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ABSTRACT Subspace codes are widely used in error corrections of random network coding. In this article,
subspace codes based on partial injective maps of vector spaces over finite fields are considered. Several
bounds of the subspace codes (n,M , 2b, e)q based on e-partial injective maps of F(n)

q are presented. The
anticode bound and Ahlswede-Aydinian bound of the subspace codes (n,M , 2b, e)q are obtained by using
the EKR theorem for e-partial injective maps of F(n)

q . Finally, we show that the (n,M , 2b, e)q subspace codes
based on e-partial injective maps of F(n)

q reach the Wang-Xing-Safavi-Naini bound if and only if they are
certain Steiner structures in Ine .

INDEX TERMS Subspace codes, partial injective maps, bounds, EKR theorem, finite fields.

I. INTRODUCTION
Let Fq be a finite field with q elements, where q is a prime
power and F(n)

q is the n-dimensional row vector space over
Fq. The collection of all the subspaces with dimension e of
F(n)
q is known as the Grassmannian space over Fq, denoted by

Gq(n, e), where 0 ≤ e ≤ n. The set of all the subspaces of F(n)
q

is called the projective space of order n, denoted byPq(n). For
any subspaces U , V ∈ Pq(n), define the distance function
betweenU andV as d(U ,V ) = dimU+dimV−2dim(U∩V ).
The function is showed to be a metric (see [1]), thusPq(n) is a
metric space. A nonempty collectionC of the projective space
Pq(n) is called a subspace code. The minimum distance of a
subspace code C is d(C) = min{d(U ,V )|U 6= V , U ,V ∈
C}. Different from the classical coding theory, of which every
codeword is only a vector, here every codeword of C is itself
a subspace. A subspace code C is denoted by (n,M , d)q if it
has M codewords and d(C) = d . Moreover, if C ⊆ Gq(n, e),
C can be denoted by (n,M , d, e)q.

Subspace codes become the natural objects in some
applications, for instance, in non-coherent linear network
coding [2] and linear authentication [3]. Koetter and Kschis-
chang [2] defined an operator channel when they stud-
ied random network coding. Meanwhile, they showed that
the errors and erasures could be corrected by a subspace
code (n,M , d, e)q over the operator channel if the sum of
errors and erasures is less than d

2 . These research results
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motivate many domestic and overseas scholars′ great interest
in subspace codes (see [4]–[8]).

Bounds on subspace codes in the projective space are con-
sidered in recent years. About subspace codes in the projec-
tive space, a generalization of the Singleton bound are offered
in [1]. Barg and Nogin [9] derived the Gilbert-Varshamov
and Hamming bounds for packings of spheres (codes) in
the Grassmann manifolds over R and C. Bachoc [10] devel-
oped the linear programming method to get bounds for
the cardinality of Grassmannian codes endowed with the
chordal distance. Henkel [11] had a research about the
Sphere-packing bounds, which used the Riemann geometric
machinery of volume evaluates according to the curvature.
Gao and Wang [12] given several bounds about the subspace
code (n + r,M , d, (e, 1))q based on the subspaces of type
(e, 1) in singular linear space F(n+r)

q over Fq.
In this article, a pair (V , f ) is called an e-partial injective

map of F(n)
q over Fq, where 0 ≤ e ≤ n, if V ∈ Gq(n, e) and

f : V → F(n)
q is an injective map. Denote the collection of all

the e-partial injective maps of F(n)
q over Fq by Ine , where 0 ≤

e ≤ n. For any two e-partial injective maps (V , f ), (L, j) ∈
Ine , we give a definition about the natural distance function
between (V , f ) and (L, j) in Ine as below

d((V , f ), (L, j)) = 2e− 2 dim((V , f ) ∧ (L, j)), (1)

where (V , f )∧(L, j) = (D, h) withD is themaximum element
of the set {D ⊆ V ∩ L|f |D = j|D} and h = f |D = j|D. The
function above is a metric on Ine (see the Section 2). A non
empty aggregate C of Ine is called an (n,M , d, e)q code if
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the size of codewords is M and d(C) = d . The maximum
number of codewords in an (n,M , d, e)q code is denoted by
Aq(n, d, e). The aim of the paper is to determine the bounds
of Aq(n, d, e).

In the theory of subspace coding, one of the impor-
tant questions is to determine the largest possible size of
codewords with a given minimum distance and to con-
struct the optimal subspace codes. In the previous litera-
ture, sphere-packing bound,Wang-Xing-Safavi-Naini bound,
Singleton bound, Johnson bound, Gilbert-Varshamov bound,
anticode bound and Ahlswede-Aydinian bound have been
given for constant dimensional subspace codes (CDCs for
short), whose codewords are some e-dimensional subspaces
of F(n)

q with the following subspace distance
d(U ,V ) = 2e− 2 dim(U ∩ V ), U ,V ∈ Gq(n, e).

Let Ine denote the collection of all the e-partial injective
maps of F(n)

q over Fq, where 0 ≤ e ≤ n. Motivated by the
results on constant dimensional subspace codes, we define
the distance on Ine as

d((V , f ), (L, j)) = 2e− 2 dim((V , f ) ∧ (L, j)),

where (V , f ) ∧ (L, j) = (D, h) with D is the maxi-
mum element of the set {D ⊆ V ∩ L|f |D = j|D} and h =
f |D = j|D. Then we provide the sphere-packing bound,
Wang-Xing-Safavi-Naini bound, Singleton bound, John-
son bound, Gilbert-Varshamov bound, anticode bound and
Ahlswede-Aydinian bound for subspace codes based on
e-partial injective maps of F(n)

q , which are generalizations of
bounds for constant dimensional subspace codes, in order
to increase the number of codewords in constant dimen-
sional subspace codes with a given minimum distance and
to construct more optimal subspace codes.

Finally, we obtain some optimal subspace codes based on
e-partial injective maps of F(n)

q from the Steiner structures
in Ine .

The rest of this article is designed as below. In Section 2,
the anzahl formulas about e-partial injective maps of
F(n)
q are presented. In Section 3, several bounds on the

subspace codes (n,M , d, e)q based on e-partial injective
maps of F(n)

q are presented. In Section 4, The anticode
bound and Ahlswede-Aydinian bound of the subspace codes
(n,M , 2b, e)q are obtained using the Erdős-Ko-Rado theorem
for e-partial injective maps of F(n)

q . In Section 5, we give a
summary of the whole paper.

II. PRELIMINARIES
In this section, we introduce the distance defined on Ine and
some anzahl theorems about e-partial injective maps are
given.

For the sake of simplicity, we introduce the use of Gaussian
coefficient [13],

[
m2
m1

]
q
=

m2∏
t=m2−m1+1

(qt − 1)

m1∏
t=1

(qt − 1)

by convenience
[
m2
0

]
q
= 0 and

[
m2
m1

]
q
= 0wheneverm1 <

0 and m2 < m1.
Firstly, we have the following Lemma 2.1 about Ine clearly.
Lemma 2.1: Let 1 ≤ e ≤ n, then∣∣Ine ∣∣ = [ ne

]
q
q
e(e−1)

2 ·

n∏
a=n−e+1

(qa − 1).

Proof: The lemma follows clearly from that Ine denotes
the collection of all the e-partial injective maps of F(n)

q
over Fq.
For any two elements (V , f ), (L, j) ∈ Ine , we say that (L, j)

includes (V , f ), denoted by (V , f ) � (L, j), if V ⊆ L and
f = j|V . For a fixed σ -partial injective map (L, j) ∈ Inσ , let
(L, j)(e) denote the set of all the e-partial injective maps (V , f )
included in (L, j).
Lemma 2.2: For 1 ≤ e ≤ σ ≤ n, then∣∣∣(L, j)(e)∣∣∣ = [ σe

]
q
.

Proof: The lemma follows from the inclusion relation
that (L, j) includes (V , f ) if V ⊆ L and f = j|V . For a fixed
e-partial injective map (V , f ) ∈ Ine , let

r (V , f ) denote the
collection of all the r-partial injective maps (D, h) including
(V , f ).
Lemma 2.3: For 1 ≤ e ≤ r ≤ n, then∣∣r (V , f )∣∣ = [ n− e

r − e

]
q
× (qn − qe)(qn − qe − 1)

× (qn − qe − 2) · · · (qn − qe + 1).

Proof: The lemma follows from the inclusion relation
that (L, j) includes (V , f ) if V ⊆ L and f = j|V .
The following theorem shows that the function (1) defined

on Ine is indeed a metric on Ine .
Theorem 2.4: The function defined on Ine , i.e., d((V , f ),

(L, j)) = dimV + dimL − 2 dim((V , f ) ∧ (L, j)), is indeed a
metric on Ine .

Proof: For any (V , f ), (L, j), (Y , h) ∈ Ine , the function
(1) should satisfy the following three properties:
(i) non-negativity: d((V , f ), (L, j)) ≥ 0 with equality if and

only if (V , f ) = (L, j).
(ii) symmetry: d((V , f ), (L, j)) = d((L, j), (V , f )).
(iii) triangle inequality:

d((V , f ), (L, j)) ≤ d((V , f ), (Y , h))+ d((Y , h), (L, j)).

The first two conditions for the function (1) are satisfied
clearly and we only focus on the third condition, i.e., triangle
inequality.

1
2
(d((V , f ), (L, j))− d((V , f ), (Y , h))− d((Y , h), (L, j)))

= dim((V , f ) ∧ (Y , h))+ dim((Y , h) ∧ (L, j))

− dim((V , f ) ∧ (L, j))− dimY

= dim((V , f )(1) ∩ (Y , h)(1))+ dim((Y , h)(1) ∩ (L, j)(1))

− dim((V , f )(1) ∩ (L, j)(1))− dimY
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= dim(((V , f )(1) ∪ (L, j)(1)) ∩ (Y , h)(1))

+ dim((V , f )(1) ∩ (L, j)(1) ∩ (Y , h)(1))

− dim((V , f )(1) ∩ (L, j)(1))− dimY

= − dim((V , f )(1) ∩ (L, j)(1))− dimY ≤ 0.

Thus, the proof process completed.
Let (V , f ) ∈ Ine , denote the number of (L, j) ∈ Ine such

that dim(V ∩ L) = e − a, dim((V , f ) ∧ (L, j)) = e − b,
where 0 ≤ a ≤ min {e, n− e} , a ≤ b ≤ e by n(a,b−a). The
following Lemma 2.5 gives the exact value of n(a,b−a).
Lemma 2.5: Let 0 ≤ a ≤ min {e, n− e} , a ≤ b ≤ e, then

n(a,b−a) = qa
2
[
e
a

]
q

[
n− e
a

]
q

[
e− a
e− b

]
q

×(qn − qe−a)
qe−qe−b−1∏

α=1

(qn − qe−b − α).

Proof: Let (V , f ) ∈ Ine be a fixed e-partial injective map
of F(n)

q . Firstly we know that the number of e-dimensional
subspaces L such that dim(V ∩ L) = e − a is

qa
2
[
e
a

]
q

[
n− e
a

]
q
. Once the e-dimensional subspace L is

determined, next we calculate the possible partial injective
map j satisfying that dim((V , f ) ∧ (L, j)) = e − b. Note that
the e-dimensional subspace L is a disjoint union of the sets
{y ∈ V ∩ L|f (y) = j(y)} , {y ∈ V ∩ L|f (y) 6= j(y)} ,L\V ∩L.
For the first set {y ∈ V ∩ L|f (y) = j(y)}, the choices of j are[
e− a
e− b

]
q
. For the second set {y ∈ V ∩ L|f (y) 6= j(y)}, here

f (y) 6= j(y) and j is an injective map, so the number of the
choices of j is (qn− qe−b− 1)(qn− qe−b− 2) · · · (qn− qe−a).
For the last set L\V ∩ L, there are (qn − qe−a)(qn − qe−a −
1) · · · (qn− qe+ 1) choices of j because j is an injective map.
Therefore,

n(a,b−a) = qa
2
[
e
a

]
q

[
n− e
a

]
q

[
e− a
e− b

]
q

×(qn − qe−a)
qe−qe−b−1∏

α=1

(qn − qe−b − α).

III. BOUNDS ON SUBSPACE CODES BASED ON PARTIAL
INJECTIVE MAPS
Denote the largest number of codewords in an (n,M , d, e)q
subspace code based on e-partial injective maps of F(n)

q by
Aq(n, d, e). Since the distance of any two codewords in an
(n,M , d, e)q subspace code is an even number by (1), we just
need to consider Aq(n, d, e) in the case of even d = 2b.
The following is the definition of sphere in Ine .
Definition 3.1: The sphere S(2α, e; (V , f )) of radius α cen-

tered at an e-partial injective map (V , f ) of F(n)
q is defined to

be the set of all the e-partial injective maps (L, j) in Ine whose
distance from (V , f ) is less than or equal to 2α. Namely,

S(2α, e; (V , f )) =
{
(L, j) ∈ Ine |d((V , f ), (L, j)) ≤ 2α

}
.

The following Lemma 3.2 gives the size of the sphere
S(2α, e; (V , f )) in Ine .
Theorem 3.2:The number of all the e-partial injectivemaps

of F(n)
q in S(2α, e; (V , f )) is independent of the choice of

(V , f ) and

|S(2α, e; (V , f ))|

=

α∑
b=0

min{b,n−e}∑
a=0

qa
2
[
e
a

]
q

[
n− e
a

]
q

×

[
e− a
e− b

]
q
(qn − qe−a)

qe−qe−b−1∏
s=1

(qn − qe−b − s),

where (K , f ) ∈ Ine is a fixed e-partial injective map of F(n)
q .

Proof: By Definition 3.1 and (1), we get

S(2α, e; (V , f )) =
{
(L, j) ∈ Ine |d((V , f ), (L, j)) ≤ 2α

}
,

that is,

S(2α, e; (V , f ))=
{
(L, j) ∈ Ine | dim((V , f ) ∧ (L, j)) ≥ e−α

}
.

Then by Lemma 2.5, we can get the theorem quickly.
The following Theorem 3.3 is the sphere-packing bound

of subspace code (n,M , 2b, e)q in Ine , which is analog of the
bound in the projective space.
Theorem 3.3 (Sphere-Packing Bound): Let α =

b(b− 1)/2c, thus

Aq(n, 2b, e) ≤
[
n
e

]
q
q
e(e−1)

2

n∏
a=n−e+1

(qa − 1)

÷ (
α∑
l=0

min{r,n−e}∑
a=0

qa
2
[
e
a

]
q

[
n− e
a

]
q

[
e− a
e− b

]
q

× (qn − qe−a)
qe−qe−r−1∏

s=1

(qn − qe−r − s)).

Proof: Let C ⊆ Ine be an (n,M , 2b, e)q code, hence let
α = b(b−1)/2c. Thus the spheres with radius α and centered
with each codeword ofC are disjoint, in addition each of these
spheres includes β e-partial injective maps of F(n)

q , where

β =

α∑
l=0

min{r,n−e}∑
a=0

qa
2
[
e
a

]
q

[
n− e
a

]
q

[
e− a
e− b

]
q

× (qn − qe−a)
qe−qe−r−1∏

s=1

(qn − qe−r − s).

The number of e-partial injective maps of F(n)
q contained in

all the spheres with radius α centered at each codeword of C
cannot exceed the total number of e-partial injective maps of
F(n)
q . Owing to the totality of e-partial injective maps of F(n)

q
is [

n
e

]
q
q
e(e−1)

2

n∏
a=n−e+1

(qa − 1).

Thus we get the theorem quickly.
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The following theorem is the Wang-Xing-Safavi-Naini
bound of subspace code (n,M , 2b, e)q in Ine , which is analogy
of the bound in the projective space.
Theorem 3.4 (Wang-Xing-Safavi-Naini Bound): Let b ≤ e,

then

Aq(n, 2b, e) ≤

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−b+ 1

]
q

.

Proof: Let C ⊆ Ine be an (n,M , 2b, e)q code. On the one
hand, by Lemma 2.2, every codeword of C includes exactly[

e
e−b+ 1

]
q
(e−b+1)-partial injective maps of F(n)

q . On the

other hand, a given (e − b + 1)-partial injective map of F(n)
q

must not be included in two different codewords ofC, or else,
if dim((V , f ) ∧ (L, j)) ≥ e−b + 1 for arbitrary two different
codewords (V , f ) and (L, j) of C, by (1), d((V , f ), (L, j)) =
2e− 2 dim((V , f )∧ (L, j)) ≤ 2b− 2, which is contradictious
to the minimum distance 2b of C. The totality of (e− b+ 1)-
partial injective maps of F(n)

q is[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1),

so

M ≤

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−a+ 1

]
q

.

Next a puncturing operation on (n,M , d, e)q code in Ine
is defined. Suppose C ⊆ Ine is an (n,M , d, e)q code. For
(V , f ) ∈ C, (Y , h) ∈ Inn−1, define

Hm−1((V , f ) ∧ (Y , h))

=

{
(V , f ) ∧ (Y , h), if (V , f ) ∧ (Y , h) ∈ Ine−1,
(D, f |D), otherwise,

where D is an (e− 1)-dimensional subspace of V .
Then we can get a punctured codeC′. Although this kind of

puncturing operation usually does not produce a unique code,
we mark each such punctured code as C′ = C|(Y ,h) and it is
an (n− 1,M , d ′, e− 1)q code. We can get the Lemma 3.5.
Lemma 3.5: Let C ⊆ Ine be an (n,M , d, e)q code such that

d > 2. Then for (Y , h) ∈ Inn−1, C
′
= C|(Y ,h) should be an

(n− 1,M , d ′, e− 1)q code such that d ′ ≥ d − 2.
Proof: According to the definition of code C′, only the

cardinality and the minimum distance of code C′ need to
be considered. First of all, we show that d ′ ≥ d − 2. Let
(V , f ), (L, j) be arbitrary two different codewords of code C.
Suppose that (V ′, f ′) = He−1((V , f ) ∧ (Y , h)) and (L ′, j′) =
He−1((L, j) ∧ (Y , h)) are the corresponding codewords in
code C′ according to the definition of code C′. Evidently,
(V ′, f ′) � (V , f ) and (L ′, j′) � (L, j), then we have ((V ′, f ′)∧
(L ′, j′)) � ((V , f ) ∧ (L, j)), so that we get

dim((V ′, f ′) ∧ (L ′, j′)) ≤ dim((V , f ) ∧ (L, j)). (2)

By (1) and (2), we have
d((V ′, f ′), (L ′, j′)) = 2(e− 1)− 2 dim((V ′, f ′) ∧ (L ′, j′))

≥ 2e− 2− 2 dim((V , f ) ∧ (L, j))
= d((V , f ), (L, j))− 2
≥ d − 2 > 0,

which implies that d ′ ≥ d − 2. By d > 2,
d((V ′, f ′), (L ′, j′)) ≥ d − 2 > 0, so (V ′, f ′) and (L ′, j′) are
different, which shows that code C′ defined above has the
same number of codewords as code C.

The following bound is established according to the above
puncturing operation on (n,M , d, e)q code in Ine , which is
analog of the bound in the projective space.
Theorem 3.6 (Singleton Bound): Let e ≥ b, then

Aq(n, d, e) ≤
[
n−b+ 1
e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n−b+1∏
a=n−e+1

(qa − 1).

Proof: Let C ⊆ Ine be an (n,M , d, e)q code.
As Lemma 3.5 is punctured (b − 1) times repeatedly,
an (n−b+ 1,M , d ′, e−b+ 1)q code with that sizeM may be

not greater than
∣∣∣In−b+1e−b+1

∣∣∣ can be obtained. We all known that∣∣∣In−b+1e−b+1

∣∣∣ = [ n−b+ 1
e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n−b+1∏
a=n−e+1

(qa − 1).

The theorem follows immediately.
Theorem 3.7 (Johnson Bound I): Let b ≤ e− 1, then

Aq(n, 2b, e) ≤
(qn − 1)2

qe − 1
Aq(n− 1, 2b, e− 1).

Proof: Let C ⊆ Ine be an (n,M , 2b, e)q code, and which
reaches the value of Aq(n, 2b, e), i.e.,M = Aq(n, 2b, e). Each
codeword (e-partial injective map of F(n)

q ) of C contains qe−1
q−1

1-partial injective maps of F(n)
q . There are in total

∣∣In1 ∣∣ =
(qn−1)2

q−1 1-partial injective maps of F(n)
q . Hence, there exists

a 1-partial injective map of F(n)
q (L, j) satisfying that the 1-

partial injectivemap (L, j) is included in at least M ·(q
e
−1)

(qn−1)2
code

words of C.
Let F(n)

q = L ⊕ Q, where Q is a subspace with
(n − 1)-dimension of F(n)

q . Let (Q, h) be an (n − 1)-partial
injective map of F(n)

q . Define the following set
C′ = {(Q, h) ∧ (V , f )|(V , f ) ∈ C, (L, j) � (V , f )} .

ClearlyC′ consists of (e−1)-partial injective maps of F(n−1)
q ,

so C′ can be considered as an (n− 1,M ′, 2b′, e− 1)q code
with the size H ′ and the minimum distance 2b′, and M ′ ≥
M ·(qe−1)
(qn−1)2

.
Let (P′, s′) and (Y ′, α′) be arbitrary two code words of C′,

thus it must be have matching code words (P, s) and (Y , α)
of C with (P′, s′) = (Q, h) ∧ (P, s) and (Y ′, α′) = (Q, h) ∧
(Y , α) with (L, j) � (P, s) and (L, j) � (Y , α). Noting that
(P′, s′) ∧ (Y ′, α′) = (Q, h) ∧ [(P, s) ∧ (Y , α)], we get
dim((P′, s′) ∧ (Y ′, α′)) = dim((Q, h) ∧ [(P, s) ∧ (Y , α)])

= dim(W ) +dim((P, s) ∧ (Y , α))−n

= dim((P, s) ∧ (Y , α))− 1
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and the third equal sign is based on the fact that (P, s)∧(Y , α)
contains (L, j). Hence,

dim((P′, s′) ∧ (Y ′, α′)) = dim((P, s) ∧ (Y , α))− 1. (3)

By (1) and (3), d((P′, s′), (Y ′, α′)) = d((P, s), (Y , α)) from
which b = b′ follows. To sum up, we get

Aq(n, 2b, e) ≤
(qn − 1)2

qe − 1
Aq(n− 1, 2b, e− 1).

The theorem follows immediately.
Theorem 3.8 (Johnson Bound II): Let b ≤ e ≤ n− 1, then

Aq(n, 2b, e)

≤

(qn − 1)q
(n−1)(n−2)

2
n∏

a=2
(qa − 1)

(qn−e − 1)
qn−1−qe−1∏

a=0
(qn − qe − i)

Aq(n− 1, 2b, e).

Proof: Let C ⊆ Ine be an (n,M , 2b, e)q code. For any
(L, j) ∈ Inn−1, define the following set

C(L,j) = {(V , f ) ∈ C|(V , f ) � (L, j)} .

Clearly, C(L,j) is an (n− 1,
∣∣C(L,j)

∣∣ , 2b, e)q code, where∣∣C(L,j)
∣∣ ≤ Aq(n− 1, 2b, e). It is know that∑

(L,j)∈Inn−1

∣∣C(L,j)
∣∣=M · [ n− e

n− 1−e

]
q

qn−1−qe−1∏
a=0

(qn − qe − a).

Note that∑
(L,j)∈Inn−1

∣∣C(L,j)
∣∣

≤
∣∣Inn−1∣∣ · Aq(n− 1, 2b, e)

=

[
n

n− 1

]
q
q

(n−1)(n−2)
2

n∏
a=2

(qa − 1) · Aq(n− 1, 2b, e).

We obtain

M ≤

(qn − 1)q
(n−1)(n−2)

2 ·

n∏
a=2

(qa − 1)

(qn−e − 1) ·
qn−1−qe−1∏

a=0
(qn − qe − a)

Aq(n− 1, 2b, e).

The theorem follows immediately.
Theorem 3.9 (Gilbert-Varshamov Bound): Let b ≤ e, then

Aq(n, 2b, e) ≥
[
n
e

]
q
· q

e(e−1)
2

n∏
a=n−e+1

(qa − 1)

÷ (
b−1∑
r=0

min{r,n−e}∑
a=0

qa
2
[
e
a

]
q

[
n− e
a

]
q

[
e− a
e− b

]
q

× (qn − qe−a)
qe−qe−r−1∏

s=1

(qn − qe−r − s)).

Proof: Let C ⊆ Ine be an (n,Aq(n, 2b, e), 2b, e)q code.
There is no e-partial injective map (L, j) ∈ Ine \C satisfying
d((V , f ), (L, j)) ≥ 2b for any (V , f ) ∈ C. Or else, through
increasing the e-partial injective map (L, j) to C, we can
obtain a new (n,Aq(n, 2b, e)+ 1, 2b, e)q code, this will be in
contradiction with the size of codewords Aq(n, 2b, e).

TABLE 1. The explicit bounds for fixed parameters.

TABLE 2. The explicit bounds for fixed parameters.

Thus, for arbitrary (V , f ) ∈ C,⋃
(V ,f )∈C

S(2(b− 1), e; (V , f )) ⊇ Ine ,

which implies that∑
(V ,f )∈C

|S(2(b− 1), e; (V , f ))| ≥
∣∣Ine ∣∣ .

We obtain Vq(n, 2b, e) · |S(2(b− 1), e; (V , f ))| ≥
∣∣Ine ∣∣ .

The theorem follows immediately by Lemma 2.1 and The-
orem 3.2.
Remark 3.10:Let n ≥ 3. The bounds listed in Theorem 3.3,

Theorem 3.4, Theorem 3.6, Theorem 3.9 by choosing fixed
parameters b, e are provided as below in table 1.
From the second column of the table 1, we obtain

Vq(n, 2, 2) =
(qn−1−1)

2
(qn−1)2q

(q2−1)2(qn−q2)
.

Let n = 3, the bounds listed in Theorem 3.3, Theorem 3.4,
Theorem 3.6, Theorem 3.9 by choosing fixed parameters b, e
are given in the following table 2.

From Table 2, we obtain (3, (q+ 1)2(q− 1), 4, 2)q,

(3, (q−1)(q
2
+q+1)

2

q , 2, 2)q, (3, (q
2
+q+1)

2

q(q+1) , 4, 1)q are optimal
codes.

IV. ANTICODE BOUND AND AHLSWEDE-AYDINIAN
BOUND FROM E-K-R THEOREM
Erdős-Ko-Rado theorem theorem is a classical result in
extremal combinatorics. The Erdős-Ko-Rado theorem theo-
rem gives a bound on the size of a family of k-subsets of
a set that every pairwise intersection has size at least t and
describes exactly which families meet this bound.
Theorem 4.1 [14]: Let n ≥ (k−t + 1)(t + 1) and F be a

family of k-subsets of an n-set X such that
∣∣S ∩ S ′∣∣ ≥ t for

any S, S ′ ∈ F . Then |F | ≤
(
n− t
k − t

)
holds. If n > (k−t +

1)(t+1) and |F | =
(
n− t
k − t

)
, thenF consists of all k-subsets

containing a fixed t-subset of X .
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An anticodeA(2α) of diameter 2α in Ine is any subset of Ine
such that d((V , f ), (L, j)) ≤ 2α for all (V , f ),(L, j) ∈ A(2α).
The maximum anticode of diameter 2(b−1) in Ine is provided
in [15]. A family F ⊆ Ine is known as α-intersecting if
dim((V , f ) ∧ (L, j)) ≥ α for all (V , f ), (L, j) ∈ F . The
Lemma 4.2 which is shown below is the EKR theorem for
e-partial injective maps of F(n)

q .
Lemma 4.2 [15]: Presume that F ⊆ Ine is an (e−b + 1)-

intersecting family with 0 < e−b+1 < e. Assume that either
b = 2 and (q+1)(qe−1) < (qn−e+1−1)(qn−qe−1) or b > 2
and[

e
b− 1

]2
q
<

[
n−e+ b− 1

b− 1

]
q
·

e−1∏
a=e−b+1

(qn − qa),

then

|F | ≤
[
n−e+ b− 1

b− 1

]
q
·

e−1∏
a=e−b+1

(qn − qa).

Ahlswede and Aydinian [16] obtained the following
Lemma 4.3 based on vertex transitive graphs, which is used
in the sequel.
Lemma 4.3 [16]: Let 0 = (R, J ) be a figure that satisfies

a transitive group of automorphisms Aut(0), if V , L be any
subsets of the vertex set R. Thus it must be have some j ∈
Aut(0) satisfy |j(V )∩L|

|L| ≥
|V |
|R| .

By Lemma 4.3, we give the result as below.
Lemma 4.4: Let C ⊆ Ine be an (n,M , 2b, e)q code. For an

arbitrary subsetL ⊆ Ine , there must be an (n,M∗, 2b, e)q code
C∗ ⊆ L with M∗

|L| ≥
M
|Ine |
.

Proof:Define a figure with vertex set Ine and two vertices
(V , f ) and (L, j) of vertex set Ine are adjacent if dim((V , f ) ∧
(L, j)) = e − 1. Then 0 accepts a transitive group of auto-
morphisms GLn(Fq). By Lemma 4.3, there must be some
T ∈ GLn(Fq) with that |{ET |E∈C}∩L||L| ≥

M
|Ine |
.

Let C∗ = {ET |E ∈ C} ∩ L. For any R∗, Q∗ ∈ C∗, there
exist R, Q ∈ C such that R∗ = RT and Q∗ = QT . We have
dim(R∗ ∧Q∗) = dim((R∧Q)T ) = dim(R∧Q) which means
that d(R∗,Q∗) = d(R,Q). According to that C∗ ⊆ L is an
(n,M∗, 2b, e)q code with M∗ = |{ET |E ∈ C} ∩ L|. We can
get the theorem fastly.
Theorem 4.5: Presume that either b = 2 and (q + 1)(qe −

1) < (qn−e+1 − 1)(qn − qe−1) or b > 2 and[
e

b− 1

]2
q
<

[
n−e+ b− 1

b− 1

]
q
·

e−1∏
a=e−b+1

(qn − qa).

Then

Aq(n, 2b, e) ≤

[
n
e

]
q
q
e(e−1)

2 ·

n∏
a=n−e+1

(qa − 1)[
n−e+ b− 1

b− 1

]
q
·

e−1∏
a=e−b+1

(qn − qa)

.

Proof: Let C ⊆ Ine be an (n,M , 2b, e)q code and
A(2(b−1)) be the largest anticode in Ine . ThenC∗∩A(2(b−1))

has at most one element. By Lemma 4.4,

Aq(n, 2b, e) ≤

∣∣Ine ∣∣
|A(2(b− 1))|

=

[
n
e

]
q
q
e(e−1)

2 ·

n∏
a=n−e+1

(qa − 1)[
n−e+ b− 1

b− 1

]
q
·

e−1∏
a=e−b+1

(qn − qa)

.

The following Theorem 4.6 is the Ahlswede and Aydinian
bound of (n,M , 2b, e)q code in Ine , which is provided by
Ahlswede and Aydinian [16] on the size of codes in the
projective space.
Theorem 4.6 (Ahlswede and Aydinian Bound):Let 0 ≤ a ≤

b ≤ e, then

Aq(n, 2b, e) ≤
[
n
e

]
q
q
e(e−1)

2

n∏
a=n−e+1

(qa − 1)

÷ (
e∑

α=e−a

q(e−α)
2
[
e
α

]
q

[
n− e
e− α

]
q

[
α

e− b

]
q

× (qn − qα)
qe−qe−b−1∏

s=1

(qn − qe−b − s)).

Proof:LetC ⊆ Ine be an (n,M , 2b, e)q code and (V , f ) ∈
Ine be a fixed e-partial injective map of F(n)

q . Define L =
{(L, j) ∈ Ine | dim(V ∩L) ≥ e−a, dim((L, j)∧(V , f )) = e−b}.
By Lemma 2.5, the size of set L is

|L| =
e∑

α=e−a

n(e−α,b−e+α)

=

e∑
α=e−a

q(e−α)
2
[
e
α

]
q

[
n− e
e− α

]
q

[
α

e− b

]
q
(qn − qα)

×

qe−qe−b−1∏
s=1

(qn − qe−b − s). (4)

Define C1 = {E1 = He−a((L, j) ∧ (V , f ))|(L, j) ∈ C∗},
whereHe−a((L, j)∧ (V , f )) = (L, j)∧ (V , f ), if dim((L, j)∧
(V , f )) = e − a; otherwise He−a((L, j) ∧ (V , f )) is some
(e− a)-partial injective map of F(n)

q .
Let (L, j) and (Y , h) be arbitrary two different codewords

of code C∗, then
d((L, j), (Y , h)) = 2e− 2 dim((L, j) ∧ (Y , h)) ≥ 2b,

which implies that dim((L, j) ∧ (Y , h)) ≤ e − b. For E1 =
He−a((L, j) ∧ (V , f )) and Q1 = He−a((Y , h) ∧ (V , f )),
we have

d(E1,Q1) = 2(e− a)− 2 dim(E1 ∧ Q1)
≥ 2(e− a)− 2 dim((L, j) ∧ (Y , h))
≥ 2(e− a)− 2(e− b) = 2(b− a).

Then, C1 is an (e,M∗, 2(b− a), (e− a))q code with M∗ ≤
Aq(e, 2(b− a), e− a). Therefore,

M ≤

∣∣Ine ∣∣
|L|

Aq(e, 2(b− a), e− a).

By Lemma 2.1 and (4), the theorem follows immediately.
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V. STEINER STRUCTURE BASED ON PARTIAL INJECTIVE
MAPS
In this section, we will give the Steiner structure based on
e-partial injective maps.
Definition 5.1: Let 1 ≤ r ≤ e ≤ n. A Steiner structure

Sq [r, e; n] in Ine is a collection S of elements from Ine sat-
isfying that each r-partial injective map in Inr is included in
exactly one e-partial injectivemap of S. The e-partial injective
maps of F(n)

q in S are known as blocks of the Steiner structure
Sq [r, e; n].
Lemma 5.2: The total number of blocks in the Steiner

structure Sq [r, e; n] is[
n
r

]
q
q
r(r−1)

2
n∏

a=n−r+1
(qa − 1)[

e
r

]
q

.

Proof: By Lemma 2.2, each block (e-partial injective
map of F(n)

q ) of the Steiner structure Sq [r, e; n] contains[
e
r

]
q
r-partial injective maps of F(n)

q . Through the definition

5.1, we can know that every r-partial injective map of F(n)
q

is included in just one block of S. The totality of r-partial

injective of F(n)
q is

∣∣Inr ∣∣ = [
n
r

]
q
q
r(r−1)

2
n∏

a=n−r+1
(qa − 1).

Thus the totality of blocks in the Sq [r, e; n] is[
n
r

]
q
q
r(r−1)

2
n∏

a=n−r+1
(qa − 1)[

e
r

]
q

.

Theorem 5.3: A Steiner structure Sq [r, e; n] is an
(n,M , 2b, e)q code with the size

M =

[
n
r

]
q
q
r(r−1)

2
n∏

a=n−r+1
(qa − 1)[

e
r

]
q

and b = e−r + 1.
Proof: Through Definition 5.1 and Lemma 5.2, it will

be enough to show that b = e−r + 1 is correct. First of all,
for arbitrary two different blocks (V , f ), (L, j) ∈ Sq [r, e; n],
we can get

dim((V , f ) ∧ (L, j)) ≤ r − 1, (5)

otherwise there at least exists a r-partial injective map of F(n)
q

contained in (V , f ) and (L, j) which is contradictious to the
definition of the Steiner structure Sq [r, e; n]. Thus, by (1) and
(5),

d((V , f ), (L, j)) = 2e− 2 dim((V , f ) ∧ (L, j))

≥ 2e− 2(r − 1) = 2(e−r + 1).

Moreover, 2b is the minimum distance of the code
(n,M , 2b, e)q, then we have b ≥ e−r + 1.

Conversely, let (Y , h) be a fixed (r − 1)-partial injective
map of F(n)

q and we can choose two r-partial injective maps
(V1, f1) and (L1, j1) of F(n)

q such that (Y , h) = (V1, f1) ∧
(L1, j1). According to the definition of the Steiner structure
Sq [r, e; n], there is a unique corresponding blocks (V , f ) and
(L, j) in Sq [r, e; n] satisfying (V1, f1) � (V , f ) and (L1, j1) �
(L, j), respectively. Then, (Y , h) = (V1, f1) ∧ (L1, j1) ⊆
(V , f ) ∧ (L, j) from which we can get

dim((V , f ) ∧ (L, j)) ≥ r − 1. (6)

By (1) and (6), d((V , f ), (L, j)) = 2e − 2 dim((V , f ) ∧
(L, j)) ≤ 2e − 2(r − 1) = 2(e−r + 1). Moreover, 2b is the
minimum distance of the code (n,M , 2b, e)q, then we have
b ≤ e−r + 1.
From the above two aspects, we obtain b = e− r + 1.
Theorem 5.4:An (n,M , 2b, e)q codeC achieves theWang-

Xing-Safavi-Naini bound, namely,

M =

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−b+ 1

]
q

when and onlywhenC is a Steiner structure Sq [e−b+ 1, e; n].
Proof: According to Theorem 3.4 and Theorem 5.3,

we can get that in case of C is a Steiner structure
Sq [e−b+ 1, e; n], thus C should be an (n,M , 2b, e)q code,
where

M =

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−b+ 1

]
q

.

Obviously, the code reaches the Wang-Xing-Safavi-Naini
bound.

Conversely, suppose C is an (n,M , 2b, e)q reaching the
Wang-Xing-Safavi-Naini bound, that is,

M =

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−b+ 1

]
q

.

Firstly, we have that any (e− b+ 1)-partial injective map
of F(n)

q cannot be included in two different codewords (V , f )
and (L, j) of C, or else, by (1),

d((V , f ), (L, j)) = 2e− 2 dim((V , f ) ∧ (L, j))

≤ 2e− 2(e−b+ 1) = 2b− 2,

it is in contradiction with the minimum distance 2b of C.
Then, from the fact that each codeword of C includes[
e

e−b+ 1

]
q
different (e − b + 1)-partial injective maps of

F(n)
q , we realize that all the codewords ofC include altogether

H
[

e
e−b+ 1

]
q
=

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)
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distinct (e − b + 1)-partial injective maps of F(n)
q . And there

are altogether[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)

distinct (e− b+ 1)-partial injective maps of F(n)
q , this means

that every (e−b+1)-partial injective map of F(n)
q is included

in exactly one code word of C. So, when we regard the
codewords of C as blocks, code C is a Steiner structure
Sq [e−b+ 1, e; n].
Corollary 5.5:

Aq(n, 2b, e) =

[
n

e−b+ 1

]
q
q

(e−b+1)(e−b)
2

n∏
a=n−e+b

(qa − 1)[
e

e−b+ 1

]
q

when and only when the Steiner structure Sq [e−b+ 1, e; n]
exists.

VI. CONCLUSION
In the article, the subspace code (n,M , 2b, e)q based on e-
partial injective maps of F(n)

q over Fq are considered. Sev-
eral bounds of the subspace code (n,M , 2b, e)q based on
e-partial injective maps of F(n)

q are presented. The anticode
bound and Ahlswede-Aydinian bound of the subspace code
(n,M , 2b, e)q are obtained using the EKR theorem for e-
partial injective maps of F(n)

q . Finally, we show that the
(n,M , 2b, e)q codes based on e-partial injective maps of F(n)

q
reach the Wang-Xing-Safavi-Naini bound when and only
when they are certain Steiner structures in Ine .
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