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ABSTRACT Under a multiscenario environment with frequent bursts of data in the edge cloud, the resource
allocation in the edge cloud will affect the stability of its nodes. To address this problem, a balanced virtual
resource allocation model based on conflict conditions is proposed. Based on a thorough study of the
similarity between task attributes and resources used by the host, the concept of a task backlog is implemented
to achieve a preliminary balanced allocation of tasks; thus, a conflict condition based on the remaining
resources of the physical and virtual machines is proposed. Further, a matrix of phased conflict coefficients
is built to establish a balanced virtual machine allocation model. The results of experiments comparing the
performance of the proposed model with that of other existing models indicate that the proposed model can
reduce the virtualmachine scheduling time by up to 8.33%, save up to 6.25%of host energy consumption, and
improve the algorithm efficiency by 20.47% compared with the other algorithms. To avoid the local optimal
problem caused by dynamic virtual machine migration, an improved ant colony algorithm is combined with
the above model, and concepts of a pheromone volatility factor and suppression factor are implemented to
optimize the pheromonemeasurement function and ensure that the virtual machine migration path is globally
optimal. Overall, the model reduces the conflict rate of resources on the physical machine and can maintain
stable operation under CPU usage fluctuation, thus realizing a balanced allocation of node resources.

INDEX TERMS Backlog rate, conflict conditions, edge cloud, pheromone, resource allocation.

I. INTRODUCTION
Edge clouds are cloud computing platforms built on edge
infrastructure based on the core of cloud computing technol-
ogy and edge computing capabilities. These platforms may
have a distributed cloud architecture (i.e., peer model) [1].
Each edge cloud can be independently calculated or coordi-
nated with a central cloud. Fig. 1 illustrates the architecture
of the edge cloud.

With the increase in the number of Internet of things
devices, the traditional way of processing delivered resources
by the central cloud has been unable to satisfy the require-
ments of tasks generated by edge devices. An established
edge cloud model can accept the task of edge device delivery
for the Internet of things so that the edge device can obtain
the nearby resources dynamically and quickly to meet the
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needs of the edge device with multiple delays. However,
due to the limited computing power of the edge cloud ser-
vice nodes on the terminal side, while processing multiple
scenarios and burst data, an uneven resource allocation will
cause node stability problems. Some studies have attempted
to solve these problems. You et al. [2] proposed the M/M/n
queuemodel and a queue optimizationmodel for mobile edge
computing. The model designed a distributed energy-saving
strategy from the aspects of clock frequency configuration
and offload strategy; however, it could not design large-scale
tasks, as property settings can easily cause tasks to pile up.
In another study, a new nonlocally convergent particle swarm
optimization algorithm (DNCPSO) was proposed that uses
nonlinear inertial weights and searches in the correspond-
ing direction to complete the selection and mutation oper-
ations of a group, thereby reducing the allocation time of
certain resources [3]. However, while the algorithm improves
execution efficiency, the system energy consumption and
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FIGURE 1. Edge cloud system architecture.

node load increase due to repeated inspection of inertial
weights.

Base on the mixed integer nonlinear programming prob-
lem of the approximate optimal protest model of resource
allocation strategy was proposed [4], the strategy takes the
minimum value of each mobile user’s transmission rate as the
condition, establishes a fair resource allocation strategy with
the goal of maximizing network throughput, and solves the
approximate optimal solution by establishing time-sharing
variables.However, this algorithm does not take into account
energy efficiency and energy consumption, which is likely
to cause large energy loss and cost waste. Yang et al.[5]
proposed a green resource allocation model based on DRL
framework, which can achieve the goal of green energy
conservation in the network through a well-trained network
training, and realize the effective allocation of resources,
However, the simulation scenario is kind of simple and does
not consider the burst of multi-user data.

Xu et al. [6] proposed the relaxed ant colony algorithm
and considered the energy consumption of task schedul-
ing.Tang et al. [7] proposed a task scheduling method aiming
at optimizing the energy consumption of terminal mobile
devices.Jian et al. [8] proposed a rational resource scheduling
method based on the improved Chaotic bat algorithm. The
metrics of above-mentioned references include resource uti-
lization, load ratio,completion time, energy consumption and
response time. However, while the above approach attempts
to address resource constraints on mobile devices without
placing tasks on edge cloud servers, doing so is more advan-
tageous for delay-sensitive tasks.

In summary, the aforementioned research lacks consider-
ation of the computing capacity and load capacity of edge
nodes. Therefore, this study proposes a balanced resource
allocation model based on conflict conditions (the SimCMA
model). First, the similarity between tasks and resources used
by the host is determined, and the concept of a backlog rate
is used to ensure the rational allocation of tasks in the initial
stage of resource allocation. Then, a staged conflict reduction
coefficient matrix is constructed, based on which a resource
allocationmodel is established. This model takes into account
the characteristics of data mutation and uses an improved ant
colony algorithm to ensure that the virtual machine migration
path is globally optimal.

II. RELATED WORK
In this section, we discuss some of the resource allocation
strategies developed for edge cloud computing.

Jararweh et al. [9] introduced a trustworthy smart city
service delivery solution at the edge of the network. The
scheme improves the availability, reliability and security of
smart city terminal applications with the support of intrusion
detection system by using the cooperation mode between dis-
tributed edge servers and intermediate nodes.The simulation
results show that the request service efficiency of the pro-
posedmethod is increased by 39.2% in a highly data-intensive
environment, and the latency is reduced by 62.2% in a
slightly data-intensive environment.However, the security of
the system needs to be strengthened

Zhang et al. [10] realized task allocation according to
the size of virtual machines while focusing on the goal of
reducing energy consumption by using the least number of
physical resources. However, this method does not consider
the effect of physical machine resource usage on virtual
machine allocation.

Guo et al. [11] combine game theory with cloudlet and
propose a balanced task scheduling scheme, which reduces
the workload of the centralized cloud and thus reduces
energy consumption and computing cost.The strategy con-
siders three attributes, namely response time, energy effi-
ciency and service delay,but does not consider load balancing
of nodes.However, if cluster nodes can reach the equilib-
rium state, the efficiency of edge nodes can be improved
effectively.

Aujla et al. [12] combined support vector machine, two-
stage game theory and software definition network, pro-
posed a method to manage computing resources in edge
environment.

Balasubramanian et al. [13] proposed an autonomous
energy management architecture, called Droplet that learns
the power-related statistics of the device.the paper based on
the incentive strategy, the paper improved the device energy
consumption strategy for different situations. The simulation
experiment showed that the proposed framework effectively
generated 10% cloud service benefits. However,time cost and
calculation cost of the framework are high.

Wei et al. [14] based on the mobile edge computing
method, focuses on the user’s computing unloading problem
in wireless cellular network, so as to optimize the computing
unloading optimal solution.In this paper, model-free rein-
forcement learning (RL) framework is used to estimate and
learn the value function of each mobile user’s interaction
with the environment, and then the optimal unload action is
calculated.

Ganesan et al. [15] based their study on the map-
ping relationship between SaaS-based applications and vir-
tual machines. From the perspective of the size of virtual
machines, they focused on the joint capabilities of virtual
machines but did not consider the fact that eliminating redun-
dancy in a virtual machine affects the resource allocation

193450 VOLUME 8, 2020



L. Zhu et al.: Balanced Cloud Edge Resource Allocation Based on Conflict Conditions

efficiency to a certain extent. In addition, the study considered
only the situation of an application mapped to a single virtual
machine.

Yang et al. [16] proposed a multiterminal load balancing
algorithm based on the minimum weight of the load. This
method reflects the comprehensive load of each terminal
node according to different types of load factors, dynamically
adjusts the weight of the node according to the above results,
and calculates the actual load of the previous node. Thus,
the method ensures that the node with the minimum load in
a cluster provides services, and a multiterminal adaptive load
balance is realized; however, the method has the disadvantage
of a long average delay.

In summary, the aforementioned resource allocation mod-
els mainly target traditional cloud computing centers and
have certain limitations on the delay and allocation efficiency
when processing concurrent resources. In fact, the edge cloud
has limited node computing capabilities and high latency
requirements. Therefore, maximizing the use of physical
machine resources and system operating efficiency is the key
to the stable operation of edge cloud service nodes.

To address the abovementioned issues, this study proposes
the SimCMA model, which considers the effect of physical
machine thresholds on resource allocation. In the model,
the network transmission delay is ignored, and the threshold
of unloading tasks to an edge cloud node is set. Then, a task
set with high similarity to the resources used by the host is
separated, and the concept of a task backlog rate is proposed
to realize the balanced unloading of tasks to the node, thereby
reducing the startup rate of the virtual machine. Thus, the
initial equilibrium of virtual resource allocation is achieved.
Subsequently, this study considers that the resource utiliza-
tion of the physical machine has the optimal threshold. The
threshold value should be dynamically adjusted according to
the demand of resources and the real load situation at the
nodes. The core aim of this study is to establish a conflict
model between resources and the remaining resources of
the physical machine according to a set threshold. A con-
flict model between a resource and the remaining resources
of the physical machine is established to filter conflicting
resources.

Thereafter, the SimCMA model is optimized on the basis
of the number of virtual machine migrations and system
energy consumption. Based on the premise that the number
of edge cloud hosts has a certain limit, the model reduces
virtual machine redundancy in nodes and improves the num-
ber of virtual machine migrations by using an ant colony
algorithm to consider the cost of virtual machine migration.
Some existing studies on this aspect were conducted from
the perspective of physical hosts, while others focused on the
computing power of virtual machines [17], [18]. The content
of a physical host mostly includes memory, space, CPU oper-
ation, and so on [19], [20], whereas that of the virtual machine
mostly includes I/O, CPU, and so on. The optimal alloca-
tion of resources is an np-hard problem, and heuristic algo-
rithms are often used to find approximate optimal solutions.

Classic algorithms include particle swarm, genetic, and
simulated annealing algorithms [21], [22].

III. NUMERICAL MODEL
A. FORMAL DESCRIPTION OF THE PROBLEM
In this study, the SimCMA model is established in the fol-
lowing steps: (1) Initial task offload: based on the similarity
between the task and the resources used by the host, the con-
cept of a backlog rate is used to offload tasks requested by
users to edge service nodes. (2) Establishment of resource
allocation model: based on the computing power of the host,
a matrix of conflict coefficients is established for the physical
machine, a resource allocation model is built according to the
conflict conditions, and a balanced allocation of resources is
achieved. (3) According to the conflict model between the
physical machine and a resource and using the improved
ant colony algorithm, the optimal path of virtual machine
migration is optimized to reduce the cost of virtual machine
migration.

The core aim of this study is the establishment of a resource
allocation model. The main medium for resource allocation is
virtual machines [23], [24]. Although a virtual machine plays
an important role because it is connected to the tasks of the
end user, relevant security and manageability are the focus of
consideration. The end user is the producer of data, and the
virtual machine can be regarded as a tool for mapping the end
tasks to each server node. The purpose of the edge cloud is
to achieve interconnection between the physical hosts of the
task. The physical nodes of the edge cloud data center bear a
large amount of workload on the edge. The task is encapsu-
lated by the virtual machine in a node, and the encapsulation
process requires a certain cost.

The balanced allocation strategy of virtual machines will
directly affect resource allocation. Fig. 2 illustrates the role
of the resource allocation model.

B. REASONABLE EXPERIMENTAL ASSUMPTIONS
In establishing the resource allocation model, to ensure the
authenticity of experiments, we first propose the following
hypothetical conditions:

1) To design a resource allocation model, we consider
cloud task mapping and virtual machine scheduling
of different nodes in the same edge cloud data center.
Because the edge cloud center is limited by a certain
communication distance and cost, this condition is rea-
sonable.

2) The effect of network bandwidth on cloud task exe-
cution is not considered in the establishment of the
model. We assume that when an edge user task method
is offloaded to the edge cloud data center node, the
transmission is lossless; that is, we ignore the transmis-
sion delay and consider the task to reach the edge cloud
center node directly.

3) Each host in the edge cloud center has its own stable
independent CPU, memory unit, and other attributes,
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FIGURE 2. Schematic of the virtual machine allocation strategy.

which follow certain constraint relationships with each
other. We consider that the decision condition for the
host to be able to perform a task is that the maxi-
mum number of CPU Mips (Mips: million instructions
per second) and the memory footprint required for a
task are less than the remaining amount of these two
resources in the host.

4) Finally, we assume that each physical host in the
cluster has the same computing power and energy
consumption.

C. RESOURCE ALLOCATION NUMERICAL MODEL
The proposed SimCMA model focuses on maximizing per-
formance while reducing energy consumption. The premise
of the experiments is reasonable offloading of tasks bymodel-
ing the use of an ideal experimental environment, irrespective
of factors such as hardware defects, the number of virtual
machines (hereinafter referred to as VMs), security, and fault
tolerance. When implementing task mapping, to improve
performance to the maximum extent possible, a VM with
better performance should perform multiple tasks as much
as possible. However, when a massive task generated by the
burst data of the edge cloud arrives, it will cause some VMs
to be idle. By contrast, some cases of excessive load will
result in the wastage of resources and a reduction in operating
efficiency. In addition, there is a reasonable threshold of
resource utilization for each host when processing tasks of

the same type. We argue that if the similarity between a task
and the resources used by a host is relatively high, the task
cannot be placed in a specific service node but in a wait
state. Furthermore, when a VM processes a task, it needs to
combine with other VMs when its available resources cannot
load the current task. However, due to the different resource
types, the VM tends to combine into a balanced physical
machine model with a low resource conflict rate to ensure
its long-term operation.

Fig. 3(a) shows that the difference between the cur-
rent VM’s memory usage and CPU usage is greater
than 5%; therefore, it is impossible to continue to load
memory-demanding tasks, so a memory conflict host is gen-
erated. Similarly, Fig. 3(c) shows a CPU conflict host. There-
fore, for the host, our goal is to build a low-conflict physical
machine model, as shown in Fig. 3(b).

In summary, the SimCMA model is established by the
following three steps.

1) SIMILARITY OF PREVIOUS TASK ASSIGNMENT
(a) When a task arrives, the decision variables quantize the
task mapped to a VM. First, a VM must exist, or the system
would produce a VM.

(b) When the task is unloaded, the optimal computing
threshold of VM space should be fully considered to ensure
the long-term operation of the VM. Clustering task features
and superimposing similar types of tasks will result in the
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FIGURE 3. Schematic of host-based conflict conditions.

corresponding VM utilization exceeding the optimal range.
Therefore, the CPU andmemory requirements of the physical
machine are used as decision variables to build a similarity
model between tasks.

In this study, the set of physical hosts contained in clus-
ter J is assigned as J = {H1,H2, . . . ,Hn}. Each physical
host processes concurrent tasks through the virtual machine.
A host is defined as Hx = {VM1,VM2, ......VMn}, and the
task set T = {T1, T2, ...,Tn} is used in the cloud data center.
Task set Tx represents the CPU, and the memory attributes
are abstracted in the form of an n× k matrix as follows. It is
assumed that the first two columns are the CPU and memory
attributes in set T.

T i1 T j1 · · · T k1
T i2 T i2 · · · T k2
...

...
. . .

...

T in T jn · · · T kn


n∗k

After all the nodes of the cloud data center are started,
each task T is assigned according to the arrival order. The
relationship between task Tx and the host is random, that
is, any Tx—>rand(Hx). A task can be offloaded to the host
such that the load range of the host is not exceeded. In this
study, taking the CPU and memory (MEM) as examples,
it is considered that the remaining resources of the host are
more than the resource requirements of the task. This can be
expressed as follows:

Hx (CPU_left) > Tx (CPU ) (1)

Hx (MEM_left) > Tx (MEM ) (2)

The above relations indicate that a constraint condition
for current task Tx to be offloaded normally to a host is
that the remaining CPU utilization of the host is greater
than the CPU utilization required by the current task.
The similarity between two vectors V1 (y1, y2 . . . . . . yn) and
V2(x1, x2 . . . . . . xn) is generally expressed as the cosine
of the angles xi and yi (Sim). The general formula is as
follows [25], [26]:

Sim =

∑n
i=1 (x i ∗ yi)√∑n

i=1 x
2
i ∗

√∑n
i=1 y

2
i

(3)

Similarly, based on formula (3), we propose using the Sim
index to measure the similarity between task attributes and
the resources used by the host. The average execution time of
tasks is expressed as Ta−excu, and the execution time of the
similarity algorithm is expressed as Ts−excu, where

Ta−excu � Ts−excu (4)

Therefore, the effect of the similarity algorithm on data
center tasks is ignored. The following similarity formula is
then established:

Sim =

(
T k1i ∗ PM

u1
i

)
+ (T k2i ∗ PM

u2
i )√

(T k1i )
2
+ (T k2i )

2
∗

√
(PM l1

i )
2
+ (PM l2

i )
2
∗ 100%

(5)

Here, PMi is the edge of the cloud cluster physical
machines, Ti is the current task, and u1 and u2 are the
CPU and memory resources used by the physical machine,
respectively.

The higher the Sim index is, the greater the similarity of
the task attributes to be allocated to the resources used by
the current physical machine. The initial similarity threshold
is 65% [27]. If the threshold is exceeded, it is considered that
processing the task by the current physical machinewill cause
a certain index of the CPU or MEM to be overused, and as
a result, the task is not suitable for running on the physical
machine.

In this study, we set the initialization threshold on the basis
of historical data. However, due to the uncertainty of the
actual cloud task data, setting the threshold extremely low
may cause some tasks to fail to run in the host in a timely
manner, resulting in a task backlog. Therefore, to ensure
the normal offloading of tasks, the concept of a backlog is
proposed here. An unsuccessfully assigned task is defined as
overstock_T. The threshold of the task backlog rate is set to
10%or below to avoid an excessive task backlog. The backlog
rate is calculated by formula (6):

Backlog =
num(overstock_T )

num(Tx)
× 100% (6)

Based on formula (6), the similarity adjustable space
is set to 65%–95%. Here, we define init_Sim = 65%
and max_Sim = 95%. For values above 95%, CloudSim
fails to initialize. The threshold ranges are shown in
formulas (7) and (8):

Sim ∈ [65%, 95%] (7)

Backlog ∈ [10%, 90%] (8)

The similarity optimization model considering the backlog
rate is shown in formula (9):

Sim (t)

=


init_Sim, ,Backlog<10% (9)

initSim+
max_Sim− init_Sim

max_Backlog−min_Backlog
∗

(Backlog (t)−Backlog (t−1)),Backlog≥10% (10)
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FIGURE 4. Comparison of selected CPU threshold experiments.

When Backlog < 10%, init_Sim is calculated normally;
when Backlog≥ 10%, the total amount of similarity changes
over time is calculated according to the offset of the change
in the backlog rate over time.

2) ESTABLISHMENT OF THE RESOURCE ALLOCATION
MODEL FOR CONFLICT CONDITIONS
According to the similarity calculation described above, after
a task is mapped to a VM, overload of the VM can still
occur, which would affect the operational stability of the
VM. This is because the remaining resources of the host
are not fully considered during the calculation. Therefore,
in this paper, the SimCMA model is established based on
the factors influencing the resources used by the host. From
the perspectives of CPU and MEM, hosts are divided into
three types according to the differences between the host and
each attribute:MEM conflict host (type A), CPU conflict host
(type B), and low-conflict host (type C). Type A: CPU_left-
MEM_left > 5%, type B: MEM_left-CPU_left > 5%, type
C: the absolute difference between the two types is less
than or equal to 5%, which is our target physical machine
type. These types are expressed in formulas (11)-(13):

MEM conflict host:

HCPU_leftRate
i − H

MEMleftRate
i > 5%, Hi ∈ A; (11)

CPU conflict host:

HMEM_leftRate
j − H

CPUleftRate
j > 5%, Hj ∈ B; (12)

Low-conflict host:∣∣∣HMEM_leftRate
t − HCPU_leftRate

t ≤ 5%
∣∣∣, Ht ∈ C; (13)

We consider the load capacity of the physical machine
where the VM is located. Taking a MEM conflict host as
an example, if only the abovementioned formula (11) is
considered, this will easily result in the host’s CPU resource
request being extremely large, which will affect the normal

operation of the host. Therefore, the maximum threshold of
the CPU and memory usage of the host is set to 85% [28].
To prove that the selected threshold is reasonable, this study
takes CPU utilization as an example and sets the thresholds
of CPU utilization to 70%, 90%, 80% and 85% (Fig. 4).

The results show that, when the threshold value is 70%, the
CPU utilization rate of the host is generally low, and the CPU
utilization rate of some hosts is even lower than 20%, and the
overall CPU utilization rate is low.When the threshold value
is 90%, the CPU utilization rate will usually reach 100%.
The overall CPU utilization rate is too high, which is not
conducive to maintaining the long-term operation of the host
computer.When the threshold value is set to 85%, the overall
performance of the CPU is good and the curve is relatively
smooth.

In addition, to reduce energy consumption overhead,the
host is set to automatically shut down when its current CPU
usage is less than 20% [29]. The host CPU and memory
boundary conditions are thus set as formulas (14)–(16):

H
(
CPU_used

)
< H (CPU)× 85%, (14)

H (MEM_used ) < H (MEM)× 85%, (15)

H (CPU_used ) > 20% (16)

Based on the analysis of the abovementioned conflict con-
dition model, the core aim of the proposed VM scheduling
model design is to construct a VM scheduling method that
tends to produce low-conflict hosts. Therefore, the following
scheduling priority is set:

Priority (AB) >

{
Priority (AA)
Priority (BB)

>

{
Priority (AC)
Priority (BC)

(17)

When the hosts of the two VMs participating in the
scheduling are types A and B, the scheduling priority is the
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highest. The second priority of VM scheduling is that the
hosts are of type A or B because any VM is itself balanced.
When the two VMs are considered to have reached the equi-
librium model, they do not participate in the scheduling. The
specific VM scheduling process is set as the following three
steps:

(a) Divide the conflict rate model for each physical
machine in the data center as follows:

A = {H1,H2 . . . . . .Hk}, (18)

B = {H1,H2 . . . . . .Hn}, (19)

C = {H1,H2 . . . . . .Hm}, (20)

(b) Design the weights s, w, and t corresponding to the
priorities for the VM scheduling.

(c) By traversing the current host cluster on the basis of
the different weights mentioned above, construct a conflict
reduction coefficient matrix for each host according to the
priority reduction characteristics in the conflict model and by
combining the corresponding weights.

The corresponding conflict reduction coefficient symmet-
ric matrix is 

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...

ck1 ck2 · · · ckn


k∗n

Here, considering formula (22) as an example for analysis,
when Hi and Hj correspond to two types of conflicting phys-
ical machines, that is, formulas (11) or (12), if the absolute
value of the difference in formula (22) (e.g., CPU_usedRate)
approaches 0, Hi and Hj are considered to have similar CPU
resource usage, so it is not suitable to accept CPU-type VMs.
To make full use of the remaining resources of different
hosts and build a balanced virtual unit combination, the value
of
∣∣Hi (CPU_usedRate)− Hj (CPU_usedRate)

∣∣ in formula
(22) should be increased to the maximum possible; that is, the
combination mode with the largest Crash coefficient should
be selected for VM scheduling. This enables Hi and Hj to
take full advantage of their own resources to receive the
corresponding VM. In formula (24), when both Hi and Hj
are of the low-conflict type, the effect of t is minimal because
its weight has the lowest priority. Therefore, in the SimCMA
model, the cases where either Hi or Hj is of the low-conflict
type are ignored.

3) DYNAMIC GLOBAL OPTIMIZATION OF THE MODEL
Based on formulas (21)–(23), as shown at the bottom of
the page. we construct the conflict condition model. This
model sets the combination strategy before VM migration,
thus reducing the migration times of the VMs to some
extent. However, because the migration time of VMs is also
a key factor affecting the host performance, the SimCMA
model incorporates the improved ant colony algorithm to
ensure a global optimal VMmigration path and the minimum
VM migration time.

The ant colony algorithm uses the walking paths of ants to
represent the feasible solution of a problem to be optimized,
and all the paths of the entire ant colony constitute the solu-
tion space of the problem to be optimized [30]. Ants with
shorter paths release more pheromones. As time progresses,
the concentration of pheromones accumulated on shorter
paths gradually increases, and the numbers of ants that choose
those paths increase [31]. In this study, the released amount
of pheromones is directly related to the physical machine
conflict coefficient matrix. For host combinations with high
conflict coefficients, the greater the amount of pheromone,
the more likely the VM is to choose the scheduling route that
contains the destination of the host. In summary, the deriva-
tion of the original ant colony algorithm used in this study
follows the following process:

Given the initial state VM (K), the probability of the VM
migrating is given by formula (24):

Pkij (t) =
messageαij (t) ∗ distance

β
ij (t)∑

s∈allowedk message
α
is (t) ∗ distance

β
is (t)

(24)

Here, α and β represent the pheromone acquisition proba-
bility for a distance from Hi to Hj within t and the probability
of obtaining the corresponding bandwidth for a distance from
Hi to Hj within t, respectively.
To avoid the excessive effect of pheromones in time t and

reduce the effect of the distance factor, a pheromone volatility
factor is proposed.

messageij (t + 1) = (1− ρ)messageij (t)+1messageij (t)

(25)

1messageij (t) can be regarded as a pheromone increment,
and ρ can be regarded as a pheromone volatility factor. In this
study, we ignore the network bandwidth under the edge cloud;
therefore, we focus on the relationship between pheromones
and VM scheduling. To reduce the number of VM scheduling

Crash = max



∣∣Hi (CPU_usedRate)− Hj (CPU_usedRate)
∣∣ ∗∣∣Hi (MEM_usedRate)− Hj(MEM_usedRate)

∣∣ ∗ s, i ∈ A, j ∈ B (21)∣∣Hi (CPU_usedRate)− Hj (CPU_usedRate)
∣∣ ∗∣∣Hi (MEM_usedRate)− Hj(MEM_usedRate)

∣∣ ∗ w, i, j ∈ AorB (22)∣∣Hi (CPU_usedRate)− Hj (CPU_usedRate)
∣∣ ∗∣∣Hi (MEM_usedRate)− Hj(MEM_usedRate)

∣∣ ∗ t, i or j ∈ C (23)
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tasks and algorithm traversals and to increase the weight of
pheromones, the concept of a volatility inhibition factor (ρ̂)
is proposed. Formula (25) can be rewritten as formula (26):

messageij (t+1)=
(
1−ρ ∗ ρ̂

)
messageij (t)+1messageij (t)

(26)

To reduce the resources available to the host, the inhibitor
is reduced, and to prevent excessive use of physical resources
and degradation of the computing machine performance,
when the CPU and memory resources of the host reach the
threshold condition of 85%, the remaining pheromones on the
scheduling path will be quickly emptied at the next time node.
Thus, the possibility that other unmigrated VMs will con-
tinue to migrate to the host is significantly reduced, thereby
maintaining the high performance state of the host. Therefore,
in formula (26),messageij (t + 1) = 0; then, formula (26) can
be written as follows:

1−
(
ρ ∗ ρ̂

)
= 0

ρ̂ =
1
ρ

(27)

Because the CPU and memory threshold conditions are set
to 85%, the ρ̂ij value must be computed in multiple stages.
The value of the initial ρ̂ij is determined according to the
minimum value of the remaining resources of the host in
time t, as shown in formula (28), as shown at the bottom
of the page. Formulas (29), (30), and (31), as shown at the
bottom of the page illustrate changes in ρ̂ij over time under
the conditions that the remaining resources of the destination
host are greater than the boundary threshold, equal to the
boundary threshold, and less than the boundary threshold,
respectively. It can be seen that the greater the remaining
resources of the destination host are, the stronger the effect
of the inhibitor. When the boundary conditions are not met,
that is, when the destination host has entered a saturated state,
the inhibitor quickly volatilizes pheromones and reduces the
concentration, and the destination host continues to schedule
other VMs. In formula (26), 1messageij (t) represents the
largest conflict, implying the largest conflict coefficient in
the above conflict condition model. This can be expressed in
terms of Crashtmax − Crasht+1max . The pheromone function of
SimCMA is expressed as formula (32):

messageij (t + 1) =
(
1− ρ ∗ ρ̂ij

)
messageij (t)

+ (Crashtmax − Crash
t+1
max) (32)

The virtual resource allocation model established as
described above can significantly reduce the number of

scheduling tasks while achieving a balanced VM migration
strategy to ensure long-run edge cloud data centers.

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
A. TYPES OF GRAPHICS
The experiments in this study were conducted using the
CloudSim cloud simulator for simulating the access of con-
current tasks to edge cloud users (data reference from internal
simulation data of the CloudSim platform). To observe the
energy consumption of different algorithms for the same
task, 500, 800, 1000, 1200, and 1500 task data with correct
CPU and memory requirements were used as test data. The
parameters of heterogeneous nodes in the cluster are shown
in Table 1:

TABLE 1. Configuration information of the cluster.

In the experiments, the resource types used were CPU and
memory (unit: MB) and energy consumption (unit: kwh).
Based on the above settings of the CPU and memory, a rele-
vant reference value range of 85% was used, following pre-
vious studies [32], [33]. The specific performance evaluation
indicators are as follows: 1) the total number of VM schedul-
ing times of the cloud center, 2) the energy consumption
of the host, 3) the number of VM migrations, and 4) the
scheduling time of the cluster. The experiments were divided
into two phases: 1) the SimCMA model is established, and
2) it is optimized to ensure global solutions. For the analysis
of the proposed model, the abovementioned phase division
and performance indicators for other scheduling algorithms
of the CloudSim simulation platform were compared with
those for our model.

B. MULTIPART FIGURES
1) INITIAL SIMCMA MODEL EXPERIMENTS BASED ON
CONFLICT CONDITIONS
Five common combination algorithms of VM, namely, IqrMu
(inter quartile range allocation/minimum utilization selec-
tion policy), Lrrs (local regression/random selection policy),
MadMmt (median absolute deviation allocation/minimum

ρ̂ij (t) =



ρ̂init ∗min
{
H j
t
(
CPUleft

)
,H j

t
(
MEMleft

)}
, (28)

ifH (CPU_left) > 0.15 ∗ H (CPU )andMEM_left > 0.15 ∗ H (MEM), (29)
1
ρ
, (30)

ifCPU_left < 0.15 ∗ H (CPU) orMEM_left < 0.15 ∗ H (MEM), (31)
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migration time selection), MadRs (median absolute devi-
ation allocation/minimum random selection, and MadMc
(median absolute deviation allocation/maximum correlation),
in the CloudSim platform were selected for comparison
with the proposed algorithm. This experiment simulated the
VM scheduling times when different algorithms were applied
for the processing of 30000 identical tasks (task interval
d = 5000) by VMs. The experimental results obtained
using the SimCMA model are shown in Figs. 5 and 6. The
results indicate that because the similarity ratio between the
resources used by the host and the current task is considered
in the proposed model, at the beginning of the experiment,
tasks that might cause excessive load can be filtered out. This
approach reduces the number of VM migrations compared
with that of the other algorithms, with the maximum value
reduced by 8.33%. For example, compared with MadRs,
because our model uses the approximate median selection
method of absolute median difference, it is similar to the
SimCMAmodel. The scheduling times of the two algorithms
are similar but that of the SimCMA model is still slightly
lower. After calculating the energy consumption of the host,
the energy consumption interval was set as d = 25. Note
that the overall energy consumption of the SimCMA model
is still lower than that of the other algorithms, saving up
to 6.25%. Consequently, the SimCMA model can optimize
nodes from two aspects: VM scheduling times and host
energy consumption.

In a subsequent experiment, the execution efficiency
of each algorithm was specifically considered. From the
VM selection and host selection algorithms, the process of
task processing is defined in both directions, and the obtained
results are shown in Fig. 5. The overall algorithm running
time indicates that the average running time of the SimCMA
model is lower than that of the other algorithms. The overall
running time of the selected algorithm is analyzed based on
the experimental results. During the initial running of the task,
because the IqrMu algorithm uses the concept of quartiles, the
difference between two VMs participating in the operation is
divided into four intervals, so the remaining resources of the
host match well and there are fewer scheduling tasks. This
algorithm requires four operations due to resource matching,
whereas SimCMA has more idle time in the early stage of
the operation. Therefore, not only is the running time short
but also the algorithm execution efficiency can be improved
by an average of 20.47%. A comparison of the average value
of the SimCMA model and those of the other algorithms is
shown in Fig. 7.

In summary, the SimCMA model can improve the over-
all task processing speed of the host. The Lrrs algorithm
adopts a random selection strategy in the VM selection stage
and a local regression strategy in the VM allocation stage.
Therefore, when the number of task sets is relatively small,
the regression prediction accuracy is relatively high and the
speed is relatively fast, but when the number of tasks is higher
than 1000, the running time of the algorithm significantly
increases. For the MadMmt algorithm, the VM selection

FIGURE 5. Comparison of VM scheduling times among the SimCMA
model and other algorithms under the same task set.

FIGURE 6. Comparison of mainframe energy consumption of the SimCMA
model and other algorithms under the same task set.

FIGURE 7. Comparison of the running times of the SimCMA model and
other algorithms for VM scheduling.

strategy of the algorithm adopts the minimum migration
time method. Therefore, in the algorithm selection, memory
resources are used to select the least expensive VMmigration
scheme from the migration VM queue (the priority of small
memory reflects the minimum time). The algorithm uses 12
(recommended safety index) historical data to calculate the
absolute deviation, which specifies the overload threshold
for allocation. Because only memory is used as an indicator,
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the CPU of the host may be in an abnormal working state,
so the execution time is long. For the MadMt algorithm,
since the absolute median value of this point considers the
condition of whether the median resource between two VMs
exists, when the condition does not exist, the algorithm tra-
verses other hosts. Therefore, the scheduling time is the high-
est, and the algorithm is similar to the AB conflict model in
this paper. At this point, the task execution time of SimCMA
reaches the maximum for the MadRs algorithm. Because this
algorithm adopts a random selection strategy in the VM selec-
tion stage and a median absolute deviation method in the
VM allocation stage, the execution time is shorter when the
number of tasks is small, and the overall execution time
is also slightly lower. For the MadMc algorithm, because
the algorithm is in the VM selection stage, the maximum
correlation selection method is used, and a linear regression
model is used to fit the CPU historical data of the VM to select
the maximum correlation of historical data. Therefore, with
increases in the time and the number of task sets, the increase
in historical data will be very fast, so the calculation time of
the linear model is relatively long in all algorithms.

2) GLOBAL OPTIMIZATION OF THE SIMCMA MODEL
Next, a dynamic VM scheduling problem with time slots was
experimented. As described earlier, under the same task set
conditions, compared with that of other algorithms, the VM
scheduling time of the SimCMA model is lower. Therefore,
the arrival of a task is often sudden, and the dynamic migra-
tion of the VM is the focus of this experiment.

In this experiment, the VM scheduling times and host
energy consumption were considered under the conditions
of 1500 task sets and a task growth interval of d = 500.
Here, again, we compared the proposed algorithm with the
five basic algorithms considered in the previous experiments.
The results are shown in Figs. 8 and 9. From the pheromone
suppression of volatile factors calculated by formula (27),
the following reasons describe why the SimCMA model
is better in terms of VM scheduling time and host energy
consumption.

FIGURE 8. Comparison of VM scheduling times of the SimCMA model and
other algorithms under different task sets.

FIGURE 9. Comparison of mainframe energy consumption of the SimCMA
model and other algorithms under different task sets.

(a) Due to the effect of suppressing volatility factors, in the
initial stage of VM scheduling, when the host has more idle
resources, the amount of pheromones increases on a certain
path, and the priority of the conflict coefficient matrix tends
to be the lowest. Therefore, the model tends to be a balanced
VM combination for AC, BC, and even CC. Thus, the initial
SimCMA algorithm performs well in both aspects shown
in Figs. 10 and 11.

FIGURE 10. Comparison of VM scheduling times of the SimCMA model
and other algorithms.

(b) During the scheduling process, the increase in the
amount of pheromones on a certain path in the initial stage
is within a reasonable threshold range due to the limita-
tion of the volatility inhibition factor. Therefore, the overall
VM scheduling times of the SimCMA algorithm increase
smoothly.

(c) As the number of tasks increases, the resource con-
sumption of the host also increases. At this point, the role of
the volatility inhibition factor gradually decreases. When the
volatility inhibition factor exceeds the threshold, the increase
in pheromones on the path is 0. Consequently, an excessive
increase in the node load is avoided; therefore, the host energy
consumption of the SimCMA algorithm increases steadily
and is generally low.
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FIGURE 11. Comparison of CPU usage fluctuations of the SimCMA model and other algorithms.

After considering the scheduling time of the VMs in the
cluster, as shown in Fig. 8, because of the effect of the
volatility inhibition factor on pheromones in the SimCMA
model, when the critical value of the resource is reached,
the amount of pheromones on the path will rapidly return to 0,
thereby realizing rapid VM scheduling, and the VM schedul-
ing time in the cluster suddenly increases. Additionally, from
the results of the SimCMAmodel, the overall VM scheduling
time of the SimCMA model is still lower than those of the
other algorithms.

Finally, we considered the fluctuation of the host CPU
as the number of tasks increases to analyze the impact of
SimCMA on the stability of the host. The four subgraphs
in Fig. 11 compare the CPU usage of this algorithm with
that of the other algorithms. Although the CPU usage of the
proposed algorithm is slightly higher at the initial moment,
the overall CPU usage of the algorithm is more stable than
that of the other algorithms; therefore, this algorithm is more
suitable for edge nodes to process a certain stable operation
when there are data bursts within a time interval.

V. CONCLUSION
Through analysis of edge cloud tasks and the cluster environ-
ment, this study established a balanced resource allocation
model based on conflict conditions (SimCMA model).

First, the similarity principle was used to consider the
task backlog to achieve a reasonable unloading of tasks.
Then, based on the conflict conditions, a resource allocation
model with advantages in reducing VM scheduling times and
host energy consumption was constructed. According to the
degree of resource allocation, the model considers that the

local pheromones may increase in the traditional ant colony
algorithm. The concepts of a pheromone volatility factor
and inhibition factor were implemented to avoid redundant
VM scheduling or resource overload when resources reach
a critical value. From the results of experiments comparing
the proposed SimCMA model with other existing models,
the proposed model has certain advantages in terms of VM
scheduling time, host energy consumption, and execution
efficiency. In addition, the SimCMAmodel can ensure stable
operation of the host CPU when the magnitude of the data
increases.

In summary, the balanced resource allocation model pro-
posed in this study has certain advantages in maintaining
the stability of edge cloud nodes. This model was verified
using the CloudSim simulation platform, which limited the
obtained attribute types. Therefore, in the future, wewill build
clusters and use real data to expand the types of decision
variables to further verify the practical application of this
model.
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