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ABSTRACT With the global warming problem and increasing energy cost, manufacturing firms are paying
more and more attention to reducing energy consumption. This paper addresses the distributed flexible
job shop scheduling problem (DFJSP) with minimizing energy consumption. To solve the problem, firstly,
a novel mixed integer linear programming (MILP) model is developed to solve small-scaled problems to
optimality. Due to the NP-hardness of DFJSP, we then propose an efficient hybrid shuffled frog-leaping
algorithm (HSFLA) for solving DFJSP, particularly for large-sized problems. HSFLA combines the shuffled
frog-leaping algorithm (SFLA) with powerful global search ability and variable neighborhood search (VNS)
with good local search ability. Moreover, in HSFLA, the encoding method, the decoding method, the initial-
ization method and the memetic evolution process are specifically designed. Finally, numerical experiments
are conducted to evaluate the performance of the proposed MILP model and HFSLA.

INDEX TERMS Distributed flexible job shop scheduling problem, mixed integer linear programming,
shuffled frog-leaping algorithm, variable neighborhood search, energy consumption.

I. INTRODUCTION
Recent years, with the shortage of energy resources and
serious global warming, energy-efficient manufacturing is
attracting more and more attention from manufactures from
all around the world [1]–[6]. For reducing energy consump-
tion, it is a straightforward way to develop energy-efficient
equipments. However, it is of long cycle and needs huge
capital investment. Statistics show that in real production,
80% of the energy is consumed when a machine tool stays
in idle state. Therefore, scheduling is suitable for reducing
idle time. Moreover, energy-efficient scheduling is without
additional investment and any research cycle. Up to now,
energy-efficient scheduling has proved to be a good way to
reduce energy consumption, and it is attracting more and
more attention from researchers [2], [3], [7]–[10].
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approving it for publication was Donghyun Kim .

Flexible job shop scheduling problem (FJSP) is a typi-
cal scheduling problem, and it is with a wide application
background. Moreover, it has been proved to be a NP-hard
problem. With the development of the cooperative produc-
tion, the distributed scheduling is attracting more and more
attention from manufactures and researchers. Moreover, dis-
tributed scheduling can help to improve production efficiency
and reduce production cost [11], [12]. With regard to dis-
tributed flexible job shop scheduling problem (DFJSP), it rep-
resents for a manufacturing system that comprises several
factories, and each factory is a FJSP environment. Therefore,
compared with FJSP, DFJSP considers factory flexibility and
is more difficult to solve. For DFJSP, three sub-problems
namely factory selection, machine selection and operations
sequencing should be determined [13].

Although DFJSP has attracted a large number of con-
cerns, the existing research mainly focuses on minimizing
makespan [14], [15], and there is no published work about
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FJSP with considering energy consumption in multi-factory
production environment. In order to make up this gap, this
paper addresses the energy-efficient DFJSP (EE-DFJSP)with
minimizing total energy consumption. In this paper, we firstly
propose a novel mixed integer linear programming (MILP)
model for solving optimal solutions of small-scale instances.
Due to inherent NP hardness of DFJSP, we then propose an
efficient hybrid shuffled frog-leaping algorithm (HSFLA) to
find the near optimal solutions of EE-DFJSP, particularly
for the large-scaled instances. Compared with the existing
research, the contributions of this work can be concluded as
four points:

(1) According to author, this paper is the first work that
considers DFJSP with minimizing energy consumption in
multi-factory production environment.

(2) A novel MILP model is formulated for solving
small-scale instances to obtain optimal solutions, and it
is set the comparison standard to evaluate meta-heuristic
algorithms.

(3) An efficient hybrid shuffled frog-leaping algorithm
(HSFLA) is developed to obtain near optimal solutions for
large-sized problems. Specifically, HSFLA is designed by
combining SFLA and VNS. Notably, SFLA has never been
applied to solve DFJSP.

(4) An energy-efficient active decoding is specifically
designed for EE-DFJSP. In the decoding method, Turn
Off/On and postponing strategies are designed specifically to
reduce idle energy consumption.

The remainder of this paper is organized as follows:
In Section II, literature review of DFJSP is provided.
In Section III, a novel MILP model is developed for
EE-DFJSP. In Section IV, an efficient HSFLA is designed.
Moreover, an energy-efficient decoding method that con-
siders postponing strategy and Turn Off/On is developed.
In Section V, experiments are conducted to evaluate the pro-
posed MILP model, HSFLA and energy-efficient decoding
method. Lastly, Section VI provides conclusion and future
study.

II. LITERATURE REVIEW
Up to now, a lot of research has been done to solveDFJSP, and
they are mainly focused on minimizing makespan. For exam-
ple, in order to minimize makespan, Jia et al. [16] designed
a modified genetic algorithm (MGA) to solve distributed
job shop scheduling problem (DJSP) without considering
machine flexibility. For the same problem, two mixed integer
linear programming (MILP) models and six heuristics were
designed by Naderi and Azab [17]. With regard to DFJSP
with minimizing makespan, Chan et al. [18] firstly devel-
oped a GA with dominant genes (GADG) to solve it. Then,
GADG was extended to solve DFJSP with machine mainte-
nance. Moreover, the encoding scheme of GADG considered
all the three sub-problems. As to DFJSP, an improved GA
was developed by Giovanni and Pezzella [13]. Moreover,
an incomplete decoding representation that considered only
factory selection and operations sequencing was designed,

and the machine selection was determined in the decoding
process by using heuristic rule. By using GA, Lu et al. [19]
also proposed an incomplete decoding representation with
only a job sequence, and all the three sub-problems were
decided in the decoding process by heuristic rules. Then,
Wu et al. [15] proposed another incomplete encoding rep-
resentation that only took operations sequence into consid-
eration. Moreover, a novel GA with this encoding scheme
was designed [15]. Except for GA, Ziaee [20] designed an
efficient heuristic; Marzouki et al. [21] proposed a chemical
reaction optimization (CRO) algorithm, and Wu et al. [22]
proposed an improved differential evolution (IDE) algo-
rithm for solving DFJSP with minimizing makespan or ear-
liness/tardiness. Meng et al. [14] proposed four MILP and
a constraint programming models for solving DFJSP, and
several new improved solutions were obtained.Most recently,
Jiang et al. [23] studied the energy-efficient DJSP with
minimizing both makespan and energy consumption, and
proposed an effective modified multi-objective evolutionary
algorithm with decomposition (MMOEA/D).

Above all, as to methods for solving DFJSP problem, there
are mainly two categories namely exact method and approx-
imation method. The MILP model belongs to the category
of exact method, and it could obtain optimal solutions of
small-sized instances. Optimal solutions are the comparison
standards for designing approximation methods [14]. There-
fore, MILP model is very important and meaningful for a
scheduling problem, particularly for the new one. However,
MILPmodel is not suitable for large-sized problems due to its
solution pressure [24], [25]. The heuristics andmeta-heuristic
algorithms belong to the category of approximation method.
Heuristics are often designed according to characteristics
of scheduling problems and efficient. However, they can-
not guarantee the quality of the obtained solution. Now,
meta-heuristic algorithms are the most popular algorithms
for scheduling problems, particularly for large-sized prob-
lems [26], [27]. Its performance is decided by many elements
such as the workflow of the algorithm, the encoding scheme,
the decoding scheme, and the operators for generating new
solutions.

Therefore, for a new scheduling problem, for example
the DFJSP with minimizing energy consumption in this
paper, the design of both MILP models and meta-heuristic
algorithms is important and meaningful. The MILP model
solves optimal solutions for small-sized instances and the
meta-heuristic algorithm is used for obtain near-optimal solu-
tions for large-sized instances.

III. MILP MODEL FOR ENERGY-EFFICIENT DFJSP
A. PARAMETERS DEFINITION
The parameters definition is given as follows:

i, i′ indices for jobs
n total number of jobs
I set for jobs and I = {1, 2, · · · , n}
j, j′ indices for operations of jobs
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ni number of operations of job i
nmax maximum number of operations of all jobs
Ji set for the operations of job i and Ji =

{1, 2, · · · , ni}
k, k ′ indices for machines
Oi,j the j-th operation of job i
f index for factory
nf number of factory
F set of factories and F = {1, . . . , nf }
mf number of machines in factory f
mi,j,f number ofmachines in factory f that can process

operation Oi,j
Kf set of machines in factory f and Kf ={

1, 2, · · ·,mf
}

Ki,j,f set of machines in factory f that can process
operation Oi,j

xi,j,f ,k binary constant that takes 1if operation Oi,j can
be processed on machine k in factory f ; other-
wise it takes 0

pOi,j,f ,k processing time for operation Oi,j processed by
machine k in factory f

M a large positive number
t index for position
pf ,k number of positions of machine k in factory f

and pf ,k =
∑
i∈I

∑
j∈Ji

xi,j,f ,k

Pf ,k set of positions of machine k in factory f and
Pf ,k =

{
1, 2, · · ·, pf ,k

}
P′f ,k set of top pf ,k − 1 positions for machine k in

factory f and P′f ,k =
{
1, 2, · · ·, pf ,k − 1

}
PCf common power of factory f
Pidlef ,k idle power of machine k in factory f
POi,j,f ,k processing power of operationOi,j processed by

machine k in factory f
T offf ,k time for Turn Off/On strategy of machine k in

factory f
T B,off
f ,k break-even time of machine k in factory f

Eofff ,k energy consumption for Turn Off/On strategy of
machine k in factory f

N off
f ,k allowable times of Turn Off/On strategy for

machine k in factory f
IEf ,k,t idle energy consumption between position t and

t + 1 of machine k in factory f
T PE total processing energy consumption
T IE total idle energy consumption
TCE total common energy consumption
T E total energy consumption

B. PROBLEM DEFINITION
As to EE-DFJSP, we formulate it as follows: there are a
number of jobs to be processed in a number of factories. Each
factory stands for a FJSP environment. Each job includes
several operations with its own processing route and can be
processed in only one factory. For each operation, it can

only be processed by one machine in one factory. Besides,
all the operations of the same job must be processed in the
same factory. In order to reduce idle energy consumption of
machine tools, Turn Off/On strategy is considered. In all, four
sub-problems must be solved in EE-DFJSP: (1) determining
the factory for each job (factory selection problem), (2) deter-
mining the machine selection of each job (machine selection
problem), (3) determining the operations sequence on each
machine (operations sequencing problem), and (4) determin-
ing whether the Turn Off/On strategy is implemented in an
idle period of a machine or not (Turn Off/On strategy decision
problem).

Moreover, the following assumptions are considered:

• All the factories, jobs, andmachines are available at time
zero.

• For each machine, it can at most process one operation
at the same time. For each operation, interruption is not
allowed.

• All the processing data such as processing time and
processing power is deterministic.

• Each operation can only be assigned to one machine.
• Transportation time, setup time, energy consumption
of transporters and setup energy consumption are not
considered.

The objective in this paper is to minimize total energy con-
sumption by designing methods to solve four sub-problems,
namely, factory selection, machine selection, operations
sequencing and Turn Off/On strategy decision.

C. ENERGY CONSUMPTION OF THE WORKSHOP
Total energy consumption of the workshop mainly includes
three parts. Thereinto, the first part is processing energy
consumption, which is the energy consumed by the machine
when it is in processing state. The second part is idle energy
consumption, and it is the energy consumed by themachine in
idle state. The last part is common energy consumption, and
it is the energy consumed by auxiliary equipments such as
lighting and air conditioning in the workshop. The following
sections will describe and model these three parts in detail.

1) PROCESSING ENERGY CONSUMPTION
Total processing energy consumption can be calculated as
below,

T PE =
∑
i∈I

∑
j∈Ji

∑
f ∈F

∑
k∈Ki,j,f

∑
t∈Pf ,k

POi,j,f ,kp
O
i,j,f ,kXi,j,f ,k,t (1)

where, Xi,j,f ,k,t is binary decision variable, and it takes 1 if
operation Oi,j is assigned to position t of machine k in fac-
tory f ; otherwise, it takes 0. Xi,j,f ,k,t is used to determine
both machine selection problem and operations sequencing
problem. Moreover, Xi,j,f ,k,t is based on Wagner’s modeling
idea [26], [27]. This modeling idea defines the ‘‘position’’
of machine. In detail, each machine is divided into several
positions according to time sequence, and each position can
process one operation at the same time.
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2) IDLE ENERGY CONSUMPTION
Total idle energy consumption can be computed according to
Eq.(2),

T IE = =
∑
f ∈F

∑
k∈Kf

∑
t∈P′f ,k

IEf ,k,t

=

∑
f ∈F

∑
k∈Kf

∑
t∈P′f ,k

Pidlef ,k (Sf ,k,t+1 − Ff ,k,t ) (2)

where, Sf ,k,t is continuous decision variable and defines the
starting time of position t of machine k in factory f . Ff ,k,t
represents for the completion time of position t of machine k
in factory f .

In real production, a machine may run in idle state for
a long time, and a lot of energy will be wasted. This may
be because operations are blocked in the upstream machine
tools, and the downstream machines will be in starving (idle)
state for waiting the jobs’ arrival. If the machine is allowed to
be turned off for some time and then be switched on, a lot of
energy will be saved. The energy consumed by themachine in
the idle period will be reduced to the energy consumption for
a Turn Off/On operation. Figure 1 shows the power curve of a
machine with and without Turn Off/On operation. To imple-
ment the Turn Off/On strategy to machine k of factory f ,
two conditions needed to be satisfied: (1) The length of the
idle period is no shorter than T offf ,k . (2) Energy consumed in
the idle period is no less than the energy consumption for
Turn Off/On operation Eofff ,k . Therefore, we define constant

break-even time T B−offf ,k . If the idle period is longer than

T B−offf ,k , Turn Off/On is economically justifiable instead of

letting the machine run in idle state. T B−offf ,k is computed
according to Eq.(3),

T B−offf ,k = max{T offf ,k ,E
off
f ,k/P

idle
f ,k }, ∀f ∈ F, k ∈ Kf (3)

FIGURE 1. The power curve of a machine tool.

In order to determine whether Turn Off/On strategy is
implemented or not (Turn Off/On strategy decision), binary
decision variable Zf ,k,t is introduced. To be specific, if a Turn
off/ On strategy is applied between position t and t + 1 of
machine k in factory f , Zf ,k,t = 1; otherwise, Zf ,k,t = 0.
Therefore, when the Turn Off/On is considered, IEf ,k,t and T

IE

can be computed according to Eq.(4) and Eq.(5) respectively,

IEf ,k,t = (1− Zf ,k,t )(Sf ,k,t+1 − Ff ,k,t )Pidlef ,k + Zf ,k,tE
off
f ,k

∀f ∈ F, k ∈ Kf , t ∈ P′f ,k (4)

T IE =
∑
f ∈F

∑
k∈Kf

∑
t∈P′f ,k

((1− Zf ,k,t )(Sf ,k,t+1 − Ff ,k,t )Pidlef ,k

+Zf ,k,tE
off
f ,k ) (5)

3) COMMON ENERGY CONSUMPTION
Total common energy consumption is determined by the
makespan and common power of each factory, and it can be
calculated by Eq.(6),

TCE =
∑
f ∈F

PCf Cf ,max (6)

4) TOTAL ENERGY CONSUMPTION
Above all, the total energy consumption that considers Turn
off/On strategy can be computed by Eq.(7),

T E = T PE + T IE + TCE

=

∑
i∈I

∑
j∈Ji

∑
f ∈F

∑
k∈Ki,j,f

∑
t∈Pf ,k

POi,j,f ,kp
O
i,j,f ,kXi,j,f ,k,t

+

∑
f ∈F

∑
k∈Kf

∑
t∈P′f ,k

((1− Zf ,k,t )(Sf ,k,t+1 − Ff ,k,t )Pidlef ,k

+Zf ,k,tE
off
f ,k )+

∑
f ∈F

PCf Cf ,max (7)

D. MILP MODELING FOR EE-DFJSP
Obviously, in Eq.(7), there is one non-linear term of
(1 − Zf ,k,t )(Sf ,k,t+1 − Ff ,k,t ). Non-linear models are much
more difficult to solve than linear ones. Owing to the exist-
ing of many local optical solutions in the feasible region
of the non-convex models, it is NP-hard to solve them to
optimality. Therefore, Eq.(7) should be linearized. On the
basis of our previous research[1], we introduce a continuous
decision variable Ef ,k,t to represent for (1−Zf ,k,t )(Sf ,k,t+1−
Ff ,k,t )Pidlef ,k + Zf ,k,tE

off
f ,k . Then, linear objective function is

obtained as Eq.(8),

minT E =
∑
i∈I

∑
j∈Ji

∑
f ∈F

∑
k∈Ki,j,f

∑
t∈Pf ,k

POi,j,f ,kp
O
i,j,f ,kXi,j,f ,k,t

+

∑
f ∈F

∑
k∈Kf

∑
t∈P′f ,k

Ef ,k,t +
∑
f ∈F

PCf Cf ,max (8)

In this function, the first to the third terms of Eq.(8)
represent for total processing energy consumption, total idle
energy consumption and total common energy consumption
respectively.

1) DECISION VARIABLE
As seen from Eq.(9), Ff ,k,t is aggravation of Sf ,k,t and
Xi,j,f ,k,t , therefore, it is removed to get a more simple model.

Ff ,k,t = Sf ,k,t +
∑
i∈I

∑
j∈Ji

(pO
i,j,f ,k

Xi,j,f ,k,t ),

∀f ∈ F, k ∈ Kf , t ∈ Pf ,k (9)

In all, eight decision variables, namelyXi,j,f ,k,t ,Yi,f ,Zf ,k,t ,
Bi,j,f , Sf ,k,t ,Cf ,max, Cmax and Ef ,k,t are needed for the MILP
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model. Yi,f is a binary decision, and it is used to determine
factory selection problem. To be more specific, if job i is
assigned to factory f , Yi,f = 1; otherwise, Yi,f = 0. Bi,j,f is
a continuous decision variable that defines the starting time
of operation Oi,j in factory f . Cf ,max is a continuous decision
variable that defines the makespan of factory f . Cmax is a
continuous decision variable that represents for maximum
makespan of all factories, Cmax = max

f ∈F
Cf ,max.

2) CONSTRAINTS
For the MILP model, the following constraint sets (10)-(25)
are needed.∑

f ∈F

Yi,f = 1, ∀i ∈ I (10)

Yi,f =
∑

k∈Ki,j,f

∑
t∈Pf ,k

Xi,j,f ,k,t ,∀i∈ I , j ∈ Ji, f ∈ F

(11)

Bi,j,f +
∑

k∈Ki,j,f

∑
t∈Pf ,k

(pO
i,j,f ,k

Xi,j,f ,k,t ) ≤ Bi,j+1,f ,

∀i ∈ I , j ∈ {1, . . . , ni − 1}, f ∈ F (12)∑
i∈I

∑
j∈Ji

Xi,j,f ,k,t ≥
∑
i′∈I

∑
j′∈Ji′

Xi′,j′,f ,k,t+1,

∀f ∈ F, k ∈ Kf , t ∈ P′f ,k (13)∑
i∈I

∑
j∈Ji

Xi,j,f ,k,t ≤ 1, ∀f ∈ F, k ∈ Kf , t ∈ Pf ,k (14)

Sf ,k,t+1 ≥ Sf ,k,t +
∑
i∈I

∑
j∈Ji

(pOi,j,f ,kXi,j,f ,k,t )

+T B−offf ,k Zf ,k,t , ∀f ∈F, k ∈Kf , t ∈P′f ,k
(15)

Ef ,k,t ≥ (Sf ,k,t+1 − Sf ,k,t

−

∑
i∈I

∑
j∈Ji

(pO
i,j,f ,k

Xi,j,f ,k,t ))Pidlef ,k −MZf ,k,t ,

∀f ∈ F, k ∈ Kf , t ∈ P′f ,k (16)

Ef ,k,t ≥ Eofff ,kZf ,k,t , ∀f ∈ F, k ∈ Kf , t ∈ P′f ,k
(17)∑

t∈P′f ,k

Zf ,k,t ≤ N off
f ,k , ∀f ∈ F, k ∈ Kf (18)

Sf ,k,t ≥ Bi,j,f −M (1− Xi,j,f ,k,t ),

∀i ∈ I , j ∈ Ji, f ∈ F, k ∈ Ki,j,f , t ∈ Pf ,k
(19)

Sf ,k,t ≤ Bi,j,f +M (1− Xi,j,f ,k,t ),

∀i ∈ I , j ∈ J , f ∈ F, k ∈ Ki,j,f , t ∈ Pf ,k
(20)

Cf ,max ≥ Bi,ni,f +
∑

k∈Ki,ni,f

∑
t∈Pf ,k

(pti,ni,f ,kXi,ni,f ,k,t ),

∀i ∈ I , f ∈ F (21)

Cmax ≥ Cf ,max, ∀f ∈ F (22)

Bi,j,f ≤ MYi,f , ∀i ∈ I , j ∈ Ji, f ∈ F (23)

Sf ,k,t ≥ 0, ∀f ∈ F, k ∈ Kf , t ∈ Pf ,k (24)

Bi,j,f ≥ 0, ∀i ∈ I , j ∈ Ji, f ∈ F (25)

where, constraint set (10) restricts that a job can be machined
in exactly one factory. Constraint set (11) restricts that the
operations of the same job must be processed on the same
factory. Constraint set (12) guarantees that an operation of
a job can be machined only if its preceding operation of
the same job has been completed. Constraint set (13) forces
that an operation must be assigned to the preceding positions
only when they are occupied by other operations. Constraint
set (14) indicates that at most one operation can be assigned
to a position of a machine. Constraint sets (15)-(17) are the
constraints for Turn Off/On strategy. More specifically, con-
straint set (15) assures that if a Turn Off/On strategy is imple-
mented between two adjacent positions of a machine, the idle
time is no less than the break-even of the machine. Constraint
sets (16)-(17) assure the energy consumption between two
adjacent positions of a machine. Constraint set (18) limits
the maximum times of Turn Off/On strategy. Constraint sets
(19)-(20) define the relation between Sf ,k,t and Bi,j,f . To be
more specific, if operation Oi,j is assigned to position t of
machine k , then Bi,j,f is equal to Sf ,k,t . Constraint set (21)
defines the makespan of each factory, and constraint (22)
defines the overall makespan. Constraint set (23) shows that if
an operation is not assigned to some factory, its corresponding
starting in this factory is equal to 0. Finally, constraint set
(24)-(25) show that the decision variables are non-negative.

IV. THE PROPOSED ALGORITHM HSFLA FOR DFJSP
SFLA was firstly proposed by Eusuff and Lansey [29] for
optimizing water distribution network design. Due to its
high efficiency and application simplification, up to now,
SFLA has been widely utilized to solve many scheduling
problems [30]–[33]. More specifically, SFLA is a population-
based algorithm, which combines the benefits of the genetic-
based memetic algorithm and social behavior-based particle
swarm optimization. In SFLA, each solution is called a
frog. The key characteristics of SFLA are that the whole
population is divided into a number of parallel subsets named
memeplexes with some rules, and they are shuffled after
the evolution of each memeplex. Each memeplex includes
a set of frogs with their own ideas, which can be influenced
by the other frogs in the same memeplex. Moreover, each
memeplex performs its own evolutionary process indepen-
dently and frogs in different memeplexes do not influence
each other. During the evolution, the worst frog in each
memeplex will be improved by learning form either the best
solution of the memeplex or the best solution of the whole
population. After the evolution of each memeplex is finished,
all the memeplexes are shuffled and combined into a new
population so as to exchange information. The evolution of
each memeplex and the shuffling process continue until the
defined convergence criteria are satisfied.More detailed steps
of SFLA refer to papers [29]–[31], [33]–[36].
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A. HSFLA FOR ENERGY-EFFICIENT DFJSP
In this section, we introduce HSFLA in six parts, namely
encoding scheme, energy-efficient decoding, initialization,
terminate criterion, memeplex construction, evolving process
of each memeplex and VNS. The following sections will
describe these seven parts respectively in detail.

1) ENCODING SCHEME
In this paper, we propose to use three-string coding method,
each string of which is used to represent for one sub-problem
independently. As shown in Figure 2, the first string repre-
sents for the operation sequence (OS), the second string indi-
cates the machine selection (MS) and the last string decides
the factory selection (FS). The length of OS and MS strings
is equal to total number of operations. The length of FS is
equal to the number of jobs. For OS string, each operation
is represented by its job index. The left-to-right ordering of
operations in OS string represents for the operations sequenc-
ing. In MS string, each element represents for the machine
index selected for the corresponding operation [37]. With
regard to FS string, each element of it stands for the factory
selected for its corresponding operation. It must be noted that
operations of the same job corresponds to the same factory.
For the example in Figure 2, there are two factories, three jobs
and two machines. Job 1 and Job 3 are assigned to Factory 1,
and Job 2 is allocated to Factory 2.

FIGURE 2. The encoding scheme of a solution.

2) ENERGY-EFFICIENT DECODING
Obviously, three sub-problems namely factory selection,
machine selection and operations sequencing are decided in
the encoding. It should be noted that each factory becomes as
a job shop problem (JSP) with determined machine selection
for each operation. In each factory, we use the active decoding
method (ADM). By using ADM, an active schedule (AS) can
be obtained. Moreover, in AS, there are no permissible left
shifts. More detailed steps of ADM can refer to paper [38].

Figure 3 shows an example to demonstrate the processes
of ADM. In Figure 3, SAS and AS represent for semi-active
schedule and active schedule respectively. Compared with
SAS, in AS, operation O2,1 is inserted at the idle time period
before operation O1,2, operation O3,3 is inserted before O1,3,
and the makespan is reduced to 13.

By using the ADM, the starting times and completion
times of all operations are determined. Then, we implement
the postponing strategy and Turn Off/On strategy to further

FIGURE 3. The processes of energy-efficient ADM.

reduce idle time for all machines. For different scheduling
problems, the processes of postponing strategy and Turn
Off/On strategy are different. Because each factory of DFJSP
is a FJSP environment, the detailed processes of these two
energy-saving strategies can refer to our previous research
FJSP with worker flexibility [39].

3) INITIALIZATION AND TERMINATION CRITERION
Initialization method is very important for efficiency and
effectiveness of meta-heuristic algorithms. In this paper, with
regard to the objective of minimizing total energy consump-
tion, we propose a greedy machine selection method (GMS)
to initiate the machine selections for all operations.

The detailed steps of the initialization are given as below:
Step 1: Generate the OS and FS randomly.
Step 2: Start with the first operation of OS, select the

machine with the minimum current total energy consumption
of its selected factory. That is to say, operationOi,j will select
the machine with the minimum sum of added processing
energy consumption, added idle energy consumption and
added common energy consumption. The detailed steps can
refer to the energy-efficient decoding method proposed in our
previous research for HFSP [40].

Step 3: Repeat the Step 2 until the machine of the last
operation is decided.

Moreover, to keep the diversity of the initial population,
we only apply the GMS for 50 percents of the population. The
other 50 percents of the population are obtained randomly.

With regard to termination criterion, we set maximum
running time as terminate criterion.

4) MEMEPLEX CONSTRUCTION
With regard to memeplex construction, binary tournament
selection is used to divide the population into several meme-
plexes. The detailed steps of binary tournament selection can
refer to paper [35]. By using the binary tournament selection,
not all solutions are allocated into memeplexes. The solutions
with better fitness have more opportunity to be passed to the
child population, whichmakes a tradeoff between exploration
and exploitation of the population.
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5) EVOLUTIONARY PROCESS OF EACH MEMEPLEX
This search process is themain path to produce new solutions.
In this paper, the new frogs are generated by using precedence
operation cross (POX) operator and uniform cross (UC) oper-
ator. POX and UC are used for OS string and FS string
respectively. These two cross operators are randomly selected
with the same probability of 50%. The detailed processes of
POX can refer to paper[37].

By using POX crossover, two new frogs can be obtained.
Then, compare the best frog of the two with the local worst
frog in the memeplex. If the generated best frog is better
than the local worst frog, replace the latter with the former.
Moreover, Figure 4 shows an example for POX crossover.

FIGURE 4. POX operator for OS.

For the FS string, UC operator is adopted. In addition,
MS and FS strings are combined and crossed so as to prevent
the generation of infeasible solution.

The working process of uniform crossover is given as
below:

Step1: Randomly generate n binary numbers.
Step2: Generated the two offspring by swapping the ele-

ments of FS string of parent P1\P2, of which the binary
numbers are equal to 1.

Step3: Copy the MS string of parent P1\P2 to offspring
O1\ O2 correspondingly.
Like POX operator, by using UC operator, two new frogs

can be obtained. Then, if the better frog of the two is better
than the local worst frog in the memeplex, replace the latter
with the former. Moreover, Figure 5 shows an example of UC
operator for FS.

FIGURE 5. UC operator for FS.

In classical SFLA, the only communication of different
memeplexes is the shuffling process. In order to increase the
communication of different memeplexes [32], we cross the
local best frog of each memeplex with the local best frog of

another randomly selected memeplex by using POX operator
or UC operator with the same possibility of 50%. If the best
newly generated solution is better than the local best frog of
current memeplex, replace the latter frog with the former one.

B. VARIABLE NEIGHBORHOOD SEARCH
VNS is a well-known local search method [41], and it has
been widely used in many scheduling problems [39], [42].
VNS starts from one initial solution and evolves by search-
ing solutions of a set of neighborhood structures. Therefore,
VNS has good local search ability. Population-based
meta-heuristic algorithms, including SFLA, have better
global search ability and worse local search ability. There-
fore, in this paper, we embed VNS into SFLA to improve
its local search ability. Moreover, VNS is applied to the
local best frog in each memeplex and the global best frog.
In VNS, five neighborhood structures are adopted. The first
one is the Swap neighborhood structure, which works by
swapping the positions of two randomly selected operations.
The second one is the Insert neighborhood structure, which
works by inserting the back operation just before the front
operation. The third one is the Inverse neighborhood struc-
ture, and it inverts the subsequence between two randomly
selected positions. Obviously, the Swap, Insert and Inverse
neighborhoods are for OS string. The fourth one, denoted as
ReassignF, works by randomly selecting one job and chang-
ing its FS string to another factory. The fifth one, denoted
as ReassignM, works by randomly selecting one operation
and changing its MS string to another feasible machine of its
selected factory.

C. THE DETAILED STEPS OF HSFLA
The flow chart of the proposed HSFLA is shown in Figure 6,
and the detailed steps of the HSFLA are described as follows:

Step 1: Set the algorithm parameters, such as the number of
fogs in each memeplex Pmsize, the number of memeplex Nm,
the evolution times of each memeplex Nme and local search
times tmax of VNS. Then, generate the initial population by
the initialization method in Section IV.A.3).

Step 2: Repeat the following steps until the termination
condition is met.

Step 3: Partition the population into Nm memeplexes with
the binary tournament selection rule.

Step 4: For each memeplex, repeat the following
Steps 4.1-4.2 Nme times
Step 4.1: Determine the local best frog xlb and local worst

frog xlw in each memeplex. Then, cross xlb and a randomly
selected one frog of this memeplex with POX crossover for
OS or UC crossover for FS with the same probability of 50%,
and two new frogs are generated. If the best new frog xnb of
the two newly generated frogs is better than xlw, then replace
xlw with xnb. If xlw is not improved, randomly generate a
new neighborhood solution of the global best solution of the
population xgb by randomly using the five neighborhoods of
VNS and replace xlw.
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FIGURE 6. The flow chart of the proposed HSFLA.

Step 4.2: Cross the local best frog xlb of the current meme-
plex with that of randomly selected another memeplex and
four new frogs are generated. If the best new frog xnb is better
than xlw, then replace xlw with xnb.
Step 5: Conduct the VNS on the local best frog xlb in each

memeplex and the global best frog xgb.
Step 5.1: Set the initial solution x and a set of neighbor-

hood structures Nk (x), k = 1 . . . 5.
Step 5.2: Repeat the following Steps 3-6 until the stop

condition is satisfied k > kmax.
Step 5.3: Set k = 1.
Step 5.4: Randomly generate a solution x ′ from the kth

neighborhood of x(x ′ ∈ Nk (x)).
Step 5.5:Apply following Steps 5.5.1-5.5.4 to solution x ′.
Step 5.5.1: Set t = 1.
Step 5.5.2: Randomly generate a solution x ′′ from the kth

neighborhood of solution x ′(x ′′ ∈ Nk (x ′)).
Step 5.5.3:If f (x ′′) < f (x ′), replace x ′ with x ′′ and set

t = t + 1; otherwise, set t = t + 1.
Step 5.5.4: Repeat Step 5.2-5.3 until t > tmax.
Step 5.6: If f (x ′) < f (x), replace x with x ′ and set k = 1;

otherwise, set k = k + 1.
Step 6: Shuffle the Nm memeplexes into an entire popula-

tion, and go to Step 2.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
The computation complexity of HSFLA is determined by the
computation complexity of each step of HSFLA. In detail,
the computation complexity of population initialization

(Step 1) is O(Pmsize × Nm ×
∑
i∈I
ni). For the partition

of memeplexes (Step 3), the computation complexity is
O(Pmsize × Nm). For Steps 4.1 and 4.2 of HSFLA, POX
and UC crossovers are performed 2 × Nme × Nm times,
the computation complexity is O(Nme × Nm ×

∑
i∈I
ni). The

computation complexity of VNS (Step 5) is O(Nm × kmax ×

tmax). Therefore, the total computation complexity of each
generation of HSFLA is O(Pmsize×Nm×

∑
i∈I
ni+Pmsize×Nm+

Nme×Nm×
∑
i∈I
ni+Nm×kmax×tmax). Clearly, it depends on the

parameters of Pmsize,Nm,Nme, tmax, kmax and
∑
i∈I
ni, among

which Pmsize,Nm,Nme and tmax are variable. The influence of
these variable parameters will be investigated by experiments
in the following Section of ‘‘Parameter settings’’.

V. COMPARATIVE EVALUATIONS AND DISCUSSIONS
This section aims to evaluate the performance of the pro-
posed MILP model and HSFLA. The HSFLA algorithm
runs in C++ on a desktop Dell Vostro 3900, which is
with 3.20 GHz Intel processor and 8 GB memory. As to
the MILP model, it runs in OPL language of IBM CPLEX
Studio IDE 12.7.1. The solving method of CPLEX solver
is branch-and-cut method, and it is the combination of cut-
ting plane and branch-and-bound methods [43]. It works
by running a branch-and-bound algorithm and using cutting
planes to tighten the linear programming relaxations. For
the experiments, 20 instances adapted from MFJS01-10 [44]
and MK01-10 [45] are used. Each of the 20 instances is
obtained by supposing that all the factories are the same.
Cases with only two factories are considered. With regard to
the processing power, it is randomly produced with uniform
distributions U [4], [8]. With regard to the idle power, it is
randomly produced among {1, 2, 3}. The time, breakeven
time and energy consumption for Turn Off/On strategy of
each machine are randomly produced among {8, 12, 16},
{10, 15, 20} and {10, 30, 60} correspondingly. Moreover,
the maximum times of Turn Off/On strategy for eachmachine
and the common power are set to 3 and 20 respectively.

A. EVALUATION OF THE MILP MODEL
The computational results ofMILPmodel for 20 instances are
reported in Table 1. In Table 1, NBVs, NCVs and NCs denote
the number of binary variables, the number of continuous
variables and the number of constraints respectively. Nodes
and Iterations represent the number of nodes and iterations
for solving the instance to optimality. Gap represents the
average optimality gap of the obtained solution within the
timelimit. A solution with the gap value of 0 is optimal. Time
represents for the solving time. Moreover, NBVs, NCVs,
NCs, Nodes and Iterations are proportional to the instance
size. NBVs, NCVs and NCs can be obtained by the instance
size in advance. However, Nodes and Iterations can only be
obtained when the instance is solved by solution method to
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TABLE 1. Results of MILP model for 20 instances.

optimality, and they represent for the size of the solution
space.

As seen from Table 1, MILP model can solve relatively
small-sized instances namely MFJS01-06 to optimality with
17.00s, 12.34s, 248.48s, 1099.61s, 685.63s and 2628.59s.
However, with regard to MFJS07 and even larger-sized
instances, MILP model cannot solve them to optimality
within 3600s. As to relatively large-sized instances namely
MK01-10, MILP model fails to find any feasible solution
within 3600s. This is because the CPLEX solver uses branch-
and-cut method to solve MILP model. Brand-and-cut method
is the combination of cutting plane and branch-and-bound
methods, which is heavily dependent on the size of the solv-
ing problem. When the scale of instance increases, more con-
straints (NCs), more decision variables (NBVs and NCVs)
and bigger solution space (Nodes and Iterations) are with
the MILP model, resulting in difficult branching, finding
new low bounds and cutting. Obviously, all of these show
that the MILP model is not efficient for solving relatively
large-sized instances. However, there is no denying that the
MILP model can solve small-sized instances to optimality.
It is very important to obtain optimal solutions for scheduling
problem, particularly for the new one. The optimal solution is
the standard to design approximate methods such as heuristic
and meta-heuristic algorithms.

B. EVALUATION OF THE PROPOSED HSFLA
In this section, we evaluate the performance of HSFLA.
Moreover, this section includes three subsections namely
parameters setting of HSFLA, evaluation of the effectiveness
of the energy-saving decoding method and comparison of
HSFLA with other meta-heuristic algorithms.

1) PARAMETER SETTINGS
According to Section 4, four parameters namely the popu-
lation size of each memeplex Pmsize, the number of meme-
plexes Nm, the memetic evolution times Nme and local search

TABLE 2. Results of the DOE test.

TABLE 3. Average response values.

times tmax of VNS need to be decided. We used three settings
of 3,5,10 for Pmsize, 5,10,15 for Nm, 5,10,15 for Nme and
5,10,15 for tmax. Therefore, we use Taguchi method of design
of experiment (DOE) to determine these four parameters.
Moreover, the MK05 is chosen to conduct the DOE test. For
each test, we set the maximum CPU time of nm seconds
as the stopping condition. Each test is repeated 20 times,
and the mean value (Mean) is set as the response value.
Table 2 shows the results of the DOE test. Figure 7 presents
the trend of each factor level. Moreover, Table 3 shows the
significance rank of each parameter. As can be seen from
Table 3,Nme is the most significant factor. Pmsize,Nm and tmax
rank the second, the third and the fourth respectively. Based
on the results, we select the following settings: Pmsize = 10,
Nm = 10,Nme = 5 and tmax = 10.

2) EVALUATION OF POSTPONING STRATEGY AND TURN
OFF/ON STRATEGY
This section intends to evaluate the effectiveness of both
postponing strategy and Turn Off/On strategy. To this end,
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TABLE 4. Comparisons of ADM and P-ADM (effectiveness of postponing strategy).

TABLE 5. Comparisons of P-ADM and EE-ADM (effectiveness of Turn Off/On strategy).

FIGURE 7. The trend of each factor level of each parameter.

firstly, we randomly generate 1000 individuals. Then,
we decode them by using three decoding methods namely
ADM, ADM with only postponing strategy (P-ADM) and
ADMwith both postponing strategy and TurnOff/On strategy
(EE-ADM). Moreover, the relative percentage increase (RPI)
value is set as the comparison norm, and it is computed
according to Eq.(26),

RPI = (Da − Db)/Da × 100%, ∀a, b ∈ {1, . . . , 3} (26)

where, Da denotes the fitness archived by method a.
In Tables 4 and 5, RPI_Min represents for minimum RPI

of the 1000 individuals, RPI_Ave represents for average
RPI of the 1000 individuals, and RPI_Max represents for
maximum RPI of the 1000 individuals. To be more specific,
Table 4 shows the comparison results of ADM and P-ADM.
Obviously, P-ADM is better than ADM in terms of RPI_Min,
RPI_Ave and RPI_Max. RPI_Min ranges from 0.21 to 4.77,
RPI_Ave ranges from 1.55 to 9.66 and RPI_Max ranges
from 4.22 to 15.43. Moreover, we can see that postponing
strategy is more effective for MFJS01-10 than MK01-10.
In all, postponing strategy performs well in reducing idle
energy consumption.

Table 5 reports the comparison results of P-ADM and
EE-ADM. This is clear that EE outperforms P-ADM. Unlike

postponing strategy, Turn Off/On strategy is more effective
for MK01-10 than MFJS01-10. This is because the size of
MFJS01-10 is relatively small, and the number of idle time
periods may be smaller than that of MK01-10. Therefore,
postponing strategy is more effective for MFJS01-10 than
MK01-10, and Turn Off/On strategy is more effective for
MK01-10 thanMFJS01-10.Moreover, this phenomenonmay
also be attributed to that different instance has different
processing data such as processing time, processing time,
machine flexibility and processing power.

3) COMPARISONS OF HSFLA WITH OTHER ALGORITHMS
In this section, we prove the effectiveness of HSFLA by
comparing it with the proposed MILP model, SFLA without
VNS, VNS and GA. The parameter settings of HSFLA are
set to Pmsize = 10,Nm = 10,Nme = 5 and tmax = 10. The
parameter settings of SFLA are set to Pmsize = 10,Nm = 10,
Nme = 5. tmax of VNS is set to 10. With regard to the GA, the
selection operator uses binary tournament selection, the cross
operators use the POX and UC described in Section IV.A.5),
the mutation operators use Swap, Insert, Inverse, ReassignF
and ReassignM described in Section IV.B) for VNS. By try
and trail, the population size, the cross possibility and the
mutation possibility are set to 100, 0.9 and 0.05 respectively.
Moreover, for the sake of fairness, all the algorithms adopt
the same stopping criteria of maximum elapsed CPU time of
nm seconds. The comparison results are reported in Table 6.
In Table 6, the Best denotes the best solution obtained by
all the algorithms of MILP model, HSFLA, SFLA, GA and
VNS.Min represents the RPI of the fitness of the best solution
obtained by one algorithm of 20 runs with the fitness of Best.
Similarly, AV is the RPI of the average fitness of the best
solution obtained by one algorithm of 20 runs with the fitness
of Best. T(s) is the computational time in seconds.

In terms of Min and AV, HSFLA performs no worse than
SFLA, GA and VNS for all 20 instances, which shows the
superiority of HSFLA. HSFLA outperforms SFLA, which
shows the effectiveness of VNS. This can be attributed to that
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TABLE 6. Comparison results of HSFLA with other methods.

TABLE 7. Paired t-test for the Min values of different algorithms.

TABLE 8. Paired t-test for the AV values of different algorithms.

the local search ability of HSFLA is improved with embed-
ding VNS. SFLA is a population-based algorithm, and its
local searching ability is very limited. From Table 6, we can
also see that SFLA outperforms GA. Specifically, in terms of
mean Min, SFLA can obtain better mean Min of 1.06 than
1.30 of GA. With regard to mean AV, SFLA obtains better
mean AV of 2.70 than 2.97 of GA. This is because except for
the specific operators for generating new solutions, the flow
of the meta-heuristic algorithms is also very important. The
flow of SFLA is better than GA for solving energy-efficient
DFJSP. SFLA can take the advantages of multi-population
evolution and evolution operator s of GA. With regard to
VNS, it performs worst of all the four meta-heuristic algo-
rithms in terms of both Min and AV. This may be because
that VNS only evolves with one solution, and it is with strong
randomicity and cannot search for better solution space of
DFJSP with large solution space reliably.

Moreover, Table 7 and Table 8 show the paired-t test at
95% confidence level of Min and AV values of different
algorithms. Obviously, in terms of both Min and AV values,
the p-values of HSFLAvs.SFLA, HSFLAvs.GA, HSFLAvs.

VNS are less than 0.05. Therefore, HSFLA is statistically
better than the other algorithms. Tables 7 and 8 also indicate
that SFLA is statistically better than VNS. In terms of Min
value, the p-value of SFLAvs.GA is 0.065 and is greater than
0.05. With regard to p-value of SFLAvs.GA in Table 9, it is
0.012 and less than 0.05. One the whole, SFLA statistically
performs better than GA.

As we can see from Table 6, for all the instances, the max-
imum solving time is 260s, and it is acceptable. With regard
to real instances, the stopping criteria for them should be set
according to actual conditions.

VI. CONCLUSION AND FUTURE RESEARCH
This paper addresses DFJSP with considering energy con-
sumption. A novel MILP model is developed to obtain
optimal solution for small-sized instances, and an effi-
cient HSFLA is designed to obtain near-optimal solu-
tions for large-sized instances. In HSFLA, the encoding
method, the decoding method, the initiation method and
the memetic evolution process are specifically designed.
VNS is embedded in the algorithm to enhance its local
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exploitation capability. Numerical experiments are conducted
to prove the effectiveness of theMILPmodel and the HFSLA.

With future research, we will extend the MILP modeling
idea and HSFLA in this paper to other distributed scheduling
problems. Moreover, we will design other algorithms such
as migrating birds optimization (MBO) algorithm, teaching-
learning-based optimization (TLBO) algorithm and evolu-
tion (DE) algorithm to solve DFJSP. We welcome other
researchers to propose more efficient MILP model and
meta-heuristic algorithms for solving the energy-efficient
DFJSP of this paper. Furthermore, the multi-objective DFJSP
with simultaneously optimizing total energy consumption
and makespan will be considered in the near future.
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