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ABSTRACT We present here one of the first studies that attempt to differentiate between genuine and acted
emotional expressions, using EEG data. We present the first EEG dataset (available here) with recordings of
subjects with genuine and fake emotional expressions.We build our experimental paradigm for classification
of smiles; genuine smiles, fake/acted smiles and neutral expression. We propose multiple methods to extract
intrinsic features from three EEG emotional expressions; genuine, neutral, and fake/acted smile.We extracted
EEG features using three time-frequency analysis methods: discrete wavelet transforms (DWT), empirical
mode decomposition (EMD), and incorporating DWT into EMD (DWT-EMD) at three frequency bands.
We then evaluated the proposed methods using several classifiers including, k-nearest neighbors (KNN),
support vector machine (SVM), and artificial neural network (ANN). We carried out an experimental
paradigm on 28-subjects underwent three types of emotional expressions, genuine, neutral and fake/acted.
The results showed that incorporating DWT into EMD extracted more hidden features than sole DWT or sole
EMD method. The power spectral feature extracted by DWT, EMD, and DWT-EMD showed different
neural patterns across the three emotional expressions at all the frequency bands. We performed binary
classification experiments and achieved acceptable accuracy reaching a maximum of 84% in all type of
emotions, classifiers and bands using sole DWT or EMD.Meanwhile, a combination of DWT-EMD achieved
the highest classification accuracywith ANN in classifying true emotional expressions from fake expressions
in the alpha and beta bands with an average accuracy of 94.3% and 84.1%, respectively. Our results suggest
combining DWT-EMD for future emotion studies and highlight the association of alpha and beta frequency
bands with emotions.

INDEX TERMS Emotion recognition, electroencephalogram (EEG), discrete wavelet transforms (DWT),
empirical mode decomposition (EMD), classification.

I. INTRODUCTION
Emotions are mental processes that are triggered by con-
scious or unconscious experiences [1]. Researchers have sug-
gested that emotions and their dynamics influence cognition
and behavior [2]. In particular, emotions tend to profoundly
influence both the physical and psychological behavior of
an individual [2]. Thus, emotion recognition is a critical
factor for several domains such as human robot interaction,
characterizing the level of interest on learning, measuring
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happiness and satisfaction, identifying the level of vigilance
in road and safety, quantifying stress, and detecting patient’s
mental and physical states [1], [3]. Several methods have
been proposed in the literature to evaluate emotions [4]–[7].
Self-reporting may be the most straightforward approach
to assess emotions and emotional behavior. Such methods
remain subjective and require the full attention of the user.
Some more objective measures are facial expression, speech
analysis, and analysis of physiological responses. In our day
to day interactions with computers or people; we express
our feelings in the form of various emotional behaviors.
Our expressive spontaneous behavior tells a lot about how
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we feel. Facial expressions and speech tone analysis are
the most widely used non-physiological signals for emotion
detection. Hoque and his colleagues [8] have investigated
automated facial expression analysis to discriminate between
frustrated and delighted smiles. They were able to distinguish
smiles under frustration and delighted stimuli with 92% accu-
racy. However, at times social circumstances may intimidate
people into concealing the felt emotion. Thus, interpreting
emotions from facial expressions or audio signatures may
fail to reveal the true natural mental state of people [9]. In
particular, false alarms are likely to occur, since these facial
attributes are not always accompanied by emotions. Besides,
fixing a camera is required to analyze facial expressions and a
microphone to analyze audio signatures, which raises privacy
concerns. Some studies have used multimodal approaches
that combine speech, facial and physiological signals for
emotion recognition [10], [6], [11], [12]. One thing to note is
that facial and audio expressions may not reflect the intrinsic
mental state of human beings whereas physiological signals
reflect real emotions. In particular, changes in physiological
signals related to emotional states are involuntary, and people
are often unaware of them. One may argue that accurate
measurement of felt emotions would need a more reliable
assessment method. The question that arises here is whether
we can differentiate between actual and acted emotional
expressions using other objective means?

Basic human interactions rely upon expressional behaviors.
For instance, smiling behavior implies happiness in general.
However, a smiling person may not be happy. According to
Hoque et al [8], smiling may even signify frustration. In par-
ticular, a smile expression is a universal and multifaceted
expression. Analysis of emotions underlying expressions like
smiling needs to be explored. Modalities that can recognize
human emotional states in a more in-depth and accurate level
help us to build better and more reliable human-computer
interface systems. In this study, we attempt to use Elec-
troencephalography (EEG) modality to find out whether an
acted emotion can be differentiated from a genuine one.
EEG is one of the most commonly used techniques to study
brain functions and conditions with temporal resolution at
millisecond.

In the literature, there has been many datasets used
for emotion recognition studies. Publicly available emo-
tion databases are SEED [13], DEAP [14], MAHANOBI-
HCI [15], and MPED [9]. Many studies have analyzed EEG
data from these datasets to identify and classify positive, neu-
tral, negative, pleasant, and unpleasant emotions. However,
analyzing EEG signals to obtain the most discriminative fea-
tures in representing different emotions remain a challenging
problem for emotion recognition systems.

There are many techniques to analyze EEG signals.
Previous studies have used feature extraction techniques like
time domain, frequency domain, time-frequency domain,
and functional connectivity network to analyze EEG
data [16]–[18]. Amongst the signal analysis methods used for
studying the primary rhythms in the signals, spectral analysis

is the most popular mode of analysis. EEG signals are highly
non-stationary. Traditional methods like Fourier transforms
fail to accommodate this non-stationary characteristic of EEG
signal. One can explain that it is due to the global assump-
tion of harmonic components while analyzing real-life sig-
nals. This, in turn, results in the broader Fourier spectrum
and misleading energy frequency distribution [19]. Signal
analysis using time-frequency space may aid to capture the
fast dynamic changes in the neural spectra, unlike spectrum
analysis methods.

Several research groups have reported various techniques
for classifying emotions using EEG time-frequency meth-
ods. Discrete wavelet transform (DWT) and empirical mode
decomposition (EMD) have been used to analyze EEG data
in many works in the literature [2], [20]. DWT particularly is
useful for capturing neural-specific domains in signals with
regular frequency change [19], [21]. Emotion recognition
based on the EMD method has not been investigated much
even though it has been widely used for seizure detection
and motor imagery classification. One recent study for emo-
tion recognition from multidimensional information in EMD
evaluated the performance on the Dataset for Emotion Anal-
ysis (DEAP) database [22]. The results showed that EMD
outperforms time-domain methods benefiting from higher
frequency content information [22]. One of the significant
challenges in the application of EMD basedmethods in build-
ing a human-computer interface is its high computational
time requirements [18]. Sweeney-Reed et al. [18] suggested
that formulating a mathematical basis for EMD could give
new insights into the underlying neural processes present in
the EEG signal. They have pointed out that the frequency
of oscillations related to particular cognitive behavior varies
over time. This implies that EMD is useful in reflecting
the underlying physiological process specific to the study of
emotions.

It may be noted that, direct application of EMD to the raw
EEG data may lead to intermittencies [23]. Besides, results
from previous studies suggested that a combination of EMD
and DWT methods can retrieve useful characteristics pre-
sented in nonlinear signals [24]. The use of wavelet transform
prior to EMD on the a EEG signal is advantageous as it can
detect and characterize singularities [23]. Munoz et al. [21]
reported that EMD techniques resulted in signal softening
and noise reduction [21]. Thus EMD can suppress noise
accumulated from wavelet transformation [23]. The lack of
adaptability from wavelet analysis can be compensated by
incorporating EMD analysis. Ji et al. [25] used DWT and
EMD based techniques for extracting non-linear features to
improve the classification accuracy of motor imagery from
EEG signals and showed promising results.

In the present work, we aim at studying the emo-
tional expressions using EEG signals and machine learning
approaches. Thus, we developed a novel protocol to induce
genuine and acted emotional expressions within the two
dimensional model of emotions; arousal and valence. Then,
we analyzed these emotional expressions using three different

VOLUME 8, 2020 191081



M. Alex et al.: Discrimination of Genuine and Acted Emotional Expressions

feature extraction methods by utilizing DWT, EMD and
incorporating DWT into EMD (DWT-EMD). Data analysis
presented in this study involves the higher three frequency
bands; theta, alpha and beta due to their highest associa-
tions with emotions. Furthermore, we assessed the feasibil-
ity of applicable emotional expressions detection through
three different classifiers: K-nearest neighbors (KNN), Sup-
port vector machines (SVM), and artificial neural network
(ANN). To the best of our knowledge, this is the first work
on discriminating acted from the actual expressions using
three time-frequency feature analysis methods on EEG data.
Hence, our key contributions in this work are as follows:
• Using EEG signal to differentiate genuine from acted
emotional expressions.

• Experimental protocol and design to achieve the above.
• Introduction of a new database that contains EEG
recordings of 28-subjects with acted and genuine smiles
that can be used by other researchers in the area.

The rest of the paper is organized as follows. In section
II, we describe our experimental stimuli, data-collection and
preprocessing methods. Section III presents the proposed fea-
tures extraction methods, statistical analysis and classifica-
tion models. Section IV presents the results and classification
analysis. Section V discusses the results and provides sugges-
tions for future research work. Finally, Section VI concludes
this study.

II. MATERIALS AND METHODS
A. SUBJECTS
Twenty-eight healthy students (20 males and 8 females; age
20±2) participated in this study. All participants had normal
or corrected to normal vision. They had no history of neuro-
logical or psychiatric illnesses. The study procedures were
explained to the participants and they signed an informed
consent form prior to the experiment. All methods performed
followed the Declaration of Helsinki. The experimental pro-
tocol was approved by the institutional review board, (IRB)
of the American University of Sharjah.

B. EXPERIMENT PROTOCOL
In this study, the emotion eliciting stimuli comprised
of 246 still images obtained from two online public image
datasets. These include the Open Affective Standardized
Image Set (OASIS) [26], and the Geneva Affective Pic-
ture Database (GAPED) [27]. Three types of image sets
were chosen to conduct this study (116-funny images,
70-neutral images, and 60-one-plain image). Funny pictures
involved pictures of human and animal babies; neutral pic-
tures include pictures of nature, and the plain-images mainly
depicted a picture of a plain book. All images used in this
study were based on the valence-arousal scale [26], [27].
Images were displayed and presented on 19 inch LCD screen
that was kept 50 cm away from the participant. Images pre-
sentation order was semi-randomized, with the condition that
no currently viewed picture belonged to the same category as
the previously rated one. Three different event markers were
sent to mark the epochs/trials of each type of image stimuli.

FIGURE 1. Experiment stimuli and task sequence.

The participants were instructed to pose an acted smile once
the target image (plain-image) appeared on the screen and
to hit a respective keyboard response (i.e. ‘Q’). This was in
order to invoke acted/fake emotion in the subject. In addition,
all participants were asked to hit letter ‘‘P’’ or ‘‘N’’ once
and only whenever they felt their feeling had changed and
have to act to certain emotional expressions in the form of a
true smile (hitting the letter ‘P’) and neutral expression by
(hitting the letter ‘N’), respectively. There were a total of
246 trials in this experiment as shown in FIGURE 1. Each
trial has a one-second drift check followed by two-seconds
of emotion stimulating image. This entire experiment lasted
about 13 minutes, and the number of trials varied between
subjects depending on their response speed. All the trials were
labeled according to the response from the participant and
only successful trials that induced genuine and acted smiles
were considered for the analysis.

C. DATA ACQUISITION AND PREPROCESSING
The EEG data was recorded using 64 Ag/AgCl scalp elec-
trodes arranged according to the standard 10–20 system
(ANT waveguard system and ASA Lab 4.9.2 acquisition
software, ANT Neuro, the Netherlands). The EEG data was
sampled at 500 Hz. The impedances of all EEG electrodes
were maintained below 10 k�, and were referenced to the left
and rightmastoids,M1 andM2. FIGURE2 shows an example
of the experimental setup and data acquisition layout.

The acquired EEG data was preprocessed using the
EEGLAB toolboxes (9.0.4)[28] with custom scripts devel-
oped in [29],[30]. The eye blinks were detected through
visual inspection and were discarded manually and using
independent components analysis (ICA) method available
in EEGLAB. The components representing artifacts, such
as eye blinks, eye movements, and muscular activities were
removed, and the remaining components were used to recon-
struct the clean EEG signals. Typically, only one or two inde-
pendent components relevant to eye blinks or eye movements
were removed for each subject. All EEG signals were band-
pass filtered using a finite impulse response (FIR) filter with
0.1 Hz to 40 Hz bandwidth. The power line interference
was removed using a 50 Hz notch filter. The EEG data
was re-referenced to the computed average reference. The
data mean subtraction was performed to remove baseline
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FIGURE 2. Experiment setup and data acquisition layout.

FIGURE 3. Framework for feature extraction and classification.

and DC offset. The clean signals were then segmented into
epochs with a length of 1100 ms. This resulted in 230 epochs
corresponding to three types of image stimuli. For all the
three types of emotion, features were extracted using an equal
number of epochs (we used 60 epochs per type of emotion
with a total of 180 epochs).

III. FEATURE EXTRACTION
In this work, we propose to utilize three different algo-
rithms for feature extractions. The methods are (1)-Discrete
Wavelet Transform (DWT), (2)-Empirical Mode Decomposi-
tion (EMD) and (3)-combination of Discrete Wavelet Trans-
form and Empirical Mode Decomposition (DWT-EMD). The
following subsections describe the implementation of the
methods for feature extraction. To study the cognitive pro-
cesses, we analyze oscillatory activity between the frequency
range 4-30 Hz (i.e. theta, alpha and, beta bands). EEG fre-
quency components are found to reflect changes in their
power spectra. FIGURE 3 shows the proposed framework for
feature extraction and emotion classification.

1) DISCRETE WAVELET TRANSFORM (DWT)
The clean EEG signals were decomposed into seven levels
using discrete wavelet transform (DWT). The Daubechies 4
(Db4) wavelet family was employed in this study due to its
near-optimal time-frequency localization and similarity to the
EEG signal waveform [31]. At each level, the signal is down
sampled by a factor of two.

The subset of wavelet coefficients corresponding to theta
(DWT decomposition level 6), alpha (DWT decomposition
level 5), and beta bands (DWT decomposition level 4), were
used for feature extraction. The mean power of EEG signals
in the three frequency bands for each electrode was computed
using a moving time-window of 1.1 seconds, according to (1)
as suggested by [30]:

Pj =
1
N

N∑
n=1

∣∣xj(n)∣∣2, j = 1, 2, 3 (1)

where Pj is the EEG mean power, xj (n) represents the seg-
mented EEG signals in theta band at j = 1, alpha band at
j = 2j = 2, and beta band at j = 3 and N is the length of
the EEG signal. This gives a total of 11160 features per sub-
ject (corresponding to 60-epoch∗62-electrode∗3-frequency-
bands). The significant features in each frequency band were
then used as an input to the machine learning classifiers.

2) EMPIRICAL MODE DECOMPOSITION
EMD is used to decompose the clean EEG signals into a
finite number of intrinsic mode functions (IMFs) without
any prior definitions, unlike predictive methods [20]. The
EMD technique is based on direct energy extraction in time
scale. Each IMF represents different frequency components
of original signals and satisfies two conditions:
• The difference between the number of extrema and the
number of zero crossings is at most one

• Given any point, the mean value of the envelope defined
by the local maxima and local minima is zero.

Once the iterative processes of EMD satisfy the two con-
ditions, the final function of EMD is represented in the time
domain as given in (2). The local energy and the instanta-
neous frequency derived from the IMF through the Hilbert
transform gives the full energy distribution of the data. This
is ideal for nonlinear and non-stationary data analysis [19].

EMD of the EEG signal X for each frequency band (theta,
alpha, and beta) is given as follow.

X (n) =
N∑
i=1

ci(n)+ r(n) (2)

where ci is the ith IMF component repeated N times and r is
the residue component.

3) DWT-EMD MODE
In this method, prior to EMD, the EEG data was first sub-
jected to wavelet transformation to split them into a set
of narrowband signals. Then appropriate subband signal is
selected to be decomposed into an intrinsic mode function
with a frequency that is more concentrated [32].

The use of wavelet transform prior to EMD on a clean
EEG signal is advantageous as it can detect and characterize
singularities [24]. In line with this, we used Daubechies 4
(Db4) wavelet to decompose the clean EEG signal into lev-
els corresponding to three frequency bands such as theta,
alpha and beta. Then we applied EMD on the three decom-
posed frequency bands to obtain their IMFs components, as
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demonstrated in (2). From the first three IMFs components,
we then extracted the mean power features using a
time-window of 1.1 second, similar to (1). This resulted
in 11160 features per subject (corresponding to 60-epoch∗

62-electrode∗3-frequency-bands). Significant features were
then used as an input to the machine learning classifiers to
distinguish between the three types of emotion. Meanwhile,
the averages of all features across subjects were then repre-
sented in the form of topography covering the scalp at 62
electrodes.

A. FEATURE DIMENSION REDUCTION
Feature dimension reduction is used to select the most appli-
cable features from the feature set. This is usually used prior
to machine learning classifiers to achieve optimum perfor-
mance. A variety of feature dimension reduction methods
have been introduced in the literature, such as paired-sample
t-test, Fisher distance and mutual information [33], [34].

In our study, the paired-sample t-test is used as the feature
dimension reduction technique. The paired-sample t-test was
performed to test the significance of the power features in
EEG signals between true, neutral and fake emotions. Before
conducting the t-test, we used the Kolmogorov-Smirnov test
to check if the data is normally distributed [35]. The p-value
of paired-sample t-test indicates the significant difference in
two sample groups. We used the p-values of less than 0.05 to
select the features for emotion recognition.

B. CLASSIFICATION AND PERFORMANCE ANALYSIS
To distinguish between the three emotions, we employed
multiple classifiers. According to literature [36], the most
commonly applied classifier techniques when PSD features
serve as the input is SVM. Hence we used SVM as one of
the methods to classify emotions. However, study in [37]
applied artificial neural networks (ANN) to recognize posi-
tive, neutral, and negative emotions yielded higher accuracies
than SVM and KNN techniques. Thus, we chose to deploy
all the three classifier techniques KNN [38], SVM [39], and
ANN [40] and test which technique works best for our EEG
dataset. The parameters used for each classifier are sum-
marized in TABLE 1. These parameters were obtained with
validation on the training dataset. At this level, we classified
true smile from fake smile, true smile from neutral expression
and fake smile from neutral expression. In each classifier,
we performed subject dependent classification with 5-fold
cross-validation. The selected features in each subject were
randomly split into five equally size subsets. For each of the
subsets, we trained the classifiers using four subsets while
the testing was done using the rest one-subset. To obtain
all samples predicting labels, we repeated this procedure
5 times so that each subset is used for validation. We used
the following metrics for evaluating the performance of the
classifiers: accuracy, sensitivity, and specificity. The classi-
fication accuracy was calculated as the percentage ratio of
correctly predicted samples to all samples in the data set.
The sensitivity calculates the percentage of true positive (TP)
cases that are correctly predicted out of all the true positives

TABLE 1. Units Values of the parameters used for each classifier.

and false negatives and the specificity is the percentage of
true negatives (TN) that are predicted out of all the true
negatives and false positives. The mathematical expressions
of the accuracy, sensitivity and specificity are given in the
following equations 3-5:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(3)

Sensitivity =
TP

TP+ FN
(4)

Specificity =
TN

TN + FP
(5)

IV. RESULTS
A. EMOTIONAL ACTIVATIONAL PATTERNS
Themean power distributions of all subjects corresponding to
the three expressions are presented in the form of topograph-
ical maps shown in FIGURES 4, 5 and 6. The topographical
map contains 62 electrodes in which electrodes of M1 and
M2 were excluded from the analysis because of poor surface-
to-skin contact for most subjects. Themain observations from
the cortical activation patterns attained using discrete wavelet
transform in FIGURE 4 across the three different emotions
are summarized below:-

True emotion- Beta, alpha and theta bands show similar
activation over the right frontal, right temporal, right central
parietal and left parietal regions.

Neutral Emotion-Beta, alpha, and theta frequency bands
show similar activation across the central and right parietal
regions. Occipital regions show the lowest activations in the
entire scalp in all the three frequency bands.

Fake Emotion-The topographical maps for fake emotion
show a very lower cortical activation pattern compared to
the true and neutral emotions. Nevertheless, higher activation
is observed in the right prefrontal, right temporal and left
parietal.

By using features from the EMD method, the observations
from the corresponding topographical maps in FIGURE 5 are
as follows:

True emotion- In beta band, most of the electrodes in
the right hemisphere show higher activation compared to
the one across the left hemisphere. Specifically, the right
parietal and right occipital. Meanwhile, the alpha band shows
high activation on the right hemisphere and left prefrontal
electrodes. The higher activation in alpha band is located in
the prefrontal areas. For theta band, only a few electrodes
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FIGURE 4. Mean power distributions using the DWT method in different
emotions and frequency bands.

FIGURE 5. Mean power distributions using EMD method in different
emotions and frequency bands.

show the highest activations located at the right frontal and
right parietal regions.

Neutral Emotion- In the beta band, the right hemisphere
and central parietal electrodes show higher activations com-
pared to other regions. In alpha band, the left prefrontal and
right parietal and central electrodes show higher activations.
In theta band, right frontal and left front-temporal show high
activations compared to other regions.

Fake Emotion- Across the beta band, only right pari-
etal and occipital electrodes show higher activation energy.
In the alpha band, left prefrontal and right temporal electrodes
demonstrate higher activation energy. Moreover, in the theta

FIGURE 6. Mean power distributions using DWT-EMD method in different
emotions and frequency bands.

band, right central, parietal and occipital electrodes were
highly active compared to other regions.

Finally, topographical maps of the power features extracted
from DWT-EMD method are shown in FIGURE 6. The
summary of observed results is as follows:-

True emotion- In the beta band, prefrontal, right parietal
and left prefrontal show higher activation patterns compared
to the other regions. In alpha band, prefrontal electrodes
and right and left parietal show higher activations. In the
theta band, frontal, left central/parietal as well as right pari-
etal regions show high activations compared to the other
regions.

Neutral Emotion- In beta band, only mid-central, right
prefrontal and left parietal show high activations. Meanwhile,
in the alpha band, the right frontal, right, and left temporal,
right occipital and left central-parietal regions show high
activations. Moreover, in the theta band, right frontal and left
parietal and central regions show higher cortical activity.

Fake Emotion- For the beta band, left central and right
prefrontal and right parietal show higher energy activations.
However, in alpha and theta band most of the electrodes
located at the frontal, central parietal and occipital show the
highest activations.

The overall result from the three feature extraction meth-
ods is that, the DWT-EMD showed higher activations in all
types of emotion and frequency bands compared to the sole
DWT or EMD methods. These higher activations demon-
strated by DWTEMD indicate that, the method extracted
more hidden features that cannot be extracted by sole
DWT or EMD methods. It was also shown that, the cortical
activations shifted between brain regions with type of emo-
tions indicating the effectiveness of image stimuli in inducing
different emotions. The higher cortical activations within the
type of emotions and frequency bands are consistent across
the three methods of analysis.
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TABLE 2. Subject dependent classification performance averaged across all subjects (%).

B. CLASSIFICATION PERFORMANCE
We evaluated the performance of the three proposed fea-
ture extraction methods using KNN, SVM, and ANN. The
mean classification accuracy, sensitivity and specificity with
the standard deviation across subjects in all the frequency
bands and type of emotions are summarized in TABLE 2.
As mentioned earlier, we conducted binary classification
across three cases (case 1: true smiles vs. fake smiles, case 2:
true smiles vs. neutral expression and case 3: fake smile
vs. neutral expression). The features extracted by DWT
technique exhibited maximum accuracy in classifying true
smile from fake one with ANN classifier at the beta band
(accuracy 68.6%, sensitivity 68.5%, and specificity 68.7%).
Meanwhile, the highest performance accuracy attained from
empirical mode decomposition method was in the case 1 with
SVM classifier in the beta frequency band (accuracy 84.1%,
sensitivity 81.3%, and specificity 86.8%). And finally, it can
be seen that the application of discrete wavelet transform
prior to empirical mode decomposition has significantly
improved the classification performance.Maximum accuracy
was found in the case 1 itself usingANNclassifier in the alpha
band (accuracy 94.3%, sensitivity 92.9%, and specificity
95.6%).

The results of the classifier performance across the three
methodswas validated statistically by comparing the (i) DWT
to EMD, (ii) DWT to DWT-EMD method, (iii) EMD to
DWT-EMDmethod. It was found that the DWT-EMD signif-
icantly outperforms the sole DWT and sole EMD methods,
(p<0.01) in most bands and classifiers.

Besides, EMD outperformed DWT in most of the classi-
fiers and bands as shown in TABLE 2. Looking at the type
of classifiers, the ANN classifier performed better than the
other classifiers and the highest accuracy was observed in the
alpha frequency band. It should be noted that the emotion
recognition is mostly associated with higher frequency bands
like alpha and beta which is why the performance accuracy
was high in the alpha band. It is worth noting that the ANN
classifier performs better compared to SVM or KNN due to
sufficient training data as suggested in [16]. This may be one
of the reasons why ANN classifier outperformed the other
classifiers in this study.

V. DISCUSSIONS
The goal of this study was to discriminate genuine and acted
expressions using EEG signals. For this purpose, an exper-
imental paradigm was designed to acquire the brain signals
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associated with three emotional expressions: - true, fake, and
neutral. Emotion-specific studies greatly rely on the choice
of emotional stimuli. Thus, we chose static images as visual
stimuli. The induced emotional expressions were investigated
by extracting features using three different time-frequency
analysis methods from the acquired EEG signals. More-
over, how well these emotions could be distinguished was
evaluated using machine learning with multiple classifiers.
The achieved results predict that it is possible to distin-
guish between true, neutral, and fake emotional expres-
sions using EEG signals. To the best of our knowledge,
this is the first study investigating emotions in the form of
smile expressions using EEG signals and machine learning
approaches.

In this paper, we reported the neural activation patterns
associated with three different emotional expressions repre-
sented by their topographical maps. This kind of distribution
maps has been plotted to give clear idea of active EEG
electrodes under each type of emotions.

Besides, we performed subject dependent classification
between the three emotions using ANN, SVM and KNN. The
topographical maps in FIGURES 4 to 6 reveal that there exists
a specific neural pattern associated with each type of emo-
tional expressions. Our results showed that themental process
and cognition activities to emotional stimuli were related to
prefrontal region of the brain. In particular, we found that
the topographical maps showed higher frontal and parietal
activity for true emotion. Our findings agree with the results
obtained from the previous emotion studies that highlighted
the associations of specific neural patterns with different
emotions [22], [13], [41]. This is also inline with previous
functional magnetic resonance imaging (fMRI) and positron
emission tomography (PET) studies, which demonstrated that
remembering happy events is primarily associated with the
activation of many areas, including anterior cingulate cortex,
and prefrontal cortex [42].

It was also noted that across all the time-frequency analysis
methods utilized for feature extraction, the maximum classi-
fication accuracywas achieved in the case of true smile versus
a fake smile. This indicates that the type of image stimuli
significantly modulated brain responses. By analyzing the
classification performance across the three EEG frequency
bands, it can be noted that classifiers performed slightly
better in the alpha and beta frequency band, compared to the
theta band. This is consistent with previous studies which
revealed that emotional process were better reflected in the
high frequency bands [13], [43].

Looking closely at the three-feature extraction methods
employed, the DWT-EMD method has yielded the highest
classification accuracy in the alpha band, with 94.3%, 92.4%
and 83.8% for classifying true emotional expression from
fake one using ANN, SVM, and KNN, respectively. Like-
wise, DWT-EMD in beta band showed comparable accu-
racy in classifying neutral emotional expressions from true
and fake emotions. Meanwhile, DWT-EMD in theta band
obtained the highest accuracywhen classifying true from fake

emotional expressions. The higher accuracy in alpha and beta
band obtained in our study is consistent across all subjects
as shown by small standard deviation. This finding is also
consistent with previous studies on emotion classifications
that demonstrated high accuracy at higher frequency bands
[41], [44]. Thus, we recommend that higher frequency bands
at alpha and beta are more useful in predicting emotional
expressions from EEG signals.

Another noteworthy point is that there were significant
improvements in the classification accuracies when incorpo-
rating DWT transformmethod prior to the EMDmethod. The
features extracted by applying a discrete wavelet transform
followed by empirical mode decomposition yielded better
results compared to the application of EMD alone or DWT
alone. In alpha band, we found that DWT-EMDoutperformed
DWT by 27.9%, 19.7%, and 24.7% using ANN, KNN and
SVM, respectively. Similar improvements were also found
across beta and theta frequency bands. Likewise, we found
that DWT-EMD outperformed EMD at alpha band by 13.2%,
14.1%, and 12.9% using ANN, KNN and SVM, respectively.
According to [45], applying DWT before decomposing the
signal into IMFs helps to get devoid of wide frequency band
coverage experienced while using EMD technique to the non-
stationary signals like EEG. This may be one of the reasons
for the performance enhancement for the classi?cation of
EEG signals in our work. Thus, it can be inferred that indeed
the application of DWT prior to EMD enhances the classifier
performance and useful method for feature extraction using
EEG signals.

This study has improved the emotion recognition rate
significantly with DWT-EMD method. However, there are
some limitations to it. First, our analysis is completely based
on static images. Many previous works have used multiple
stimuli for emotion recognition. Incorporation of different
types of stimuli could provide a better understanding of the
emotional expressions. Second, this study has been done in a
single session. The possibility of monitoring the stability of
EEG responses over different sessions should be explored.
This would provide more insight of emotion recognition.
Third, the feature dimensionality reduction /selection method
used in this study was based on simple statistical analysis
of t-test. The method is a univariate test and it does not
consider multiple variables together and their possible inter-
actions. Future studies should consider more robust feature
selection methods such as correlation-based channel selec-
tion [46], bispectrum-based [47] and internal feature selection
method of common spatial pattern [48]. In addition, to further
improve the classification accuracy, researchersmay combine
multiple modalities such as EEGwith eye tracking, EEGwith
functional near infrared spectroscopy or combination of the
three modalities. These modalities contain complementary
information and can be integrated to construct a more robust
emotion estimation model. Finally, our study focused on
positive emotions, the application of DWT-EMD method on
other types of emotions like sadness, amusement etc. can be
evaluated in future studies.
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VI. CONCLUSION
In this study, we attempt to differentiate between acted ver-
sus actual emotions using EEG signals. We developed an
experimental paradigm to elicit three different emotional
expressions: - true, fake/acted and neutral. To extract use-
ful information to distinguish between these three types
of expressions, we used time-frequency based techniques
on EEG signals. And further applied machine learning
algorithms:- ANN, SVM, andKNN. The attained results from
the classification performance and power distribution suggest
that there exists a difference in the way humans express
genuine and acted expressions. The prefrontal, electrodes
exhibited higher activation patterns in the power distribu-
tion map. We achieved a maximum classification accuracy
of 94.3% using ANN classifier in the alpha frequency band
using DWT-EMD method. From the three used classifier
techniques for emotion recognition in our study, it was found
that ANN and KNN classifiers yield best results. In short, we
present the first work of its kind on differentiating fake from
genuine expressions using EEG signals. We designed human
subjective experiments and also collected a very valuable
dataset that can be used by other researchers to advance the
state-of-art in this new area.
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