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ABSTRACT The untunable bandgap is a difficult problem for Bragg structures constructed from corrugated
metallic waveguides, and becomes a major barrier for applications. Based on the coupled-mode theory,
this paper presents the principle as well as a corresponding theoretical model of bandgap control of
two-dimensional coaxial Bragg structures under the condition of a fixed ripple shape. It is shown that such
control can be achieved by varying the angular deviation between the outer and inner corrugations, which
can be done by rotating one of the conductors relative to the other. The effects of the proposed method
on transmission bandgap control of two example structures were investigated by theoretical analysis and
electromagnetic simulation. The results confirmed the validity of the proposal, and showed that such a control
method can be used to manipulate the number and location of the working bands under multiple bandgap
operation. These peculiarities provide potential applications of two-dimensional coaxial Bragg structures in
constructing tunable passive and active high-power microwave devices.

INDEX TERMS Coaxial waveguides, Bragg gratings, bandgap, coupled mode analysis.

I. INTRODUCTION
In past decades, the use of periodic structures to manipulate
the propagation of guided waves has been intensively inves-
tigated [1]–[4]. As a result of these efforts, many functional
components using periodic structures have been proposed and
then widely applied in the fields of radio frequency (RF)
electronics, microwave electronics and optoelectronics. They
include reflectors [5], filters [6]–[8], couplers [9], [10] and
resonators [11]. In practice, periodic structures are imple-
mented in various forms and materials to meet the needs
of specific applications, with particular operating frequency
bands and power capacities. For example, the periodic struc-
tures used in RF circuits and microwave devices are usually
realized by etching periodic lattice structures on the conduc-
tive strip or ground plane of transmission lines [12], [13],
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or realized by waveguides with periodically arrayed mem-
branes or nails [14]. In the optical systems, these structures
are in the form of latticed crystals, multilayer films, dielec-
tric materials with periodic refractive index [2], [4], [15],
etc. Despite the differences of these structures, they all rely
for their operation on Bragg scattering. This means that the
periodic boundaries of the structures are able to scatter a
forward wave coherently into a series of backward compo-
nents, and the constructive interference of these scattered
components opens up some so-called forbidden bands or
stopbands in the frequency spectrum, where the propagation
of the incident wave is strongly suppressed. Due to this
characteristic, periodic structures are usually named Bragg
structures [5]–[7], [11], electromagnetic bandgap (EBG)
structures [8], [13], [16], and photonic bandgap (PBG) struc-
tures [4], [15], in different fields.

Bandgap parameters, such as the center frequency, ampli-
tude and bandwidth, are generally the critical parameters
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for determining the performance of periodic structures, and
being able to controlling them is essential for many appli-
cations including microwave electronics, optics and signal
processing [16]–[18]. Usually, the bandgap can be manip-
ulated by changing the properties of the filling medium of
the periodic structures. For the PBG structures used in optics,
many techniques have been proposed to obtain the dynamic
control of bandgap parameters by introducing different active
media (for example Kerr-effect materials and chiral materi-
als [18]–[20]) whose refractive indices can be manipulated
by external stimuli such as electric fields or light. However,
the Bragg structures used in microwave electronics, par-
ticularly in high-power microwave devices, have untunable
bandgaps, which is a major drawback. The reason lies in the
way they are constructed. The Bragg structures are planar or
cylindrical metallic waveguides [5]–[7], [9], [11], where the
periodicity is obtained by etching shallow periodic ripples on
the internal surfaces of the conductor, and the filling medium
(vacuum or air) is conformal with the ripples. The corrugation
amplitude and period are fixed, so it is unrealistic to control
the bandgap by changing the ripple shape. In order to improve
their applicability, a new approach is required to manipulate
bandgap parameters for Bragg structures with a fixed ripple
shape.

Bragg structures with helical ripples have found increasing
applications in constructing beam-wave interaction systems
for gyro devices, and as the effective dispersive medium
for pulse compressors [21]–[25]. Since the helical ripples
have periodicities along the azimuthal and axial directions,
they can be treated as two-dimensional periodic structures
realized by metallic waveguides. Early investigations of
two-dimensional Bragg structures mostly concentrated on
structures with cylindrical topology. In recent years, grow-
ing attention has been paid to Bragg structures in the
form of coaxial metallic waveguides, due to their merits
in improving the performance of high-power free-electron
devices [26]–[31]. It should be noted that, although the
coupling coefficients and reflection characteristics of a
two-dimensional coaxial Bragg structure with one or two
helically corrugated conductors were investigated in [31],
a method of manipulating the bandgap parameters of two
dimensional coaxial Bragg structures is yet to be confirmed.

In this paper, the possibility of controlling the bandgap
of two-dimensional coaxial Bragg structures with unchanged
ripple shape is discussed as follows. In section II, the principle
as well as the theoretical model of the bandgap control of two-
dimensional coaxial Bragg structures is provided. Formulas
are given for calculating the bandgap parameters and the
means to manipulate the bandgap is provided. Control of the
transmission bandgap of sample structures is demonstrated in
section III. Finally, conclusions are drawn in section IV.

II. THEORETICAL MODEL AND PRINCIPLE OF BANDGAP
CONTROL
A periodic function can be expanded to the superposi-
tion of different harmonics of sine/cosine functions. If the

FIGURE 1. Schematic diagram (a) of a two-dimensional coaxial Bragg
structure (mb = 1) with helically corrugated conductors, where (b) is the
longitudinal cross-section view and (c) is the transversal cross-section
view at z = 0.

corrugation amplitude of periodic ripples is sufficiently
small (less than 15% of the mean radius of the waveg-
uide [25]), by neglecting the higher-order harmonics compo-
nents, shallow periodic ripples with different shapes can be
approximately expressed as sinusoidal/cosinusoidal ripples
with certain amplitude [26]. In this section, we discuss
bandgap control for two-dimensional coaxial Bragg struc-
tures with basic cosinusoidal ripples, where the principle and
method are still applicable for two-dimensional coaxial Bragg
structures corrugated with shallow periodic ripples of other
shapes.

Fig. 1 shows the schematic and sectional views of a two-
dimensional coaxial Bragg structure, constructed by inserting
an outer corrugated inner rod into an inner corrugated hollow
tube. The outer and inner conductors are corrugated cosinu-
soidally with the same length L, ripple period pb, fold number
mb and initial corrugation phase ϕ = 0; the ripples on the
surface of the outer and inner conductor have mean radius
of a0 and b0, and constant amplitude lo and li, respectively.
As shown in Fig.2, supposing that the outer-wall ripples
have an angular deviation of 1ϕ with respect to the inner-
rod ripples, the dependence of the outer-wall radius ro and

VOLUME 8, 2020 191395



Y.-X. Lai et al.: Bandgap Control of Two-Dimensional Coaxial Bragg Structures With Helically Corrugated Conductors

FIGURE 2. Transversal cross-section views of the entrance (z = 0) of a two-dimensional coaxial Bragg structure (mb = 1) with the angular deviation
1ϕ between the outer and inner corrugations equals to (a) 0, (b) π/2, and (c) π , respectively.

the inner-rod radius ri on the longitudinal position z can be
expressed by

ro (ϕ, z) = a0 + lo cos [mb (ϕ +1ϕ)+ kbz] , (1)

ri (ϕ, z) = b0 + li cos (mbϕ + kbz) , (2)

where kb = 2π /pb.
To highlight the theme of bandgap control, consider a two-

dimensional coaxial Bragg structure with sufficiently large
eigen-mode spectra intervals so that bandgaps associatedwith
different coupled-mode combinations do not overlap with
each other. Under this assumption, the incident wave of mode
i will be strongly coupled with the backward wave of another
mode k in the vicinity of Bragg resonance frequency, and the
interaction of these two partial waves can be described by a
pair of differential equations termed coupled-mode equations
as [5], [11], [21], [22]

df +i
dz
= − (αi + j1i) f

+

i + jGik f
−

k , (3)

df −k
dz
= (αk + j1k) f

−

k − jG
∗
ik f
+

i , (4)

where

f +i = A+i e
jkbz/2, (5)

f −k = A−k e
−jkbz/2. (6)

A+i , αi,1i
(
= βi − kb

/
2
)
and βi are the complex amplitude,

the attenuation constant, the Bragg mismatch parameter and
the axial wave number of the incident wave of mode i, respec-
tively, while the subscript k represents the corresponding
variation associated with the backward wave of mode k; Gik
and its complex conjugate G∗ik denote the coupling coeffi-
cient between these two partial waves. The Bragg resonance
frequency, i.e. the center frequency of the stopband, where
the coherently coupling takes place, is determined by the
following Bragg conditions:

βi + βk ≈ kb, (7)

mk − mi = mb. (8)

The general solution of coupled-wave equations (3) and (4)
can be expressed as

f +i (z) =
[(

1
2
+
1γ

20

)
f +i (0)−

Gik
20

f −k (0)
]
e−j0ze−jγ z

+

[(
1
2
−
1γ

20

)
f +i (0)+

Gik
20

f −k (0)
]
ej0ze−jγ z,

(9)

f −k (z) =
[(

1
2
−
1γ

20

)
f −k (0)+

G∗ik
20

f +i (0)
]
e−j0ze−jγ z

+

[(
1
2
+
1γ

20

)
f −k (0)−

G∗ik
20

f +i (0)
]
ej0ze−jγ z,

(10)

where

1γ = δ − jα(δ =
(βi + βk − kb)

2
, α =

αi + αk

2
), (11)

γ = 1β − j1α(1β =
βi − βk

2
,1α =

αi − αk

2
), (12)

0 =

√
1γ 2 − |Gik |2. (13)

f +i (0) and f −k (0) denote the amplitudes of f +i and f −k at z =
0, respectively. Suppose that the incident wave of mode i is
injected into the structure at z = −L with a unit amplitude,
and the output port of the structure at z = 0 is well matched
to eliminate reflection, which can be expressed as

f +i (−L) = 1, f −k (0) = 0. (14)

By substituting (14) into the general solutions in (9), (10) and
neglecting the loss of the corrugated surfaces, the reflectivity
R and the transmission T of the structure in the vicinity of
the Bragg resonance frequency can be obtained, which can
be expressed as

R =
f −k (−L) · f −k

∗ (−L)∣∣f +i (−L)
∣∣2 =

(
|Gik |
G

)2
sinh2 GL

cosh2 GL +
(
δ
G

)2
sinh2 GL

,

(15)
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T =
f +i (0) · f +i

∗ (0)∣∣f +i (−L)
∣∣2 =

1

cosh2 GL + δ2

G2 sinh
2 GL

, (16)

where

G =
√
|Gik |2 − δ2, (17)

sinh x and coshx are the hyperbolic sine and the hyperbolic
cosine functions respectively. When the operating frequency
f equals the Bragg resonance frequency f0 that is determined
by (7) and (8), there is δ = 0 and G = |Gik |, and the
corresponding reflectivity R0 and transmission T0 can be
rewritten as

R0|f=f0 = tanh2 |Gik |L, (18)

T0|f=f0 = sec h2 |Gik |L. (19)

Since the reflectivity/transmission at the Bragg resonance
frequency is the key parameter that determines the width and
amplitude of a bandgap, one can get a hint from (18) and
(19) that bandgap control may be achieved if the coupling
coefficient is tunable. According to the coupled-mode ana-
lytical model for two-dimensional coaxial Bragg structures
established in [31], the coupling coefficient for the helical
corrugations described by (1) and (2) can be denoted as

Gik =
ω

4

(
loe−jmb1ϕpik − liqik

)
, (20)

where ω is the angular frequency; pik and qik are variables
dependent on the types of mode i and mode k as well as the
structure parameters, and their explicit formulas are given
in [31]. Once the outer and inner conductors and their cor-
rugated surfaces are processed, the corrugation amplitude lo,
li and the variables pik , qik are fixed with a constant value.
However, from (20), one can find a special variable to manip-
ulate the coupling coefficient Gik , that is, the relative angular
deviation1ϕ, which is independent of the corrugation shape
and the size of the outer and inner conductors. In particular,
for a given combination of coupledmodes, by properly setting
the ratio b0/a0 and the corrugation amplitudes lo and li, pik
may be equal to qik in (20), then the coupling coefficient can
be simplified as

Gik = G0

(
1− ejmb1ϕ

)
, (21)

where

G0 =
ω

4
lopike−jmb1ϕ . (22)

Then, substitute (21) into (18) and (19), which yields

R0|f=f0 = tanh2
(
2
∣∣∣G0 sin (mb

2
1ϕ

)∣∣∣L) , (23)

T0|f=f0 = sec h2
(
2
∣∣∣G0 sin (mb

2
1ϕ

)∣∣∣L) . (24)

Evidently, (15)–(24) demonstrate the possibility of control-
ling the reflection/transmission bandgap of two-dimensional
coaxial Bragg structures by varying the relative angular shift
1ϕ between the outer and inner corrugations. In practice, this
control method can be realized by rotating one of the outer or

inner conductors along the azimuthal direction while keeping
the other conductor fixed, thus avoiding any need to reprocess
the corrugated conductors.

III. BANDGAP CONTROL IN TWO EXAMPLE STRUCTURES
To illustrate the feasibility of the bandgap control method,
the transmission characteristics of two example structures
with single bandgap and dual bandgap operation were inves-
tigated.

A. SINGLE BANDGAP OPERATION
First, consider a two-dimensional coaxial Bragg structure
denoted as structure A. This structure had a mean outer-wall
radius a0 = 11 mm, a mean inner-rod radius b0 = 9 mm
and a total length L = 80.2 mm, and amplitude of the
outer-wall and inner-rod ripples of lo = 0.15 mm and li =
0.12mm, respectively. The structure was injected with a basic
TEM wave. Due to the cut-off of high-order modes, this
incident wave can be coupled with the backward wave of only
the TE1,1 mode to form the required transmission bandgap
within the Ka band. To ensure good synchronization of these
two partial waves at the desired Bragg resonance frequency
of 37.5 GHz, the axial period pb and the fold number mb of
the structure were set to 4.01 mm and 1, respectively.

Based on the above structural configuration, the depen-
dence of the magnitude of coupling coefficient GTEM−TE1,1
between incident and scattered waves on the angular devi-
ation 1ϕ was calculated and normalized by wave number
k0(= ω

√
µ0ε0), where µ0 and ε0 are the permeability

and permittivity of vacuum, respectively, and the results are
shown in Fig.3. It is clear that, when the angular deviation1ϕ
is 0 and 180◦, the coupling coefficient reaches the minimum
and maximum value respectively. Considering this feature,
the transmission characteristics of structure A were further
studied by varying the angular deviation1ϕ within the range
of 0 to 180◦. Fig. 4 shows the transmission rates of the inci-
dent wave at Bragg resonance frequency (37.5 GHz) versus
angular deviation1ϕ, where the solid lines denote the results
calculated by using (24). For comparison, the S parameters
of structure A were simulated by HFSS with an angular
deviation step of 5◦, where lambda refinement and surface
approximation factors were set to 0.05 and 7 respectively to

FIGURE 3. Dependence of the normalized magnitude of coupling
coefficient between the incident TEM wave and the scattered TE1,1 wave
on the angular deviation 1ϕ of structure A.
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FIGURE 4. The transmission rates of the incident TEM wave at the Bragg
frequency (37.5 GHz) versus the angular deviation 1ϕ of structure A,
where the solid line denotes theoretical results and the dashed line
denotes the simulation results obtained by HFSS.

ensure high accuracy and convergence. The simulation model
of structure A contained about 10 wavelengths of the incident
TEM wave at 37.5 GHz in axial direction. These simulation
results are shown in Fig.4 with a dashed line. Clearly, both
the theoretical analysis and simulation results indicate the
importance of the relative angular position between the outer
and inner conductors for transmission at the Bragg resonance
frequency, i.e., the center frequency of the bandgap.

Next, in order to illustrate the effect of angular deviation
1ϕ on bandgap parameters, the frequency responses of trans-
mission of structure A were analyzed using (16) as well as
the frequency sweep tool of the HFSS. The results obtained
by these two approaches are shown in Fig. 5 with solid lines
and dashed lines respectively, where the angular deviation
1ϕ is (a) 180◦, (b) 90◦, and (c) 0. It can be seen that, when
the angular deviation 1ϕ is 180◦, owing to the maximum
coupling coefficient, a sharp transmission bandgap appears
in the vicinity of 37.5 GHz. The amplitude and width of
this dominant transmission bandgap shrink with the reduc-
tion of 1ϕ while the center frequency remains unchanged.
Interestingly, as the outer and inner conductors had the same
azimuthal position (1ϕ = 0), the transmission bandgap
almost disappeared in the operating frequency band. It should
be pointed out that, since the ohmic loss of the corrugated
surfaces was considered in the simulation, the transmission
rates at the Bragg frequency obtained by HFSS were lower
than those of theoretical analysis; meanwhile, the existence
of ohmic loss reduced the frequency where the constructive
interference between the incident wave and the scattered
wave takes place, resulting in a downward shift of about
0.13 GHz of the transmission bandgap obtained by HFSS
compared with theoretical results. However, principal consis-
tency between the simulation results and theoretical calcula-
tions clearly confirms the validity of controlling the bandgap
by changing the relative angular position of the inner and
outer conductors.

B. DUAL BANDGAP OPERATION
The previous example demonstrates the bandgap control
effect of angular deviation for a structure with single bandgap

FIGURE 5. Transmission responses of structure A with an injection of TEM
wave from 30GHz to 45GHz for the cases of the angular deviation 1ϕ
equals (a)180◦, (b) 90◦, and (c) 0, respectively, where the solid lines
denote theoretical calculations by (16) and the dash lines denote the
simulation results obtained by HFSS.

operation. By introducing additional backward coupling
waves for an incident wave within the working frequency
band, the proposed control method can achieve switching
between single bandgap and dual bandgap operation for two
dimensional coaxial Bragg structures. Consider another two-
dimensional coaxial Bragg structure denoted as structure B,
where the outer conductor had the same corrugation param-
eters as those of structure A, but for the inner conductor

191398 VOLUME 8, 2020
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FIGURE 6. Dependence of the normalized magnitude of coupling
coefficients associated with the coupled-mode combinations of
TEM-TE1,1 (solid line), TEM-TM1,1 (dashed line) and TEM-TE1,2 (dot line)
on the angular deviation 1ϕ of structure B.

the mean radius was reduced to 5.5 mm and the amplitude
set to 0.09 mm. Both the outer and inner conductors were
corrugated with the same axial period pb = 4.02 mm, fold
number mb = 1 and length L = 201 mm.
Supposing that this structure was injected with a TEM

wave, due to the reduction of the inner-rod radius, then
besides the backward wave of TE1,1 mode, the other two
partial waves of higher-order modes TE1,2 and TM1,1
become traveling waves within the operating frequency range
of 30 GHz–45 GHz and can be coupled with the incident
wave. The dependence of normalized magnitude of coupling
coefficients associated with coupled-mode combinations of
TEM-TE1,1, TEM-TM1,1 and TEM-TE1,2 on the angular
deviation 1ϕ are shown in Fig. 6. Evidently, the trend of
changes in coupling coefficientGTEM−TE1,1 with variation of
1ϕ is opposite to those of changes in coupling coefficients
GTEM−TM1,1 and GTEM−TE1,1. Thus it is possible to exert
opposite control effects on the bandgaps associated with
different coupled-mode combinations through varying the
angular deviation 1ϕ.

Fig.7 shows the transmission responses of structure B
within frequency of 30GHz–45GHz, obtained by multimode
coupling analysis (solid lines) [31] and the frequency sweep
tool of the HFSS (short dashed lines), where the angular
deviation 1ϕ equals (a) 0, (b) 180◦, and (c) 117◦. The sim-
ulation model of structure B was 2.5 times as long as that
of structure A, which contained about 25 wavelengths of the
incident TEM wave at 37.5 GHz in axial direction. As can
be seen in Fig. 7, when 1ϕ = 0, there is one dominant
transmission bandgap centered at 42.48 GHz; when 1ϕ =
180◦, there is also one dominant transmission bandgap, but its
center frequency is shifted to 37.52 GHz; when 1ϕ = 117◦,
two dominant transmission bandgaps appear with center fre-
quencies of 37.52 GHz and 42.48 GHz, respectively. It is
clear that, by changing the angular deviation, the number and
location of the transmission bandgaps of a two dimensional
coaxial Bragg structure can be manipulated.

FIGURE 7. Transmission responses of structure B obtained by multimode
coupling analysis (solid lines) and frequency sweep tool of HFSS (short
dashed lines), where the incident wave is TEM from 30 GHz to 45 GHz,
and the angular deviation 1ϕ equals (a) 0, (b) 180◦, and (c) 117◦,
respectively.

It is worthwhile to further discuss the physical mecha-
nism behind the phenomena shown in Fig.7. According to
the Bragg condition in (7) and (8), the Bragg resonance
frequencies of coupled-mode combinations of TEM-TE1,1,
TEM-TM1,1 and TEM-TE1,2 are 37.52 GHz, 42.44 GHz and
42.72 GHz, respectively. Here, the latter two combinations
have almost identical Bragg frequencies since the cutoff wave
numbers of TE1,2 and TM1,1 are closed in structure B.
Then, if 1ϕ = 0, the coupling coefficients GTEM−TM1,1

and GTEM−TE1,2 reach their maximum value. The incident
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TEM wave will be strongly scattered to the backward waves
of TM1,1 and TE1,2 in the vicinity of the corresponding
Bragg frequencies. The coupling of TEM-TM1,1 and TEM-
TE1,2 will open only one transmission bandgap centered at
42.48 GHz due to the close Bragg frequencies of these two
coupled-mode combinations.

By contrast, if 1ϕ = 180◦, the minimum occurs for the
coupling coefficients GTEM−TM1,1 and GTEM−TE1,2, thus the
incident TEM wave will no longer be effectively coupled
with the backward waves of TM1,1 and TE1,2, resulting in
the closure of the original transmission bandgap located at
42.48 GHz. However, simultaneously, the coupling coeffi-
cient GTEM−TE1,1 will reach its maximum value, coherently
scattering from the incident TEM wave to backward TE1,1
generates another dominant bandgap centered at 37.52 GHz.

When 1ϕ changes between 0 and 180◦, the bandgaps
centered at 37.52 GHz and 42.48 GHz display a dynamic ten-
dency: as one falls, another rises. Specifically, as the1ϕ is set
to a certain value, for example 117◦ in Fig. 5(c), two dominant
bandgaps with nearly equal amplitude will be obtained.

Essentially, the change of coupling coefficients with the
angular deviation 1ϕ reflects the influence of boundary on
mode coupling. Due to the synthesized effect of the outer and
inner inhomogeneous boundaries, different coupled modes
require different matched relative angular position of the
outer and inner conductors to enhance coupling strength, thus
the bandgaps at different positions in Fig.7 show different
trends with variation of 1ϕ. On the other hand, according
to (20), the coupling coefficient of a given coupled-mode
combination is bound to get either a maximum or minimum
value when mb1ϕ = 0 or π . This property may be related
to the symmetry order of the periodic structures investigated
in [32], that is, the structure possesses a higher symmetry if
the relative phase between the outer and inner corrugations is
equal to 0 or π . As demonstrated in [32], a higher symmetry
is directly related to the absence of bandgap, resulting in the
phenomena as shown in Fig. 7(a) and (b).

Finally, it should be noted that, although the above dis-
cussion of structure B focuses on control and switching
between single bandgap and dual bandgaps, in fact, more
bandgaps can be created if more partial waves of higher-order
modes are introduced to be coupled with the incident wave
under the conditions of reasonable structural parameters and
higher upper operating frequency. Since the coupling coeffi-
cients associated with different coupled-mode combinations
show different trends with the variation of angular devia-
tion between the outer and inner corrugations, the proposed
method of varying the angular position between the outer and
inner conductors is still applicable for the manipulation of
multiple bandgaps.

IV. CONCLUSION
The possibility of bandgap control of two-dimensional
coaxial Bragg structures has been studied. Starting from
coupled-mode equations, the principle as well as a theoretical
model of bandgap control by varying the relative angular

position between the outer and inner conductors was derived.
Using coupled-mode theory andHFSS electromagnetic simu-
lation software, the transmission characteristics of two exam-
ple structures with a set of values of angular deviation
between the outer and inner corrugations were investigated.
By comparing the results, the following conclusions can be
drawn:

1) Achieving bandgap control was based on the variable
coupling coefficients, which were adjusted by varying the
relative angular position between the inner and outer conduc-
tors. The other corrugation parameters of the inner and outer
conductors did not need to be changed.

2) If only one backward wave could be coupled with the
incident wave within the operating frequency range, a single
transmission bandgap appeared and its amplitude and width
could be controlled while its location remained fixed. Multi-
ple transmission bandgaps could be generated by introducing
additional coupled waves of higher-order modes for the inci-
dent wave, their number and location could be manipulated,
and thus control and switching of the operating frequency
band was achieved.

In summary, the bandgap of a two-dimensional coaxial
Bragg structure can be manipulated with a fixed ripple shape
of the inner and outer conductors. It facilitates the frequency
switching of output radiation for microwave sources, and it
also enables control and switching between single band and
dual bands or even multi-band operation for other passive
devices. The proposed bandgap control method therefore
provides potential applications for two-dimensional coaxial
Bragg structure in applications such as frequency-selective
components of high-power microwave sources, and mode
converters, filters or couplers for high-power microwave sys-
tems.
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