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ABSTRACT The near-sea off-shore oil extraction and transportation system use heterogeneous fleets to
transfer crude oil from the floating production storage and offloading to the land-based oil storage port. Based
on the characteristics of this system, the short sea inventory routing problem is investigated considering the
shuttle tanker fleet and inventory management. In order to minimize the total operation cost and maximize
the system reliability, a semi-continuous model for the shuttle tanker scheduling problem is established.
The model optimizes the tanker scheduling plan and the design of the tanker fleet. To solve the complex
model, this article proposes an improved non-dominated sorting genetic algorithmwith differential evolution
operator to solve the optimization of the multi-objective model. This research also uses public vessel
operation data to test the modeling and optimizing efficiency. The Pareto Fronts associated with the total
operation cost and the system reliability from the optimization outcome is analyzed to provide scheduling
priority advice. The results indicate that proposed optimization algorithms are effective, and the operation
could be optimized with the proposed model and algorithm.

INDEX TERMS Maritime inventory routing problem, non-dominated sorting genetic algorithm (NSGA-II),
off-shore oil transportation, semi-continuous model, shuttle tanker, system reliability.

I. INTRODUCTION
With the increasing demand for energy, the off-shore fossil
energy transportation system plays an increasingly important
role in ensuring energy production and supply. The structure
of the traditional off-shore fossil energy transportation net-
work is relatively simple and the production and operation
mode [1]. Therefore, related enterprises have relatively low
requirements for water transportation services. In practice,
the business decision-making departments of various enter-
prises (referred to as decision-makers) often rely on work
experience and simple economic evaluation methods to set
up water transportation systems and manage the configura-
tion and scheduling of tanker fleet [2]. The design of the
water transportation system often only emphasizes meeting
the transportation needs on time, and have less consideration
of the cost control and coordination between production and
transportation systems [3]. However, with the continuous
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upgrading of off-shore fossil energy transportation system,
the transportation organization of related energy products
has shown a trend of becoming more complex [4]. This
trend leads to that the previous simple approach has become
insufficient to cope with the complex needs of transportation
services for modern fossil energy production and marketing
systems. Therefore, it is necessary to make targeted optimiza-
tion research for such systems.

The off-shore oil extraction and transportation system
is currently undergoing a revolution in storage and trans-
portation. The traditional production model with the drilling
platform as the core has been rapidly transformed. The
new production model gradually adopts the floating produc-
tion storage and offloading (FPSO)-based system [5], which
integrating off-shore crude oil extraction, storage, and ini-
tial processing of crude oil [6]. The off-shore oil collection
and transportation system include drilling platform, FPSO,
unloading port, and special oil tankers (referred to as shuttle
tankers). The details are shown in Fig. 1. Crude oil is first
extracted from the drilling platform and then transported
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FIGURE 1. A diagram of the off-shore crude oil collection and
transportation system.

to the FPSO through pipelines. The so-called FPSO is a
comprehensive off-shore floating oil and gas treatment facil-
ity that can process and store crude oil simultaneously and
integrate personnel residence, production, processing, and
command [7]. The off-shore FPSO is generally connected
to several drilling platforms. The shuttle tankers frequently
transfer the extracted crude oil between sea and land before
the oil inventories of the FPSO reach their limits. Under
normal circumstances, the storage capacity of FPSO cargo
tanks can reach 50,000 to 300,000 tons, which can fully
realize the short-term and temporary storage of large amounts
of crude oil at sea.

The introduction of FPSO has significantly improved the
crude oil storage capacity of off-shore oil extraction and
transportation system. On the one hand, it provides the nec-
essary buffering for the crude oil storage; on the other hand,
it is possible to use large ships to transport crude oil, which
provides the economic benefits of large-scale tanker applica-
tions. Therefore, the oil companies (referred to as decision-
makers) can consider the changes of FPSO’s inventory for
controlling and optimizing the off-shore crude oil production
system through dispatching and adjusting shuttle tankers in a
timely manner.

At the same time, the characteristics of FPSO also bring
new challenges for decision-makers to optimize the off-shore
oil extraction and transportation system. Due to the differ-
ent storage capacity, crude oil extraction rates of various
FPSOs [8], it is necessary to comprehensively consider the
factors such as the type, number, storage capacity of the
tanker for the rational design and dispatch of the fleet [9].
These characteristics of the system make the design of the
shuttle tanker fleet more complicated. The crude oil produced
in Chinese off-shore are waxy and have the physical property
of high pour point and high viscosity, which require heating
to prevent the crude oil from forming the gel [10]. Therefore,
energy consumption is a significant factor in the operation
cost for crude oil transfer and processing. Since the FPSOs
are collecting crude oil from the oil platform, the oil stock
quantity is continually changing, affecting the storage cost
of crude oil [11]. The tanker for FPSO operates within a
short distance and with high frequency making the trans-
portation system vulnerable for the uncertainty of maritime

transportation, such as weather conditions and port occu-
pancy [12]. As a result, the strictly designed plan could not be
carried with high accuracy, which leads to potential delay or
deviation of the scheduling plan [13]. Since the halt of the oil
production platform is not acceptable, the process is sensitive
to the uncertainty from the transportation system [4]. The
reliability related to the inventory control for the supply chain
is essential for the successful function of the system [14].
Therefore the off-shore oil transportation should consider
taking the remaining oil storage capacity as the indicator of
the system reliability.

Based on the above background, this article will take the
Chinese off-shore fossil energy transportation system as the
research object. This study considers two significant factors
for the optimization purpose. The first one is the operation
cost, which consists of the transportation cost and oil storage
cost. Usually, the storage costs are directly proportional to the
quantity of related crude oil in stock [9]. The second factor
is the reliability associated with the effect of transportation
uncertainty on the oil storage capability level. This is because
during the transportation of fossil energy, the transportation
system often encounters some unexpected situations, which
delay the system operation and affects the reliability of the
transportation system [15]. In practice, Industries had to bal-
ance multiple conflicting performance criteria to determine
optimal scheduling [16]. The economical operation cost and
inventory management are the common optimizing objective
for the operation system [17]. Thus, this study proposes the
multi-objective optimization problem for the maritime inven-
tory routing problem (MIRP).

The contributions of this research include the following:
firstly, this study enriching the research of MIRP, since many
assumptions for MIRP do not apply to the short-distance off-
shore transportation system involved in this article. Secondly,
the spillover effects of inventory management are taken into
consideration. Specifically, this article will consider two sim-
ulation objectives in tanker scheduling modeling. The first
one is the inventory cost of related products, which is the cost
paid to maintain the stability of the chemical and physical
properties of the crude oil; the second one is the impact of
inventory changes on system reliability. Lastly, this article
proposes the short sea inventory routing problem(SSIRP)
model considering the dual objective of the transportation
system, and an improved evolution algorithm based on the
differential evolution idea. By comparing with the tradi-
tional non-dominated sorting genetic algorithm (NSGA-II),
the effectiveness of the model and algorithm is evaluated.
The optimization outcome is analyzed with the Pareto fronts
to demonstrate the scheduling characteristics under different
system reliability preferences.

The paper is organized as follows: Section 2 reviews
the related literature. Section 3 describes the significant
issues related to the MIRP problem. In section 4, the semi-
continuous model ofMIRP is designed, and the mathematical
model is established. The algorithm to solve the MIRP model
is designed in section 5. In section 6, several case studies are
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conducted to analyze the computational efficiency and the
practical applicability of themodel and the algorithm. Finally,
Section 7 concludes the paper.

II. LITERATURE REVIEW
The inventory routing problem (IRP) aims to improve supply
chain efficiency. The proposal of IRP can be traced back to
the 1980s by Bell et al. [18]. It is described as a combi-
nation of vehicle routing issues and inventory management
issues in the distribution network between the upstream and
downstream nodes of the supply chain. In IRP, suppliers must
deliver products to many dispersed customers in the region,
while ensuring service quality. IRP provides a comprehensive
logistics solution through the collaborative optimization of
inventory management, vehicle routing, and delivery plan-
ning at the same time [19]. Through IRP, suppliers can save
on distribution and production costs because they can coor-
dinate shipments to different customers; customers can also
reduce the difficulty of inventory management [19]. Dror
and Levyd [20] believed that IRP involves a group of cus-
tomers, each with different product requirements. The goal
of IRP is to minimize distribution costs while ensuring that
customers are not out of stock at all times. Campbell and
Savelsbergh [21] believe that inventory control and vehicle
routing are traditionally handled separately, and their integra-
tion will have a huge impact on the overall system perfor-
mance. Dror and Ball [22] believe that IRP is an allocation
problem, given the conditions of the central supplier, opti-
mizing its annual delivery costs while ensuring that there is
no shortage of customer goods at any time. Cepeda et al. [23]
pointed out that IRP is a modification of the vehicle routing
problem (VRP), integrating two components of supply chain
management, namely customer inventory control and vehicle
routing. Custódio and Oliveira [24] believe that the IRP is
different from the traditional routing problem because it uses
the concept of the demand rate of items, formulates a compre-
hensive strategy for inventory replenishment, and optimizes
the replenishment cycle and the route used in the delivery
process.

At the same time, with the economic development, IRP
gradually began to be proposed in various fields, such
as in the area of vehicle routing problem with satel-
lite facilities [25], onshore crude oil truck transporta-
tion [26], periodic pick-up of automotive raw materials [27],
optimal shipping routes and shipment sizes on freight net-
works by trading off transportation, inventory, and produc-
tion set-up costs [28], inbound inventory routing problem
with storage constrains [29], the field of fresh food trans-
portation [30], the periodic inventory routing problem at a
supermarket chain [31], the alternative distribution strategies
for delivering to a retailer’s regional depots from a food
manufacturer [32],cement transportation [33], and livestock
transportation [34].

In response to the peculiar phenomena in the maritime
transportation system, scholars continue to develop new IRP
theories and propose a special type of problem, called the

Maritime inventory routing problem (MIRP). IRP assumes
that in each planning cycle, the inventory of each trans-
portation node is only related to the amount of operation
and is not related to the time factor in transportation. This
assumption is feasible for transportation systems with rela-
tively short planning periods (e.g., urban logistics systems use
8-hour planning periods and aviation logistics systems use
24-hour planning periods). However, it is not feasible for the
maritime transportation system, which has a relatively long
transportation distance, which takes a lot of time. Therefore,
in MIRP, the inventory level of each node is related to time
in addition to the amount of operation. For example, in the
off-shore oil extraction and transportation system, the setting
of the fleet transportation plan must take full account of the
changes in crude oil inventories at relevant transportation
nodes. In the past 20 years, MIRP has gradually become a
hot spot in maritime research, and scholars have gradually
reached consensus on the definition and modeling methods
of MIRP. According to Christiansen [35], MIRP is defined
as a compound planning problem, where the decision-maker
not only needs to consider ship scheduling and route opti-
mization simultaneously but also must consider the inventory
control of the transportation node. Christiansen [35] further
pointed out that the basic MIRP mainly solves the prob-
lem of long-distance water transportation of single category
products.

For general MIRP, the inventory storage cost is usually
not considered [36]. Zhang et al. [37] assume that in the
MIRP of a single product, the objective function does not
include inventory costs. Diz et al. [38] set the produc-
tion/consumption rate and other parameters to change with
time in the MIRP for crude oil transportation but does not
consider the changes in inventory costs caused by those
parameters. Feng and Chang [39], Cheung and Chen [40],
and Li et al. [41] set the inventory cost to be constant or not
considered. Uchida et al. [42] and Papageorgiou et al. [43]
assume that companies have production and consumption
locations at the beginning and end of the route to control
inventory, so the effect of changing inventory cost is not
considered in the objective function. However, for the short
sea inventory routing problem (SSIRP), the waxy crude oil,
which is the primary oil type, require constant heating up
to 80-90◦ for the transportation and processing [44]. Since
the system operation has high frequency, energy consumption
becomes significant. Several studies have discussed adopting
the energy recycle technology for improving energy effi-
ciency [45]. Since the storage cost is a significant part of the
operation cost, it is necessary to include the storage cost into
the optimization.

Oil inventory affects not only the operating cost of the sys-
tem but also the reliability of the system. The maritime oper-
ation is heavily influenced by the uncertainty factors, such
as poor weather, the breakdown of shuttle tankers, and the
port congestion issue [46]. The uncertainty factor could delay
the operation and cause the deviation of the pre-determined
plan. Therefore, the decision-maker often adjust the operation
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plan according to the uncertainty factors [47]. For floating
production storage and offloading (FPSO), the unpredictable
weather condition and vessel availability are the main reason
for operation delay, and the decision-maker often leave some
storage capability as the buffer for the unexpected delay [48].
However, in practice, if the system encounters the sever oper-
ation delay, the storage capacity could be full, and crude oil
production needs to be halted [49]. This kind of the halted is
not acceptable because the opportunity cost is extremely high
for crude oil production of the multiple oil platforms in the
network, and the possible equipment damage could decrease
the platform performance [49]. Thus, the FPSO systems have
relatively strict requirements of the storage capability level
control to handle the uncertainty factors of the operation.

For the solution of the multi-objective model, evolutionary
algorithm is an effective and popular algorithm. Evolution-
ary algorithms are stochastic search methods that mimic the
natural biological evolution [50], which is a global opti-
mization method with wide applicability to large-scale prob-
lems. So far, there have been many kinds of evolutionary
algorithms, such as genetic algorithms, memetic algorithms,
particle swarm, ant-colony systems, and shuffled frog leap-
ing [50]. Li and Li [51] used a genetic algorithm for an on-line
optimization of the PID parameters. To improve the efficiency
of the evolutionary algorithm, the evolution operator could
be modified with ideas such as differential evolution. Dif-
ferential evolution originally was proposed for continuous
optimization [52]. Mingyong and Erbao [52] firstly used
the differential evolution algorithm in the vehicle routing
problem with simultaneous pickups and deliveries and time
windows. Tsai et al. [53] optimized task scheduling and
resource allocation with an improved differential evolution
algorithm. Thosemulti-objectivemodels and algorithms have
a wide application in many domains. A he multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
was proposed to solve the hybrid flowshop lot-streaming
scheduling problem [54]. Bekele andNicklow [55] developed
an automatic calibration routine using the Non-dominated
Sorting Genetic Algorithm II (NSGA-II), which is an effec-
tive and efficient multi-objective search technique for the
Soil andWater Assessment Tool. Besides that, decomposition
based multi-objective evolutionary algorithms proved to be
promising in dealing with complicated Pareto set shapes [56].
Deb and Karthik developed a modified NSGA-II for the
dynamic multi-objective optimization and decision-making
in hydro-thermal power scheduling [57].

Through the literature analysis, it can be concluded that
current studies of MIRP focus on the long-distance maritime
transportation, and the study of MIRP related to research
related to near-sea oil transportation system are quite limited.
Also, the characteristics of the FPSO indicates that the storage
cost of heating crude oil and the control of oil storage capa-
bility for system reliability are important for the optimization
of the transportation system. Therefore, this article proposes
a special type of MIRP, in which the spillover effects of
inventory management are considered.

III. PROBLEM DESCRIPTION
For the new generation crude oil production system based on
floating production storage and offloading (FPSO), there are
the four issues need to be taken into consideration for short
sea inventory routing problem(SSIRP):

(1) Heterogeneous tanker fleet. On the one hand, due to the
differences and complexity in the production and storage

Reliability = max
i∈I−{

Oil Storge quantity of FPSO i at each operation period
Storge capacity of FPSO i

}
capacity of each FPSO, using the same type of oil tanker to
form a fleet could be a problem for the system efficiency.
The reasonable approach should be to determine the compo-
sition of the fleet according to the transportation needs of the
FPSO system. On the other hand, in practice, the tankers of
the shuttle fleet come from a wide range of sources, and a
unified setting for the fleet is not realistic. The model setting
of heterogeneous fleets is used by other studies to extend
the original VRP to meeting the logistical applications of
tanker fleet with an unequal capacity [58]. Therefore, in this
article, it is assumed that the decision-maker can select a
suitable type and number of tankers to perform multi-voyage
transportation tasks.

(2) Continuous growth of oil inventory. It can be seen from
the literature review that stopping the oil production of off-
shore platforms is not acceptable. Thus, the oil inventory
of each FPSO increases continuously. Due to the limited
capacity of the FPSO cargo tank, once fully loaded, all the
mining platforms connected to it will be shut down, which
will cause huge and unnecessary economic losses. Therefore,
this article requires that each shuttle tanker dock and operate
before the FPSO is fully loaded. In this way, for each FPSO,
there is a corresponding transport hard time window.

(3) Introduce inventorymaintenance costs. Unlike ordinary
commodities, storage of oil products usually requires higher
storage costs. After crude oil is extracted from the off-shore
drilling platform, it is sent to the FPSO through pipelines
for initial processing, and then stored in the FPSO cargo
tank for temporary storage. To prevent the solidification of
crude oil, FPSO needs to continuously heat the cargo tanks,
resulting in higher costs associated with crude oil inventory
level, which is called inventory maintenance costs in this
article. Generally speaking, such costs are not included in the
total operating cost of the transportation system. However,
in the FPSO transportation system, since the manager of the
fleet itself is the decision-maker of the production system,
the inventory maintenance cost of the FPSO becomes a sen-
sitive and influential factor that cannot be ignored. Therefore,
for SSIRP, the decision-maker not only need to consider the
design and scheduling of the fleet but also need to control
both the inventory cost and transportation system operation
cost.

(4) Introduce system reliability goals. In reality, off-
shore oil collection and transportation are often affected by
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uncertain factors such as weather, sudden failure of port
facilities, and human negligence.

Such uncertain factors often lead to the pre-established
tanker scheduling scheme not being accurately carried out.
In order to cope with this situation, when setting up a fleet
scheduling plan, decision makers need to carefully set and
maintain the FPSO cargo tank inventory at an appropriate
level, without emphasizing the full use of inventory capacity.
To reserve enough buffer for the storage capacity to deal
with the unplanned shutdown caused by uncertain factors,
and improve the system’s ability to resist risks. Therefore, the
system control of the inventory capacity level is included in
the optimization model framework, and the following index
ratios are used to evaluate the reliability of the off-shore crude
oil collection and transportation system:

Among them, I− represents the set consisting of all FPSOs.
If Reliability is close to 1, it indicates that the crude oil
inventory level of each FPSO is relatively high during the
planning period. Thus, the system’s ability to respond to
unexpected situations is relatively limited, and the probability
of an unplanned production shutdown is greater. However,
at this time, the storage capacity utilization rate in the system
is high, and the system operating cost is low. On the contrary,
if reliability is close to 0, it indicates that the system has
sufficient inventory buffer to deal with various risks, but at
this time, the inventory utilization rate is low, which may
lead to an increase in operating costs. Therefore, how to
balance the relationship between system operation cost and
optimization of reliability becomes a significant problem to
be solved in this research.

IV. MODEL CONSTRUCTION
Based on the problem description, the SSIRP discussed in this
research can be described as follows.

Given: the length of the known plan period; the crude oil
growth rate and storage capacity of each FPSO; the crude oil
reserves at the beginning of each FPSO plan; the available
fleet; and the data of each ship (alternative speed, tank Capac-
ity, rent, etc.).

Assumptions: 1) During the planning period, the basic unit
of the transportation task for the shuttle tanker is the voyage.
The so-called voyage refers to the process of an oil tanker
leaving the port, docking several FPSOs to extract crude oil,
and finally returning to the port to unload the oil. 2) Each
FPSO can only be docked once by a shuttle tanker during
each sub-plan period. 3) The shuttle tanker extracts all oil
storage of a certain FPSO when docking it. 4) The berthing
time is included in the sailing time. 5) Since ship leasing
can be carried out in the transportation market, there are a
sufficient number of various types of tankers for decision-
makers to form a fleet. 6) The operating efficiency of each
shuttle tanker is the same.

Decision making: With the dual objectives of minimum
z2 and minimum operating costs, the decision-maker needs
to optimize the design of the shuttle tanker fleet and the
scheduling plan of each tanker within the planning period.

FIGURE 2. A network frame of near sea oil transportation system.

Themain challenges for solving short sea inventory routing
problem(SSIRP) are: how to describe reliability scientifically
and reasonably on the premise of considering the efficiency of
the model solution. The key to defining this parameter lies in
describing the influence of time factors on relevant decision
variables.

If discrete-time modeling ideas are used, MIRP can be
defined as an integer programming that can be solved by the
modern algorithm of integer programming. But the disadvan-
tages are that this framework cannot accurately describe the
relationship between variables and time, and the model struc-
ture based on this framework is complicated. If the discrete-
time unit is improperly designed, it is easy to encounter
the ‘‘combination explosion’’ problem, making solving the
model difficult. If the continuous modeling approach is
adopted, MIRP can be defined as the mixed-integer pro-
gramming. This approach can reduce the complexity of the
model and provide suitable descriptions of the change of
decision variables associated with the time dimension. But
the disadvantages are that complex nonlinear relationships
are required for the model, and it is necessary to apply com-
plex linearization techniques for effective solutions. There-
fore, it is not suitable for modeling multi-objective planning
problems.

In view of this, this chapter will use a semi-continuous
model structure to construct a mathematical model for solv-
ing SSIRP and facilitate the subsequent algorithm design.
In the following section, this article will first introduce the
basic design ideas of the semi-continuous model and present
the definition of related transportation networks and vari-
ables, and then give the expression of the model.

A. SEMI-CONTINUOUS MODEL DESIGN
The basic design ideas of the semi-continuous model are as
follows: First, split the planning period into several equal-
sized interval periods, called the ‘‘sub-planning period.’’ Sec-
ondly, in each sub-planning period, use continuous modeling
ideas to describe the relationship between decision variables;
between sub-planning periods, discrete modeling ideas are
used to characterize the relationship between variables.

To conveniently describe the semi-continuous concept in
the model, this study will adopt special settings for the
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FIGURE 3. The network of FPSO transportation path.

transportation network. Fig. 2 shows a schematic diagram of
an off-shore oil collection and transportation system network.
Let the Gin = {I ,E} means the transportation network
involved in the off-shore oil collection and transportation
system. Let I = {p}∪ I− denote a collection of transportation
nodes, the elements of which are denoted as i or j. Among
them, {p} indicates a set composed of port nodes; I− indicates
a set composed of floating production storage and offload-
ing (FPSO) nodes; E represents a collection of waterway
sections for tankers.

To construct the semi-continuous model, this study makes
the following adjustments to the network:

Step 1: Setting virtual nodes for each FPSO with an equal
number based on the number of sub-planning periods. For
example, if the number of sub-planning periods is n, then set n
virtual nodes for each FPSO, delete the original FPSO nodes,
and only keep the virtual nodes.

Step 2: Setting the docking time windows for each virtual
node of each FPSO according to the start and end times of
n sub-planning periods. For example, if the length of the
planning period is four weeks, two sub-planning periods of 2
weeks (respectively from 0 to14 days, from 15 to 28 days)
are set. Then two virtual nodes i1 and i2 should be set for
each FPSO node i, and their docking time windows are set
to from 0 to14 days and 15 to 28 days respectively. It can be
seen from this that the purpose of introducing virtual FPSO
nodes in this chapter is to describe FPSO nodes in different
sub-plan periods.

Step 3: Adding virtual waterways to connect all virtual
nodes and ports. Set the sailing time for the virtual waterway
section (as shown in Fig. 3). With the different types of nodes
at the ends of the waterway section, the rules for setting the
sailing distance are also different. In Fig 3, virtual nodes of
each FPSO are added for each sub-plan period. For exam-
ple, for the sub-plan period 1, virtual FPSO nodes (FPSO1,
FPSO2, and FPSO3) are created for the actual FPSO nodes

(FPSOa, FPSOb, and FPSOc, respectively. The virtual nodes
for other sub-plan periods are created with a similar method.
FPSO1, FPSO4, FPSO7 are the virtual nodes of FPSOa in
the sub-plan period 1, 2, and 3. Therefore, assuming only
one waterway movement occurred in one sub-plan period,
the actual transportation path of Port- FPSOa - FPSOc -
FPSOb is transformed into a virtual path of Port - FPSO1
- FPSO6 - FPSO8 across three sub-plan periods as shown
in Fig 4.

Specifically: 1) For the waterway section between the
port node and the virtual node, the navigation distance is
set as the navigation distance between the port node and
the corresponding FPSO node. For example, in the above
example, the navigation distance between port node 0 and
the path between i1 is set to the navigation distance between
0 and the FPSO node i. 2) For the virtual nodes set for
the same FPSO node, the passage distance between them
is set to 0. For example, in the above example, both the
virtual node i1 and i2 are obtained from the FPSO node i,
so for the waterway section between i1 and i2, the sailing
distance will be set to 0. 3) Between the virtual nodes set
for different FPSO nodes, the distance between the waterway
sections is set to the distance between the corresponding
FPSO nodes. For example, for the virtual node i1 set for
the FPSO node i and the virtual node m1 set for the FPSO
node m, the sailing distance of the waterway section between
them is set as the distance between the FPSO node i and the
node m.

Thus, this study has obtained a transportation network
consisting of virtual nodes, port nodes, and several virtual
waterway sections. In this transportation network, the virtual
waterway sections all have corresponding lengths, and each
virtual node also has a corresponding access time window.
Let Gexp := (I ,E) indicates the expanded transportation
network, where I represent the set of nodes and E represents
the waterway section set.
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FIGURE 4. The tramp ship operating path.

However, the semi-continuous model is designed based on
the assumption of the sub-plan period. The sub-plan period
means that thewhole scheduling could be divided into smaller
scheduling periods and the voyage tasks of the tramp ship
are scheduled and organized for these relatively short periods.
Although it is the common practice of the scheduling of FPSO
tramp ship, this assumption of the sub-plan period reduces
the universal adaptivity of the model and causes the model to
be not suitable for other types of scheduling. What’s more,
some parameters of the scheduling are simplified and set as
constants, such as the tramp ship speeds, the oil production
rate of each FPSO platform, and the cost of the vessel renting.
In practice, those parameters could be adjusted under certain
situations. For example, the oil production rate of the oil
platform could be decreased to prevent the oil inventory from
exceeding the FPSO storage capacity.

B. MODEL FORMULATION
For the convenience of readers, the symbols such as sets,
parameters, and variables commonly used in this section are
described as follows(see Table 1).

1) CONSTRAINT GROUP 1: RESTRICTIONS ON FPSO
TRANSPORTATION TIME WINDOW
During the fixed operating period (referred to as the ‘‘plan-
ning period’’), the inventory control in the FPSO i can be
constrained by introducing a hard time window. In other
words, when the shuttle tanker is docked at each FPSO, it is
necessary to satisfy the constraints in constraint group 1.
The (1) and (2) indicate that the docking FPSO should meet
its time window. Equation (3) and (4) suggest that the time
when the virtual node of the FPSO i is docked during the
sub-plan period l, should be located in the time window of

the sub-plan period l. tupi and t loi represent the upper and lower
bounds of the docking timewindow of FPSO i during the plan
period. tstl indicates the start time of the sub-plan period l and
tedl indicates the end time of the n-th sub-plan period.

min
l∈L

ti,l ≥ t loi ∀i ∈ I− (1)

min
l∈L

ti,l ≤ tupi ∀i ∈ I− (2)

ti,l ≥ tstl ∀i ∈ I−, l ∈ SP (3)

ti,l ≤ tedl ∀i ∈ I−, l ∈ SP (4)

2) CONSTRAINT GROUP 2: CONSTRAINTS FOR ENSURING
THE FEASIBILITY OF EACH VOYAGE
Constraint group 2 provides the constraints that all feasible
voyages k should meet. Equation (5) and (6) indicate that
the mathematical description of the voyage needs to meet the
definition in this article. Equation (7) indicates the continuity
of the waterway sections during the voyage. Equation (8) is
used to ensure that each FPSO is docked only once during
the sub-plan. This article assumes that the FPSO’s oil storage
capability during the planned period is much smaller than
the tanker’s capacity. Equation (9) requires that the FPSO in
the set I− must be docked once during the planning period
to ensure the continuous production of the drilling platform.
Equation (10) is the constraint on decision variables xiljmk .
This article introduces the concept of ‘‘voyage’’ based

on Gexp. The so-called ‘‘voyage’’ refers to the navigation
plan of a tanker on multiple waterway sections according
to the existing speed setting plan, and the starting point and
endpoint of each voyage are the ports. During the planning
period, the set of all voyages performed by the shuttle tanker q
is called the single-ship scheduling plan of the shuttle tanker q
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TABLE 1. The symbols such as sets, parameters and variables.

and is recorded as Kq. Obviously, there is Kq ⊆ K . Similarly,
the set of single-ship scheduling plans of all tankers in the
fleet during the planning period is called the fleet scheduling
plan and is denoted as KF

q , with Kq⊆KF
q ⊆ K . For any

element k in K , the constraints in constraint group 2 must
be satisfied.∑

j∈I−

∑
l,m∈SP

xiljmk = 1 i = p, l = o, ∀k ∈ K (5)

∑
i∈I−

∑
l∈SP

xiljmk = 1 j = p,m = o, ∀k ∈ K (6)∑
i∈I−

∑
l∈SP

xiljmk =
∑
i′∈I−

∑
l′∈SP

xi′l′j′m′k ′

∀j = i′ ∈ I−, k ∈ K , m = l ′ ∈ SP (7)∑
j∈I−

∑
k∈K

∑
l,m∈SP

xiljmk +
∑
l′∈SP

∑
k∈K

xi′l′j′m′k ′ ≤ 1

j′ = p,m′ = o,∀i ∈ I− (8)∑
j∈I

∑
k∈K

∑
l,m∈SP

xiljmk ≥ 1 ∀i ∈ I− (9)

xiljmk ∈ {0, 1} ∀i, j ∈ I , k ∈ K , l, m ∈ SP (10)

3) CONSTRAINT GROUP 3: CONSTRAINTS FOR VOYAGE
AND SHUTTLE TANKER MATCHING
This article uses constraint group 3 to match the voyage in
K with the shuttle tanker. Equation (11) requires that each
voyage can only be performed by one shuttle tanker. Equa-
tion (12) is the constraint on decision variables ykq.∑

q∈Q

ykq ≤ 1 ∀k ∈ K (11)

ykq ∈ {0, 1} ∀k ∈ K , q ∈ Q (12)

4) CONSTRAINT GROUP 4: CONSTRAINTS ON TANKER
DOCKING TIME
To ensure that a tanker can execute every voyage scheduled
for it (i.e., no time conflict occurs between the voyages within
the single-ship operation plan), several critical time nodes
in each voyage must satisfy the constraint group 4. Equa-
tion (13) ensures the continuity of the docking time at differ-
ent transport nodes during the voyage. Equation (14) is used
to ensure no time conflict when the same tanker performs
different voyages during the planning period. Equation (15)
is used to calculate the unloading time at the port when the
tanker performs voyage k . Equation (16) requires that the end
time of each voyage should not exceed the planned period.
Equation (17) is used to ensure that the crude oil loaded by
the shuttle tanker in each voyage cannot exceed its capacity.
Equation (18) and (19) are used to calculate the CF ini,l in
different sub-plan periods. Through the above two formulas,
for virtual nodes of different sub-plan periods generated by
the same FPSO, inventory can be linked to each other.

In practice, the unloading speed of the shuttle tanker
berthing FPSO can reach thousands of tons per hour, or even
more than 10,000 tons/hour; therefore the unloading time
is very short. To simplify the problem, this article does not
consider the situation of tankers waiting in line at FPSO for
unloading.

LetM denote a very large positive number. t∗,u represents
the time required to unload a unit of crude oil at a port. This
article assumes that the unloading time at the port is linearly
related to the amount of unloaded oil. t∗,opp,k represents the
unloading time at the port when the shuttle tanker performs
voyage k , which is function of vessel oil storage capacity.PDi
represents the oil production of FPSO i during unit time.CF ini
represents the oil storage capacity of FPSO i at the beginning
of the plan period. t0, represents the beginning time of the
whole plan period.

t inilk + t
∗,op
i + tij ≤ t injmk +M

(
1− xiljmk

)
∀i ∈ I , j ∈ I−, k ∈ K , l,m ∈ SP (13)

t inilk + t
∗,op
i + ti0 + t

∗,op
p,k ≤ t

in
(i,l)k ′

+M
(
3− xiljmk − ykq − yk ′q

)
j = p,m = o,

∀i ∈ I−, k < k ′ ∈ K , q ∈ Q, l ∈ SP

(14)
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t∗,opp,k =
∑
i∈I−

∑
j∈I−

∑
l,m∈SP

[(
t inilk − ted

)
PDi + xiljmkCF ini,l

]
/tu

∀k ∈ K (15)

t inilk + t
∗,op
i + ti0 ≤ tedl +M

(
1− xiljmk

)
j = p, m = o, ∀i ∈ I−, k ∈ K , l ∈ SP (16)∑

i∈I−

∑
j∈I−

∑
l,m∈SP

[(
t inilk − t

ed
)
PDi + xiljmkCF ini,l

]
≤

∑
q∈Q

CTqykq ∀k ∈ K (17)

FC in
i,l =

(
tedl − t

ed
l−1

)
PDi + CF ini,l−1

− max

{∑
k∈K

(
t inilk − t

ed
l−1

)
PDi, p

}
−CF ini,l−1

∑
j∈I

∑
k∈K

∑
m∈SP

xiljmk ∀i ∈ I−, l ∈ SP\ {1} (18)

FC in
i,1 = ted1 PDi + CF ini,l −max

{∑
k∈K

t inilkPDi, p

}
−CF ini,l

∑
j∈I

∑
k∈K

∑
m∈SP

xiljmk ∀i ∈ I−, l ∈ {1} (19)

5) CONSTRAINT GROUP 5: CONSTRAINTS ON
RELATIONSHIPS BETWEEN t in

ilk AND ti,l
During the planning period, when a certain FPSO has never
been berthed, or when a certain FPSO has not been berthed
in voyage k , the values of t inilk and ti,l will be meaningless.
Therefore, this article uses constraint group 5 to control their
values. Equation (20) and (21) together constitute the con-
straint on the t inilk . When voyage k does not berth the FPSO
i, let t inilk = 0. Equation (22) to (25) are used to describe the
relationship between t inilk and ti,l . When the voyage k is FPSO
i, (22) and (23) could let ti,l = t inilk ; otherwise, (24) and (25)
could let ti,l = 0.

t inilk ≤ M
∑
j∈I

∑
m∈SP

xiljmk ∀i ∈ I−, k ∈ K , l ∈ SP (20)

t inilk ≥ 0 ∀i ∈ I−, k ∈ K , l ∈ SP (21)

ti,l ≤ t inilk ∀i ∈ I
−, k ∈ K , l ∈ SP (22)

ti,l ≥ t inilk −M

1−
∑
j∈I

∑
m∈SP

xiljmk


∀i ∈ I−, k ∈ K , l ∈ SP (23)

ti,l ≥ 0 ∀i ∈ I−, l ∈ SP (24)

ti,l ≤ M
∑
j∈I

∑
m∈SP

xiljmk ∀i ∈ I−, k ∈ K , l ∈ SP (25)

The short sea inventory routing problem optimization
model (SSIRPM) of SSIRP is expressed as follows:

Based on the above constraints and definitions, this
article gives a mathematical description of SSIRP: Under
the premise that the Q, I ,T and other information are
known, and the system is required not to stop produc-
tion within the planned period, the collaborative model

optimization KF
q and z2. In other words, the goal of SSIRP

is to minimize the system’s operating costs and maximize
its operational reliability during the planning period, and
determine the fleet’s scheduling plan based on each FPSO’s
transportation time window information.

min : z1 =
∑

i∈I ,j∈I ,k∈K ,l,m∈SP,s∈S,q∈Q

cvtijsxiljmkykq

+

∑
q∈Q

(
min

{∑
k∈K

ykq, 1

}
× cfixq

)
+

∑
i∈I−

ciInv
(
bi,|L|

)
+

∑
i∈I−,l∈SP

ciInv

(t inilk−tedl )PDi+ ∑
j∈I−,m∈SP,s∈S

xiljmkCF ini,l


(26)

min : z2 = max
i∈I−,l∈SP

bi,|L|/CFupi ,

(t inilk − tedl )PDi
+

∑
j∈I−,m∈SP,s∈S

xiljmkCF ini,l

 /CFupi


(27)

s.t. (1)-(25)
where, CFupi represents the upper limit of the oil storage
capacity of the FPSO i; cfixq represents the fixed cost of using
the tanker q during the planning period; ciInv (·) represents the
function between the FPSO i and the inventory cost.

SSIRPM contains a total of 2 objective functions, which
are (26) and (27). Specifically, (26) is used to require the
minimum operating cost of the shuttle tanker fleet during
the planned period. The first term on the right side of the
equation is used to describe the operating cost of each tanker
(mainly the fuel cost of the tanker). The second term is used
to describe the fixed operating cost of the tanker (mainly the
rental cost or depreciation of the tanker). The sum of items
3 and 4 reflects the inventory costs incurred at the FPSO
during the plan period.

Equation (27) is used to require the oil storage capability
level of each FPSO at all times (that is, the ratio of the amount
of oil stored in the FPSO cargo tank to its capacity) to be the
smallest. In (27), the first term in braces is used to calculate
the maximum oil storage capability level of each FPSO at
the end of the planning period. The second term is used to
calculate the maximum oil storage capability level of the
virtual nodes generated by each FPSO when they are docked.
It should be noted that the amount of oil stored in the FPSO
cargo tank increases linearly with time, and only decreases
when the tanker is docked and unloaded. Therefore, for the
entire planning period, the extreme value of the FPSO cargo
tank oil storage rate will only appear when the shuttle tanker
is at berth or when the whole planning period ends.

V. ALGORITHM DESIGN
The short sea inventory routing problem optimization
model (SSIRPM) is a large-scale multi-objective mixed
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FIGURE 5. The code design for Chromosome A and B.

integer programming, and its original problem MIRP has
significant NP characteristics, which makes it difficult to
solve accurately. The Genetic algorithm (GA) is suitable
for solving complex multi-objective mode with high effi-
ciency [59]. Therefore, this article adopts the more popu-
lar multi-objective evolutionary algorithm NSGA-II to solve
SSIRPM. To improve the efficiency of the algorithm, this arti-
cle incorporates the idea of ‘‘differential evolution’’ into the
NSGA-II. Specifically, the following work was conducted:

1) An efficient coding method is designed. On the one
hand, this method can fully describe the scheduling scheme of
ships in each cycle. On the other hand, it can also significantly
reduce the formation probability of infeasible solutions and
reduce the decoding calculation time.

2) According to the characteristics of SSIRPM, targeted
differential evolution operators and mutation operators are
proposed.

A. GENETIC CODING DESIGN
Reasonable coding design can effectively compress the
search space of the algorithm, improve the exploration per-
formance of the algorithm on the Pareto front, and is essential
to ensure the effective solution of the problem. This chapter
proposes a coding method for SSIRPM based on the architec-
tural features of semi-continuous models. This method can
compress the code length to the greatest extent and reduce
the design difficulty of related genetic operators (crossover
operator, mutation operator).

The coding design scheme is as follows:
Our individual codes are composed of several sub-coding

strings, and the number of sub-coding strings is equal to the
number of sub-planned periods. For example, if two sub-
planning periods are set for the planning period, the genetic
code will contain two sub-coding strings. Each sub-coding
string corresponds to the scheduling plan of the fleet in
the corresponding sub-cycle. Each sub-coding string is com-
posed of 2 chromosomes (chromosome A, B) with equal-
length. The number of genes contained in each chromosome

is the same as the number of floating production storage
and offloading (FPSO) in the off-shore crude oil collection
and transportation system, but the structure and meaning are
different. Fig. 5 shows a specific chromosome case.

Among them, chromosome A is a random sequence com-
posed of natural numbers from 1 to n, where n is the num-
ber of FPSOs in the system. Chromosome A represents the
order in which each FPSO platform is docked in a specific
sub-plan period (that is, the FPSO virtual node in the current
sub-plan period). Chromosome B represents the vessel selec-
tion scheme, which is an integer number with the value range
from 1 to m, where m represents the number of alternative
tanker models. For example, if the number of alternative
ship types is 3, the value range of the B chromosome gene
is 1-3. In this way, the combination of chromosome A, B
can determine the vessel scheduling plan for each sub-plan
period.

The decoding process of the sub-code string is briefly
described as follows:

First of all, the process starts from reading the gene on
chromosome B, and each reading of a gene point means the
activation of an oil tanker. The trajectory of the tanker in the
sub-cycle is determined by the genes on chromosome A. For
example, if chromosome B determines that tanker v needs to
perform a transportation task, then the order of performing
tasks needs to be determined based on chromosome A.

The specific decoding method is:
Tanker v needs to start from a known initial position

(a certain node in the transportation network) and dock the
relevant FPSO virtual nodes and load crude oil according to
the sequence of genes on chromosome A. For every FPSO
virtual node docked in tanker v, two conditions need to be
judged: 1) Whether tanker v has enough capacity to transport
all crude oil of the next FPSO virtual node; 2) Whether
the berthing and loading of the next FPSO node can be
completed before the final time set by the sub-period. If the
first condition is not met, the tanker v needs to return to the
port to unload the oil, and then re-determine the feasibility of
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FPSO node berthing according to the sequence of genes on
chromosome A. If the second condition is not met, it means
that tanker v can no longer perform transportation taskswithin
the planned period. In this case, it is necessary to read the
next gene point of chromosome B and obtain a new tanker to
perform subsequent tasks (if there are still FPSOs that have
not been visited). The above process is repeated to ensure that
all FPSO virtual nodes in the sub-period are visited.

It should be particularly emphasized that the gene code
in chromosome B does not use the tanker number (but the
ship type indicator). The purpose is mainly to compress the
number of feasible solutions of chromosome B, so as to
compress the search space of the algorithm. Of course, this
design method also makes it difficult to estimate the required
fleet size and fleet operating costs. For example, if n-type
ships are used 10 times in sub-period 1 and n-type ships are
used 10 times in sub-period 2, it is not correct to directly
assume that the total number of n-type ships to be used in 2
cycles is 20. Because if time permits, certain n-type ship can
complete multiple missions in the plan period. This problem
will be solved when constructing the fitness function below.

Considering that the decoding process of chromosomes
A and B is complicated, this article provides corresponding
decoding pseudocode for better understanding.

The decoding process of the sub-code stringwill be divided
into 2 stages.

First, introducing a status judgment function to judge the
possible FPSO situation when the tanker visits the next FPSO
according to the gene sequence on chromosome A. The main
state parameters that the function needs to input include: the
remaining capacity of the current tanker v (Capleftv ), the speed
parameter of the tanker v (Speedv), and the current position
of the tanker v (ID_Now), the operating time (Time_passed)
of tanker v in the current sub-cycle, and the number of the
FPSO to be docked (ID_Next).

This function will return 4 status parameters 1-4, the spe-
cific meanings are:

Status 1 stands for the situation: ‘‘When the tanker v calls
the FPSO with ID_Next, the visiting time exceeds the end
time of the relevant sub-cycle.’’

Status 2 stands for the situation: ‘‘When the tanker v calls
the FPSOwith ID_Next, the total capacity of the tanker is less
than the current stock in the FPSO.’’

Status 3 stands for the situation: ‘‘When the tanker v calls
the FPSO with ID_Next, the tanker’s current capacity is less
than the current stock in the FPSO.’’

Status 4 stands for the situation: ‘‘When the tanker v can
call the FPSO with ID_Next, the offloading operations com-
pleted normally.’’

The pseudo-code of the status judgment function Sta-
tus_Decide () is as follows(see Algorithm 1):
Thus, the decoding function SubSectionDecode() of the

sub-coding string can be further constructed. The inputs
to this function are chromosome A (denoted as array
GeneA[]), chromosome B (denoted as array GeneB[]),
Speedv, Stock

Max
i , rateProi , and Stock Inti . The output is:

Algorithm 1 The Pseudo-Code of the Status Judgment
Function
Step1: Time2Add (Estimated using time) = Dis [ID_Now,
ID_Next]/ Speedv
Step2: If Time_passed + Time2Add > SubTime_Total Then
Return 1
Step3: Cap2Reduce (Estimated oil extraction)

= Max (StockMaxi , StockMaxi + rateProi Time_passed
+rateProi Time2Add))
Step4: If Cap2Reduce > Cap_V then Return 2
Step5: If Cap2Reduce > Cap_left then Return 3
Step6: Return 4

a two-dimensional array ShipRoute[][] used to represent
the tanker assignment and navigation trajectory, and a
one-dimensional array StockWEnd[] used to represent the
inventory information of each FPSO virtual node in the end-
ing period of the sub-plan. Since we use a compact cod-
ing design of chromosome to reduce the calculation time
for the evolution process, the rules for the decoding pro-
cess are complex and hard to explain. Therefore, this article
uses the pseudo code to demonstrate the heuristic function.
The specific pseudo code of the function is as follows
(see Algorithm 2):

B. CROSSOVER AND MUTATION OPERATORS
The crossover operator and mutation operator of the algo-
rithm are designed based on the subsections of both chro-
mosomes A and B, section by section, correspondingly.
For example, for two chromosome A of the parents, sub-
section 1 of the father crosses with subsection 1 of the
mother. Thus the subsection 1 of the child is generated
from the crossover result. In terms of crossover operators:
chromosome A uses the integer crossover operator given by
Surry et al. [60]; for chromosome B, it uses a two-point
crossover operator. In terms of mutation operators, chro-
mosome A uses mutations of exchanging two randomly
selected gene points. Chromosome B adopts the method of
randomly extracting two gene points to perform random value
updates.

C. CONSTRUCTION OF FITNESS FUNCTION
The fitness function of the algorithm is mainly used to cal-
culate the following important indicators: the first one is the
sum of the operation and inventory maintenance costs of
the shuttle tanker fleet during the plan period; the second is
the fluctuation of the oil storage rate of each FPSO during the
plan period; the third is the penalty cost for avoiding the full
loading of the FPSO caused by the ship scheduling scheme
(note that this study assumes that the cargo tank of the FPSO
cannot be fully loaded).

For the first indicator, by decoding the genetic code, the
scheduling plan of the tanker fleet is obtained to calculate
the operating cost of the ship during the planning period
(mainly including the cost of fuel oil) and the cost of crude
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Algorithm 2 The Specific Pseudo Code of the Decoding
Function
Step1: GeneA_Index = 0
GeneB_index = 0
ID_This = 0
Step2: v = GeneB [GeneB_index]
Speed_now = Speedv
Cap_left_now = Captolv
Time_passed = 0,
Step3: ID_Next = GeneA [GeneA_Index];
Stock_init_now = Stock IntID_Next
Pro_Rate _now = rateProID_Next
Stock_Max_now = Stock IntID_Next
Step4: result = Status_Decide (ID_This, ID_Next,
Time_passed, Speed_now,
Cap_left_now, Stock_init_now, Pro_Rate_now,
Stock_Max_now);
Step5: If result = 1 or result = 2 Then

GeneB_index + = 1
Time_passed =0

Go to Step2
Else If result = 3 Then

Time_passed + = dis [ID_This, 0] / Speed_now
ShipRoute [GeneB_index].Add(0);

ID_This = 0
Go to Step3;

Else If Result = 4 Then
Time_passed + = dis [ID_This, ID_Next] /

Speed_now
StockWEnd [ID_Next] = (SubTime_Total-

Time_passed) Pro_Rate_now
Track [GeneB_index].Add(ID_Next);
ID_This = ID_Next

GeneA_Index + = 1
Go to Step6
End If
Step6: If GeneA_Index larger than the total number of FPSO
Then

Return
Else

Go to Step 3
End If

oil maintenance in each sub-cycle and the fleet maintenance
expenditure (mainly including the fixed rental of oil tankers).
For the second indicator, (27) can be directly applied to calcu-
late the index for evaluating the reliability of system operation
during the planning period. For the third indicator, based on
the tanker’s scheduling plan and the crude oil production rate
of each FPSO, it is evaluated whether the tanker’s scheduling
plan may cause the FPSO to fully fill up. If so, the duration of
the FPSO full-filling status and the relevant system losses are
calculated accordingly. After the loss is multiplied by a large
positive number, it is included in the total system operation
cost as the penalty cost.

D. DIFFERENTIAL EVOLUTION ALGORITHM OPERATOR
Differential Evolution Algorithm (DE) is a new evolution-
ary computing technology. It was proposed by Storn et al.
in 1995 [61]. DE is a random algorithm that simulates bio-
logical evolution. Through repeated iterations, DE can keep
those individuals who adapt to the environment. Compared
with the traditional evolutionary algorithm, DE retains a
population-based global search strategy and only has dif-
ferences in crossover and mutation operators. The direction
of the search is guided by ‘‘group intelligence’’ generated
by mutual cooperation and competition among individuals
within the group.

The basic idea of the algorithm is: starting from a randomly
generated initial population. A new individual is generated by
summing the vector difference between any 2 individuals in
the population and the vector of the third individual. Then
the new individual is compared with the corresponding indi-
vidual in the contemporary population. If the fitness of the
new individual is better than that of the current individual,
the new individual will replace the old individual in the next
generation, otherwise the old individual will be preserved. By
constantly evolving, the search is guided towards the optimal
solution.

Overall, the calculation process of NSGA-II and DE
is basically similar, the main difference is the design of
crossover and mutation operators. As shown in Fig. 6, in sim-
ple terms, DE actually uses the difference operators 1 and 2
to integrate the crossover and mutation operators, thereby
achieving the synchronous operation of the crossover and
mutation of genetic individuals. This approach improves the
mutation rate of the code, and thus improves the algorithm
search efficiency.

Difference operators 1 and 2 are similar in nature. The only
difference is the processing methods of creating a new indi-
vidual in the initial stage. As shown in Fig. 7, the difference
operator 1 uses ‘‘subtraction’’, and the difference operator
2 uses ‘‘addition’’. Similar to the crossover and mutation
operators, the difference operator 1 is also designed based on
the sub-coding string. The specific operation can be further
divided into two sub-processes: the generation process of dif-
ferential gene and the adjustment process of the initial gene.
As shown in Fig. 7, ID1 and ID2 are the two child coding
strings at the corresponding positions of the parent. Among
them, Gene1A, Gene1B, Gene2A, and Gene2B represent
chromosomeA and chromosomeB contained in ID1 and ID2,
respectively.

1) THE GENERATION PROCESS OF GENE DIFFERENCE
As shown in Fig. 8, the process of generating the gene
difference between ID1 and ID2 is shown as follows: First,
subtract the ID1 and ID2 to obtain the transitional sub-coding
string and record it as ID1-ID2. Then, for each gene X in the
transitional sub-coding string, the positive remainder method
is used to obtain the replace gene X :

X ′ = L + (X + U − L) mod (U − L)
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FIGURE 6. The difference between NSGA-II and DE.

FIGURE 7. The DE operator.

FIGURE 8. DE generation process.

where, U and L are the upper and lower boundary of the
corresponding gene value. For example, in Fig. 8, for the
first gene point in the chromosome A in ID1-ID2, the upper
boundary is 5 and the lower boundary is 1. The differential
initial sub-coding string X is 3 through the above equation,
noted as IDO.

2) THE ADJUSTMENT AND REPAIR OF IDO
In practice, chromosome A of IDO usually does not meet
the genetic coding settings introduced in Section 5.1, which
requires further adjustment and repair. The specific process
is as follows:

Step 1: Read the gene points of chromosome A follow-
ing the order from left to right, and delete the duplicated
genes to obtain a temporary gene segment TA. In Fig. 8,

the chromosome A of ID1-ID2 after adjustment is 3-4-2-3-3,
then the repeated fragment 3-3 is deleted to obtain TA, which
is 3-4-2.

Step 2: Randomly read the information from chromosome
A of the parent coding string to obtain the reference chromo-
some PTA.

Step 3: Compare PTA and TA, delete genes that appeared
in TA from PTA, and obtain repair fragment SA. In Fig. 8,
PTA is 1-3-2-5-4 and TA is 3-4-2. Since TA contains genes 2,
3 and 4, these genes were deleted from PTA to obtain
SA (1-5).

Step 4: Combine TA and SA to obtain the repaired chro-
mosome A. TA is 3-4-2 and SA is 1-5, then the chromosome
A obtained after repair is 3-4-2-1-5.

After the above steps, the sub-coded string that meets the
requirements and undergoes differentiation can be obtained.
Repeat the above steps separately for each sub-period to
obtain the sub-coding string corresponding to each sub-
period, and finally obtain a brand-new individual code.

It should be noted that the calculation process of the differ-
ence operator 2 and the difference operator 1 are almost the
same. The only difference is that in the differential generation
of ID1 and ID2, ‘‘addition’’ is used to create a transitional
sub-coding string, and its correction and adjustment process
is exactly the same as that of differential operator 1, which
will not be repeated in this article.

VI. COMPUTATIONAL EXPERIMENT
A. THE COMPARATION OF THE ALGORITHM EFFICIENCY
This article uses the public information of an oil company as a
reference. The data contains information such as tanker type,
speed parameters, etc. The geographic location of the port
and FPSO, the crude oil growth rate of the FPSO, the crude oil
inventory of the FPSO at the beginning of the planned period,
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FIGURE 9. The comparison of the percentage of dominating Pareto fronts.

and the capacity of the FPSO cargo tank are randomly gener-
ated based on actual data. Then, the NSGA-II and the algo-
rithm proposed in this article are used to solve the six sets of
data mentioned above. The relevant algorithm is programmed
with C#.net. Different from the traditional single-objective
optimization problem, for the multi-objective optimization
problem, the main method of comparing the efficiency of the
algorithm is to observe the advantages and disadvantages of
the Pareto front obtained by each algorithm.

In order to assess the scalability of the model and algo-
rithm, three sets of the case with different scales are used.
For the actual situation, there are about 10 FPSOs in the
Chinese near-sea oil production platform in the Bohai sea.
For other production areas, such as the south china sea, more
FPSOs are deployed to cover the larger oil production area.
Three different scale settings with different FPSO numbers
are adopted to represent the small, medium, and large scales
of the case. The small-scale case has 10 FPSO in the test set-
ting, the middle-scale case has 20 FPSO, and the large-scale
case of the case has 30 FPSO.Since the number of different
FPSO setting are similar to the actual situation of the Chinese
off-shore oil production system, the settings of three cases are
representative of the different scales of the practical case.

The percentage of Pareto-optimal solutions obtained
from the ADSS algorithm, which dominated the related
Pareto-optimal solution obtained from the NSGA-II algo-
rithm, are calculated with different scale settings. The larger
the percentage is, the more effective the ADSS algorithm
will be. In Fig.9, the gray line keeps rising and peaks at
16 cases in 95% to 100% category, which means that the
ADSS algorithm is almost always better than the NSGA-II
algorithm in the large-scale setting. The line of medium-scale
peaks around the category of 75% to 80%, and the line of
small-scale probably peaks around the category from the 65%
- 75%. Therefore, the ADSS performs better in the large-scale
setting. While ADSS algorithm performance of the small and
medium scale settings are weaker than the large-scale setting,
and the difference between them are not significant. Thus the

FIGURE 10. The Pareto fronts for different algorithms.

ADSS algorithm is more suitable for the large scale problem.
The computation result is demonstrated in Fig 9.

To assess the algorithm effectiveness, several algorithms
including ADSS, NSGA-II with roulette wheel selection
(NSGA-R), MOGA with elitism operator, and NSGA-II
with neighborhood-based crossover (NSGA-N), are tested
with the same cases. The Pareto fronts obtained with those
algorithms are compared to analyze algorithm effectiveness,
as shown in Fig 10. Although the MOGA algorithm provides
more Pareto optimal solution, the solutions are further gener-
ally dominated by the Pareto front of other algorithms. There-
fore, the ADSS algorithm ismore effective in finding the opti-
mal solution; however, could not provide more local optimal
solutions. For the NSGA-II with the different evolutionary
operators, three types of NSGA-II generally provide about
the same amount of the Pareto optimal solution. However,
the Pareto front from the ADSS dominates the other two types
of the NSGA-II, demonstrating that the differential opera-
tor is better than the other NSGA-II operators. Therefore,
the algorithm proposed by this study is suitable for solving the
SSIRP.

For the detail of the algorithm comparing, this study con-
ducted two test schemes with 10 and 20 FPSOs, respectively,
each scheme contains three different sets of data. For the same
set of data, NSGA-II and the algorithm proposed in this article
are used to solve the optimization problem, and two different
Pareto fronts are obtained. The quality of the solution is
judged by analyzing their position in the Pareto front. In terms
of parameter settings, the basic parameters of NSGA-II are
set as follows: the initial computation population is 100; the
crossover uses the binary tournament mechanism; the muta-
tion probability is 15%; the maximum number of iterations
is 16000. Regarding the algorithm proposed in this article,
the parameter settings are: the initial computation population
is also 100, the selection of evolutionary individuals also uses
the binary tournament mechanism, with a maximum iteration
number of 16,000. It should be noted that to avoid the impact
of the initial population on different algorithms, the initial
population of the two algorithms will adopt the same initial
population during the efficiency comparison process.
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FIGURE 11. Pareto frontiers for different calculation cases.

Fig. 11(a)-Fig. 11(f) show the Pareto fronts in the above
six sets of calculation cases. Among them, there are two
sets of calculation results under different scheme settings,
which represent the different computation difficulty. The first
group is the calculation results given in Fig. 11(a)-Fig. 11(c),

they are all for calculation cases with 10 FPSO; the second
group is the calculation results given in Fig. 11(d)-Fig. 11(f),
they are for the calculation cases with 20 FPSO. In the two
sets of calculation cases, the Pareto front edge depicted by
the blue polyline is obtained by the traditional NSGA-II,

VOLUME 8, 2020 193949



A. Yang et al.: Coastal Shuttle Tanker Scheduling Model Considering Inventory Cost and System Reliability

TABLE 2. Parameters of different types of shuttle tankers.

and the Pareto front edge depicted by the yellow polyline is
obtained by the algorithm proposed in this study (referred to
as ‘‘ADSS’’ in the Fig. 11).

By analyzing the Pareto frontiers in Fig. 11, it can be found
that for both cases, the solution quality of theADSS algorithm
is significantly better than that of NSGA-II. For example,
in Fig. 11(e), the ADSS algorithm gives a better Pareto front
solution. In Fig. 11(b), although the NSGA-II and ADSS give
the similar Pareto front, the ADSS algorithm offers more
Pareto optimal solutions and more Pareto front information.
The above results show that the ADSS algorithm provides
more advantages than the traditional NSGA-II algorithm in
Pareto frontier search capabilities. Therefore, introducing dif-
ferential evolution operators does improve the effectiveness
of ADSS.

B. PRACTICAL CASE ANALYSIS
In this section, through the analysis of the Pareto front, the
differences between the optimal fleet design and scheduling
scheme under different risk preferences will be discussed.

Due to the prosperity of the ship leasing market,
a large amount of ship information is open for pub-
lic access. Therefore, you can directly query the FPSO
tanker information required in this article on the rele-
vant websites (for example, http://fpso.com/ and http://www.
cosl.com.cn/col/col42951/index.html) information such as
the amount of oil, the speed of crude oil production, and
the capacity, speed, operating costs, and rent of each shuttle
tanker. Based on the above information, this article randomly
generates information such as the location of each FPSO
to design a calculation case. The sailing distance between
each FPSO is uniformly and randomly generated with the
Euclidean distance as the minimum value and the distance
satisfying the triangle inequality as the maximum value. This
is because navigation on the sea is not exactly a straight
line, and sometimes it is necessary to consider the actual
situation of the fairway and ocean currents. In terms of
alternative fleet types, this study mainly exams five types
of ships, and each type of tanker has a sufficient number
of tankers for operation. The parameters, such as trans-
portation capacity, monthly rent, alternative speed, and fuel
cost for different types of tankers, are shown in Table 2
below.

The basic process of the experiment is as follows: based
on the above data, the algorithm proposed in this article is
used to solve the model to obtain a set of Pareto optimal

FIGURE 12. Pareto frontal distribution of the actual case.

solutions; Then, three representative solutions were selected
from this set of solutions. The first type of solution (referred
to as ‘‘I solution’’) has the lowest operating cost and the
highest operational risk. The second type of solution (referred
to as ‘‘II solution’’) has a balanced operation cost and risk.
The third type of solution (referred to as ‘‘III solution’’)
has the highest operating cost and the lowest operational
risk.

Fig. 12 shows the Pareto front calculated by the algorithm.
It can be seen from Fig. 12 that the algorithm has found a total
of 8 Pareto optimal solutions. In these solutions, the FPSO
oil storage rate is between 58% and 66% at all times, and
the system operating cost during the planned period (one
month) is between 53 million and 61 million. Table 3 to
Table 5 provide detailed information about the fleet, ship
utilization rate, voyage information, ship mileage, and so on.
Among them, the so-called ship utilization rate refers to the
ratio of the operating duration of the tanker to the duration
of the whole planned period, which can be used to reflect
whether the relevant tanker is fully utilized during the plan
period.

Table 3 shows the fleet design and tanker scheduling plan
corresponding to the I solution. For this scheme, the fleet
consists of two smaller B-type tankers and two larger E-type
tankers. Therefore, in this scenario, it takes only four oil
tankers to handle the one-month crude oil transportation task.
Judging from the voyages performed by each tanker, the aver-
age tanker needs to complete four voyages. Among them,
I2 tanker carried out the least number of voyages during the
planning period, but has docked with more than 2 FPSOs

193950 VOLUME 8, 2020



A. Yang et al.: Coastal Shuttle Tanker Scheduling Model Considering Inventory Cost and System Reliability

TABLE 3. Fleet operation plan (corresponding to solution I).

TABLE 4. Fleet operation plan (corresponding to solution II).

TABLE 5. Fleet operation plan (corresponding to solution III).

during each voyage. On the contrary, I3 tanker carried out
the most voyages, but only docked with one FPSO during
some of the voyages. For solution I, the total distance traveled
by tankers is 39,943 nautical miles, and the average utiliza-
tion rate of ships is 74.9%. Thus, various types of tankers
have been relatively fully utilized. If this plan is imple-
mented, the maximum oil storage capacity of each FPSO
can be controlled below 64.1% during the planning period,
and the total cost of system operation is 533.2226 million
yuan.

Table 4 gives the fleet design and tanker scheduling plan
corresponding to the II solution. In this scheme, the operating
fleet is also composed of 4 tankers, including 2 smaller
B-type tankers and 2 large-capacity E-type tankers. Sim-
ilar to solution I, the number of voyages performed by
large tankers is relatively small, but the number of FPSOs
anchored within the voyage is relatively large. Small tankers,
on the other hand, perform more voyages, but the number
of FPSOs anchored within the voyage is smaller. In this
scheme, the average utilization rate of the tanker is 79.1%,
and the total distance traveled by ship is 42064 nautical
miles. The implementation of this plan can ensure that the oil
storage capacity of each FPSO at all times is less than 60.7%,

and the total cost of system operation is 54.764 million
yuan.

Table 5 shows the fleet design and tanker scheduling plan
corresponding to solution III. The implementation of this plan
requires the configuration of 5 tankers, including four small
ships (B-type tankers) and one large tanker (E-type tankers).
These tankers carried out 22 voyages, and the total cost of the
system operation was 60,758,300 yuan. Compared with the II
solution, although the operating cost of the fleet has increased
by about 10.94%, the maximum oil storage capacity at each
moment of the FPSO has only dropped to 58.54%. In other
words, the stable capacity level only decreased by less than
two percentage points compared to the II solution. In addition,
the total distance in tanker operations has increased signifi-
cantly. Under this scheme, the total distance traveled by each
tanker reached 52,809 nautical miles, which was much higher
than that of the II solution.

From the comprehensive analysis of the three solutions,
it can be seen that, under different FPSO oil storage capac-
ity level control preferences, there are some significant
trends in the fleet structure and the design of ship schedul-
ing schemes (see Fig. 13). In terms of fleet structure,
with the increase in FPSO inventory capacity level control
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FIGURE 13. Changes in fleet composition by cases.

FIGURE 14. Average number of calling FPSOs per voyage.

preferences, the number of ships in the shuttle tanker fleet
has gradually increased. The proportion of large tankers
has shown a downward trend. In terms of ship scheduling
schemes, it can be found that the FPSO inventory control
preference has also significantly changed the trajectory of the
tanker.

Fig. 14 shows the average number of FPSOs berthed by
each Pareto optimal solution. As shown in the Fig. 14, in the
solution I, the average number of FPSOs berthed by a shuttle
tanker is 1.88. In the II solution, this value is reduced to
1.67, whereas in the III solution, this value is further reduced
to 1.36. But interestingly, with the decrease in the average
number of FPSO visits, the total distance traveled by the
shuttle tanker showed a significant trend of increase. The total
travel distance increase from 39,943 nautical miles in the I
solution to 52,809 nautical miles in the III solution. The above
results indicate that with the preference for increasing FPSO
inventory capacity levels, decision-makers should use small
tankers and rely on the ‘‘short voyage, multiple voyage’’
strategy to operate shuttle tankers. Although this method can
improve the stability and reliability of the system, at the
same time, it may lead to an increase in the total distance
traveled by the tanker, which leads to a significant increase
in the operating cost. On the contrary, if the requirements for

system stability and reliability can be relaxed moderately,
then large shuttle tankers have a higher application ‘‘poten-
tial.’’ Although the application of a larger tanker does not pro-
vide enough flexibility for the scheduling, their application
can significantly increase the number of docking on the FPSO
platform during a single voyage. Therefore, by applying a
larger tanker, many non-essential tanker transportation activ-
ities to and from the FPSO and unloading port are reduced,
which in turn reduces the total distance traveled by tanker
during the planned period, thereby achieving a significant
reduction in system operating costs.

VII. CONCLUSION
This study has proposed the short sea inventory routing
problem(SSIRP) issue, which considers system reliability
and crude oil storage cost. Related models are constructed,
and corresponding heuristic algorithms are proposed. SSIRP
on the one hand exam the routing problem, which allows
multiple docking of floating production storage and offload-
ing (FPSO) with the heterogeneous fleet during a single
voyage; on the other hand introduces the goal of depicting
system reliability and inventorymaintenance costs. This turns
SSIRP into a complex optimization problem with multiple
objectives.

In view of the complexity of the problem, this research
takes two measures to simplify it. First, this article adopts
the model design idea of the semi-continuous modeling to
construct the SSIRP model, which reasonably portray the
system reliability without increasing the complexity of the
model. It is also helpful to reduce the complexity of individual
coding in NSGA-II and compress the search space of the
algorithm. Secondly, for the process of solving optimiza-
tion, this chapter improves the basic framework of NSGA-II.
By introducing DE operators, this study proposes improved
selection and elimination operators and improves the com-
putational efficiency of NSGA-II. It can be seen from the
numerical experiment results that the improved NSGA-II is
significantly better than the classic NSGA-II in exploring the
frontier of Pareto.

The Pareto Front provided by the model and solving
algorithm of this article could offer more optimal planning
solutions. Through the practical case analysis, the proposed
SSIRP model provides insight into the fleet composition
setting preferences regarding the system reliability. If the high
system reliability is required, the fleet is advised to have more
small tankers instead of the large tankers.

Although this article addresses the SSIRP for improving
operation efficiency, some aspects need to be studied in the
future. Firstly, the semi-continuous model limits the applica-
tion to operation typewith discrete plan period. The optimiza-
tion model and algorithm for continuous operation need to be
further studied. Secondly, future studies could include more
operation parameters in the model to more accurately guide
the practical operation. For example, the speed of the shuttle
tanker is set as a constant in this model. However, due to the
short travel distance of the near-sea transportation system,
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the vessel speed could be adjusted to fit the transportation
need. Thus, the variable tanker speed could be included in
the optimization.
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