted results
are compared with the real value, and the optimized drug
consumption and energy consumption are compared with the
data from the WWTP.

B. PROBLEM STATEMENT
This research takes the WWTP in Chongqing as the research
object, and the research data content is the daily data of
the WWTP from 2018 to 2019, including influent condi-
tions, flow, effluent value, energy consumption, materials
consumption, etc. However, due to the lack of separate energy
consumption of pretreatment unit, biochemical treatment unit
and sludge treatment unit, the data can’t be optimized by spe-
cific formula. Take the energy consumption as an example,
aeration energy is the main energy consumption in WWTPs,
and the energy waste can not be negligible. If the aeration
or total energy consumption can be optimized, the aeration
system can be precisely controlled, and energy waste will be
greatly reduced. Science the WWTP is a complex system,
a hybrid neural network model is constructed to predict the
effluent value. On this basis, the interaction between mate-
rials consumption, energy consumption and effluent value is
used for subsequent algorithm operation.

C. PRELIMINARIES
The selected WWTP in Chongqing has been operated for
10 years, with an average daily wastewater treatment volume
of more than 100,000 cubic meters. With advanced wastew-
ater treatment equipment, the main process of the plant
area adopts the Cyclic Activated Sludge Technology (CAST)
treatment process, and the effluent water quality is Class 1 A
standard according to the ‘‘Emission Standard of Pollutants
for Urban Wastewater Treatment Plants’’ (GB18918-2002).
The main pollutant indicators and values of WWTP effluent
are shown in Table 1.

Firstly, the rawwastewater enters the coarse grid to remove
suspended impurities and reduce the chance of blocking
the lifting pump of the sump. Then, wastewater will enter the
adjustment tank, which is lifted to the fine grid by the
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TABLE 1. Pollutant discharge standards for urban WWTPs.

FIGURE 2. CAST process flow chart.

adjustment tank lift pump. After this process, the sand and
water are separated.

In the following step, wastewater will get into the CAST
biochemical reaction tank, where it undergoes anoxic and aer-
obic reaction to remove organic matter. Then, it will undergo
a series of processes, including nitrification, denitrification
treatment of ammonia nitrogen, phosphorus and other sub-
stances. Finally, the processes of wastewater treatment end
with precipitation and drainage. In general, the CAST process
includes 4 stages: wastewater inflow-aeration, wastewater
inflow-precipitation, stop wastewater inflow-drainage, and
wastewater inflow-idle. The specific process flow is shown
in Figure 2.

Based on the principle of biological selection, the CAST
process utilizes the release of phosphorus, denitrification, and
rapid absorption of organic substrates in the influent water
from the biological selection zone in the main reaction, which
effectively inhibiting the growth and reproduction of filamen-
tous bacteria and overcoming pollution. The mud expands,
thereby enhancing the stability of the system operation. The
variable volume operation also improves the adaptability of
the system to changes in water quality and quantity and the
flexibility of operation [19], [20].

III. METHODOLOGY
A. PCA-CNN-LSTM
1) PCA
The data taken is from the daily data of a WWTP for
two years, including daily treatment volume, influent water
quality and water volume, effluent water quality, E. coli,
energy consumption, materials consumption (iron salt,

aluminum salt, desliming flocculant, liquid chlorine, mud
volume, etc.). Due to the large number of miscellaneous data,
PCA statistical method is adopted in order to retain the influ-
ence characteristics of the original variable data and use as
few variables as possible [21]. The main purpose of principal
component analysis is to use fewer variables to explain the
variation of the original variables, while converting many
highly correlated variables into uncorrelated variables. Usu-
ally the number of selected variables is small, but the data
that can fully explain this situation is called the principal
component. This type of data processing method is to not
only ensure less data loss, but also comprehensively simplify
and optimize the data [22]. By reducing the dimensionality
of data, PCA has been widely used in the wastewater treat-
ment process to obtain basic information about wastewater
treatment.

a: STANDARDIZATION

ℵ̃po =
ℵpo − Sℵo

µo
(1)

Among them, there are p index variables for PCA, and there
are a total of o evaluation indexes. Sℵo,µo are the samplemean
and sample standard deviation of the o-th index.

b: CALCULATION OF THE CORRELATION COEFFICIENT
MATRIX

R =
(
rpo
)
n∗n (2)

rpo =

∑p
l=1 ℵ̃lp • ℵ̃lp

p− 1
(3)
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Among them, rpp = 1, and rpo is the correlation coefficient
between the p-th index and the o-th index.

c: CALCULATION OF THE CHARACTERISTIC VALUE
According to the eigenvalues and eigenvectors of the correla-
tion coefficient matrix in the second step, new index variables
are formed according to the eigenvectors.

∅1 = ∩11p̃1 + ∩21p̃2 + . . . ∩a1 p̃a
∅2 = ∩12p̃1 + ∩22p̃2 + . . . ∩a2 p̃a
∅b = ∩1bp̃1 + ∩2bp̃2 + . . . ∩ab p̃a

(4)

In the formula, ∅1 is the first principal component, and ∅2 is
the second principal component.

d: CALCULATION OF THE COMPREHENSIVE EVALUATION
VALUE

Z =
w∑
o

goyo (5)

go =
γo∑b
l=1 γl

(6)

Among them, go is the information contribution rate of the
o-th principal component.

2) CNN
CNN is one of the most representative neural networks in the
field of deep learning technology. It is a feed forward neural
network and has made many breakthroughs in the field of
wastewater treatment [23]. It includes convolution calculation
and has a deep structure, which can be used for supervised and
unsupervised learning. Convolutional neural networks have
three basic concepts: local receptive fields, shared weights,
and pooling layers.

a: LOCAL RECEPTIVE FIELD
For a general deep neural network, each pixel of the
input sequence is usually connected to every fully con-
nected neuron, while the convolutional neural network con-
nects each hidden node only to a certain local area of the
sequence [24]. Therefore, the number of parameter training
has been reduced.

b: WEIGHT SHARING
In the convolutional layer of CNN, the weights corresponding
to neurons are the same, thus, the number of training param-
eters can be reduced. The shared weights and offsets are also
called convolution kernels or filters.

a1 = σ

(
b+

4∑
l=0

4∑
m=0

wl, aj+l,k+m

)
(7)

In the formula, σ represents the activation function, b is the
offset, w is the 5∗5 shared weight matrix, and the matrix a
represents the neurons in the input layer.

FIGURE 3. Concept map of local receptive field.

c: POOLING LAYER
The function of pooling layer is to reduce the feature map.
The merge operation is independent for each depth slice,
and the ratio is usually 2 ∗ 2. The result of pooling layer will
have a lower dimension, and it is not easy to generate the
phenomenon of over fitting [25].

FIGURE 4. Network structure diagram of CNN.

3) LSTM
The LSTM neural network is an improvement of the
recurrent neural network (RNN) [26], which is specially
designed for the purpose of solving the problem all the
time. Compared with ordinary RNN, LSTM performs bet-
ter in longer sequences, being able to solve the problems
that RNN cannot solve in longer training, namely gradient
disappearance and gradient explosion. The main difference
lies in the operation in the LSTM unit. It is allowed to keep
or forget part of the information for the key cell state. The
cell state of LSTM is similar to a conveyor belt. There are
few linear intersections. Most of them run on a chain, so the
information is not easy to change during the transportation.
The core concept of LSTM is the unit state, which is actually
a variety of gates in the LSTM structure. The unit state can
send relevant information on the ‘‘conveyor belt’’. As the
unit state is operating, information will be added or deleted
through it. As for the unit state, the ‘‘gate’’ is another different
neural network, and its function is to filter some information
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into the unit state [27], [28]. In the LSTM structure, it is
impossible to add or delete information only by relying on the
‘‘conveyor belt’’. Only through the ‘‘gate’’ neural network,
the various structures in the LSTM structure have different
functions. However, they still interact, transmit and retain or
delete information mutually.

In Figure 5, the network structure diagram of LSTM is
shown. First, ‘‘forget gate’’ determines the information that
should be discarded or retained. The output includes a vector
through ht−1 and some information in xt in the structure
diagram. The range of this vector is (0, 1). The value of
the vector indicates what information is retained or deleted
by Ct−1 in the cell state. Secondly, the ‘‘input gate layer’’
updates the unit state, sending the previous hidden state and
current input to the sigmoid function and tan h function.
The sigmoid function determines the value to be updated by
converting the value from 0 to 1;tan h function compresses it
into −1 and 1 for network adjustment, and then it multiplies
the tan h output and the S-type output [29]. The sigmoid
function outputs a certain message and it is important that
tan h is needed to save production. In this way, there is enough
information to calculate the original unit state and obtain the
new unit state. Finally, the ‘‘output gate’’ determines the next
hidden state. In the first step, the previously hidden function
is sent to the Sigmoid function, followed by the current state
input, while the new unit state is passed to the tan h function.
The two can be multiplied to determine the relevant informa-
tion that the unknown state should carry. Finally moving the
new unit state and the new unit state to enter the next step [30].

FIGURE 5. Network structure diagram of LSTM.

4) PCA-CNN-LSTM
CNN is essentially amultilayer perceptron. The key to CNN’s
success lies in its use of local connections and weight sharing,
which means the weights of interconnections between neu-
rons are shared by neurons mapped under the same feature.
On the one hand, reducing the weight can make the model
easier to be optimized; on the other hand, it also improves the
operating effect of the model, while reducing the risk of over
fitting. CNN’s unique weighted fractional network structure

makes it more similar to biological neural networks. Due to
CNN’s unique network structure, the complexity of the net-
work model is reduced. As the number of weights is reduced,
the running process is smoother [31]. Since this article studies
a WWTP in a certain place, the information is relatively
undisclosed, and the basic data is partially missing. CNN can
avoid this situation. LSTM can solve long-term problems due
to the particularity of the network structure, so it is often used
to solve problems related to time series prediction [32]. It’s
suitable for the daily record data of WWTPs.

Combining CNN and LSTM neural network can process
basic data with large defects, making the experiment more
efficient. However, related studies have shown that when
LSTM is training the model, it will change due to the time
step and the number of neurons, and different parameters will
affect the superiority of the model [33]. Therefore, the PCA
method is introduced to preprocess the original data, simplify
and delete the data, while retaining the original characteristics
of the original data. First, the PCA method is taken for data
preprocessing on the established database, then the CNN
network model is established with the keras module to adjust
the number and size of convolution kernels according to the
actual situation. After that, LSTM recurrent neural network
model is added, and the output dimensions are respectively
128, 64, 48. Finally, with two added hidden layers, the num-
ber of neurons is 32 and 1, and finally set the optimizer of the
model with a learning rate of 0.0001. The training set and the
test set are divided according to a ratio of 3:1. The network
structure diagram of PCA-CNN-LSTM is shown in Figure 6.

B. OPTIMIZATION
The result of PCA-CNN-LSTMmodel operation is prediction
result. During the specific optimization, it includes selecting
the range of four indicators and continuously reducing one
of the indicators. The neural network model is used to predict
the wastewater output. If the water output meets the require-
ments, the variable will be continually reduced until the pre-
dicted value corresponding to the variable is infinitely close
to the value corresponding to the national emission standard.
The lower emission value is close to the national emission
standard value, leaving extra space for the operational safety
of the WWTP. COD is a suitable example.

Steps 1: The influent conditions (including wastewater
parameters, energy and materials consumption) are input to
the PCA-CNN-LSTM model, and the effluent COD value is
predicted. The input energy consumption is marked as ‘E’.

Steps 2: The maximum COD value allowed by the efflu-
ent discharge standard (COD <= 50 mg/l) is marked as
‘‘A’’. The range of effluent COD under optimal conditions is
defined according to the required accuracy, such as effluent
COD ∈ [0.98∗A, A].

Steps 3: The predicted effluent COD value is judged
whether it belonging to the range or not. (1) If the effluent
COD value is less than ‘‘0.98∗A’’, the ‘‘E’’ will be reduced
by 1% (this value is also choosed by the required accuracy),
and the effluent COD value will be predicted and and judged
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FIGURE 6. Network structure diagram of PCA-CNN-LSTM.

FIGURE 7. The optimization strategy of COD.

again; (2) If the effluent COD value is greater than ‘‘A’’, ‘‘E’’
will be increased by 1%, and the effluent COD value will be
predicted and judged again. (3) If the effluent COD value
belongs to the defined range [0.98∗A, A], the ‘‘E’’ will be
considered as the optimal energy value under current influent
conditions.

Steps 4: Beginning the loop program to execute Step 3 until
the the effluent COD value belongs to the defined range
[0.98∗A, A].
Steps 5: Return the calculated ‘‘E’’, the end.
The effluent indicators of WWTPs beyonds considered

unilateral, therefore, this paper uses genetic algorithm to
optimize the effluent indicators as a whole.

Steps 1: Different initial features are combined and dis-
criminant values are calculated respectively.

Steps 2: The two combinations with the largest discrimi-
nant value are selected for hybridization, and some different
features from each other to obtain a new feature combination.

Steps 3: The discriminant value of the new feature combi-
nation is calculated again, and is compared with the original
data to select the combination with the largest discriminant
value for hybridization.

Steps 4: The end. (1) Given a maximum genetic alge-
bra, the algorithm iteration stops at ‘MAXGEN’. (2) Given
a lower bound calculation method, when the calculation
reaches the required deviation, iteration is ended. (3) When
the fitness of the algorithm can no longer be improved,
the calculation is ended.

IV. EXPERIMENTS AND ANALYSIS
A. RESULTS OF PREDICTION
In order to comprehensively evaluate performance of the pre-
diction model, the average absolute error (MAE), root mean
square eXQrror (RMSE) and average absolute percentage
error (MAPE) are used as accuracy indicators in the above
training model.

MAE (∅,i) =
1
ϑ

ϑ∑
i=1

|i (∅i − ii)| (8)

RMSE =

√
1
ϑ

1∑
i=1

(ii − in)2 (9)

MAPE =
1
ϑ

ϑ∑
i=1

|ii − in|
ii

(10)

The results of prediction are shown in Table 2. The compari-
son of the true value and the predicted value of the test set are
shown in Figure 9.
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Algorithm 1 Optimal Decision Process
Initialization:

P = PCA-CNN-LSTM model
E = Input energy
M = Input material
A = The maximum COD value allowed by the effluent
discharge standard (COD <= 50 mg/l)
NUM(S) = Influent wastewater parameters
COD = Effluent COD value

Start:
1: Calculate the COD by PCA-CNN-LSTM model
2: P⇐ E,M ,NUM (S)
3: COD
4: while |COD-0.99A| >0.01A
5: if COD >= A
6: E = E∗1.01
7: M =M∗1.01
8: P⇐ E,M ,NUM (S)
9: COD
10: else if COD <= 0.98∗A
11: E = E∗0.99
12: M =M∗0.99
13: P⇐ E,M ,NUM (S)
14: COD
15: end if
16: end while
17: return E

FIGURE 8. Process diagram of genetic algorithm.

B. RESULTS OF OPTIMIZATION
In order to optimize the daily energy consumption and
reagents of the WWTP, to continuously reduce the parameter
standards, and to ensure that the effluent water quality meets
the standard, a single target can be expressed as a function
of the control variable. According to the operating conditions,
the optimization results can be obtained by the model, shown
in Table 3.

TABLE 2. The results of predicion.

Compared with the daily data of the WWTP, the elec-
tricity consumption and the medicament have all been
reduced. Through data modeling, the optimal values of dif-
ferent wastewater quality of effluent are studied respectively.
However, the actual operation of effluent from WWTP could
not be viewed as a single index. Therefore, genetic algorithm
(GA) is used to optimize it. Genetic algorithm is a method
to search for the optimal solution by simulating the natu-
ral evolution process. The algorithm is simple and widely
applied [34]. Because the overall search strategy and opti-
mized search method of genetic algorithm do not need to rely
on gradient information or other auxiliary knowledge when
calculating, genetic algorithm provides a general framework
for solving complex system problems. It does not depend on
the specific area of the problem, and has strong robustness
to problem. The main parameters of genetic algorithm are
weights and thresholds. The parameters of this paper are set as
follows: population size is 100, maximum genetic algebra is
100, learning rate is 0.1, and maximum training times is 100.
The results of the overall optimization are shown in Table 4.
The daily data of seven days from the WWTPW were ran-
domly selected and the following comparisons between the
electricity and the amount of chemicals were made. The
results are shown in the Figure 10. The efficiency and stability
of the proposed PCA-CNN-LSTM model on a real-world
dataset was evaluated, and as shown in Figure 10. By com-
paring the differences of energy and material consumption
before and after optimization, the experimental results can be
estimated that the total energy and materials cost was reduced
by 10%-15%.

As shown in the above figures, in the selected data, the opti-
mized data is largely lower than the original data. This further
shows that the electricity and chemical consumption have
been optimized while ensuring that the WWTP’s effluent
meets the standard.
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FIGURE 9. Comparison of the true value and the predicted value of the test set.

TABLE 3. Optimization result table.

C. OPTIMAL OPERATION PLAN
The energy consumption of the WWTP is mainly used in the
treatment promotion of wastewater, the feed and return of
biological treatment, and the stabilization and treatment of
sludge.

Through the optimization method, we obtained the electric
quantity and required drug consumption while meeting the
standard. According to the results, we put the drug into
the wastewater to make it meet the standard. Therefore, the
following points are proposed:
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FIGURE 10. Comparison of the true value and the predicted value of the test set.
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TABLE 4. Overall optimization result table.

(1) Dose of drugs should be accurate and multiple energy
sources should complement each other. Moreover, refined
management should be ensured and operating costs should
be reduced.

(2) Efficiency of wastewater equipment should be
improved and the energy consumption of the wastewater
lifting system and the supply system should be reduced.

V. CONCLUSION
Thewastewater treatment system is a highly non-linear indus-
trial process control system, which is uncertain and time-
varying. Meanwhile, the mathematical mechanism model of
wastewater treatment process is difficult to be used accu-
rately and duly. Current conservative operation mode in most
WWTPs has high operation costs and wastes huge energy
and material. In this paper, a new hybrid neural network
(PCA-CNN-LSTM) model based on deep neural network
was proposed. It was trained by massive real-world historical
data from a WWTP, and it can be used to predict the efflu-
ent parameters. Then the PCA-CNN-LSTM was modified
to optimize energy and materials consumption. Last genetic
algorithms was introduced to reduce the total cost of energy
and materials under multi-target of effluent parameters. The
efficiency and stability of the proposed PCA-CNN-LSTM
model on a real-world dataset was evaluated, and experi-
mental results evaluate that the total energy and materials
cost was reduced by 10%-15%. The proposed energy and
materials-saving management method not only is a new solu-
tion for wastewater treatment, but also brings benefits to the
development of the economy and society.
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