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ABSTRACT Deep neural network (DNN)-aided spatial modulation (SM) is conceived. In particular, a pair of
DNN structures are designed for replacing the conventional model-based channel estimators and detectors.
As our first prototype, the conventional DNN estimates the channel relying on the pilot symbols and then
carries out data detection in a data-driven manner. By contrast, our new DeepSM scheme is proposed for
operation in more realistic time-varying channels, which updates the channel state information (CSI) at
each time-slot (TS) before detecting the data. Hence, our novel DeepSM scheme is capable of performing
well even in highly dynamic communication environments. Finally, our simulations show that the proposed
DeepSM outperforms the conventional model-based channel estimation and data detection for transmission
over time-varying channels.

INDEX TERMS Deep neural network (DNN), spatial modulation (SM), channel estimation, data detection.

NOMENCLATURE
Adam Adaptive Moment Estimation
ADC Analogue-to-Digital Convertor
APM Amplitude-Phase Modulation
AR Autoregressive
AWGN Additive White Gaussian Noise
BER Bit Error Ratio
BPSK Binary Phase Shift Keying
CSI Channel State Information
DNN Deep Neural Network
FEC Forward Error Correction
GSM Generalized Spatial Modulation
i.i.d. independently and identically distributed
IoT Internet of Things
IRS Intelligent Reconfigurable Surfaces
LDPC Low-Density Parity-Check
MFNN Multilayer Feedforward Neural Network
MI Mutual Information
MIMO Multiple-Input Multiple-Output
mMTC Massive Machine Type Communications
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MSE Mean Squared Error
NN Neural Network
QPSK Quadrature Phase Shift Keying
RA Receiver Antenna
Relu Rectified Linear Unit
RF Radio Frequency
SGD Stochastic Gradient Descent
SM Spatial Modulation
SNR Signal-to-Noise Ratio
SSK Space-Shift Keying
STBC Space-Time Block Coded
TA Transmit Antenna
TD Time-Domain
TS Time-Slot
V-BLAST Vertical Bell Laboratories Layered

Space-Time

I. INTRODUCTION
For coping with the dramatically increasing data traffic, novel
transmission schemes are in urgent demand for improving
the throughput while minimizing the deployment complexity.
Among numerous cutting-edge techniques, spatial modula-
tion (SM) [1]–[7] has constitute a promising next generation
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TABLE 1. Contrasting our contributions to the state-of-the-art.

scheme for massive machine type communications (mMTC)
[8]–[10], for TeraHertz communications [11] and for intelli-
gent reconfigurable surfaces (IRS) [12]–[14].

The roots of SM can be traced back to 2001, when Chau
and Yu [15] proposed the space-shift keying (SSK) concept,
which only conveys information by the transmit antenna (TA)
indices. By contrast, the SM [1], [2] activates a single TA,
which transmits a single amplitude-phase modulation (APM)
symbol. This unique TA activation scheme allows the
transmitter to implicitly convey additional information bits
‘hidden’ in the active TA index patterns, hence achieving
energy-efficient communications. A subsequent development
of SM activating a small fraction of TAs is known as gen-
eralised SM (GSM) [16], which simultaneously activates a
group of TAs for conveying multiple APM symbols.

Since only a low number of radio frequency (RF)-chains
are active during each symbol instant, the optimal
maximum-likelihood SMdetector is capable of jointly detect-
ing both the active TA indices and the classic APM signal at
a low complexity. Since the RF-chains are the priciest and
highest-power transceiver components, SM has compelling
benefits over the family of conventional multiple-input
multiple-output (MIMO) systems, such as the vertical
Bell Laboratories layered space-time (V-BLAST) coded or
space-time block coded (STBC) systems [17].

At the time of writing, machine learning is attracting
increasing attention in wireless communications [18]–[21].
In particular, by employing neural networks (NNs),
near-optimal low-complexity channel estimation and/or
data detection can be achieved for different physical-layer
communication schemes, relying either on a data-driven
approach [22], [23], where no mathematical model
is required, or on a model-driven basis [24]–[26],
which exploits the benefits of both well-established
mathematical physical-layer communication models and
of NNs.

Machine learning techniques have also demonstrated good
performance in SM systems [27]–[32]. First, adaptive SM can
be designedwith the aid of different deep learning techniques.
For instance, Yang et al. [27] integrated machine learning

with adaptive SM-MIMO systems, while Tato et al. [28]
adoptedmultilayer feedforwardNNs (MFNNs) for accurately
evaluating themutual information (MI) in support of adapting
the SM modes. Furthermore, deep learning techniques may
also contribute to the TA selection of SM. In particular,
Zhang et al. [29] formulated a data-driven NN architecture
for TA selection by exploiting the channel state information
(CSI), while a deep neural network (DNN)-aided TA selec-
tion scheme was designed for secure SM in [30]. Recently,
Albinsaid et al. [31] investigated the block DNN-aided detec-
tion of GSM, whereas Shamasundar and Chockalingam [32]
proposed a modularized DNN architecture for
GSM detection.

However, to the best of our knowledge, there is no research
published on DNN-aided joint channel estimation and data
detection conceived for SM. To fill this knowledge-gap, a pair
of DNN architectures are designed for joint channel estima-
tion and data detection in SM systems. The main contribu-
tions of this paper are contrasted to the literature in Table 1
and are summarized as follows:
• Firstly, we apply the fully-connected multi-layer DNNs
to SM and conceive a conventional DNN architecture
for joint channel estimation and data detection of SM,
operating in a data-driven manner, which replaces the
conventional model-based channel estimator and detec-
tor by DNNs. Our simulations demonstrate that the
conventional DNN-aided channel estimation and data
detection of SM is capable of approaching the bit error
ratio (BER) performance to that of the conventional
model-based SM channel estimation and data detection
approach for transmission over time-invariant channels,
despite its reduced detection complexity.

• We then propose a novel DNN architecture, referred to
as DeepSM, which detects the transmitted bits and in
the meantime, updates the CSI of each time slot (TS)
for transmission over time-varying fading channels in a
data-driven manner. We demonstrate that our proposed
DeepSM is capable of improving the BER performance
of the conventional model-based channel estimation and
data detection, despite its reduced detection complexity
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FIGURE 1. The transmitter structure of the SM system.

in terms of runtime, when communicating over more
dynamic channels.

• Finally, we investigate the effects of the quantiza-
tion errors imposed by finite-resolution Analogue-to-
Digital Convertors (ADCs) on the BER performance
attained. When our DeepSM is employed, better
BER performance can be observed in the presence
of 4- or 6-bit ADCs than that of conventional
model-based approaches.

The rest of this paper is structured as follows. Section II
reviews the SM system model, while Section III discusses
the conventional model-based SM channel estimation and
data detection. Next, Section IV details a pair of DNN
architectures designed for joint channel estimation and data
detection of SM. Then, the performance of SM evaluated for
transmission over different wireless channels is quantified in
Section V. Finally, our conclusions and future research ideas
will be provided in Section VI.

II. SYSTEM MODEL
In this section, we detail the transceivermodel of a SM system
employing Nt TAs and Nr receive antennas (RAs), as shown
in Fig. 1, transmitting over wireless channels, along with the
main assumptions of the paper.

As shown in Fig. 1, first, the pilots are transmitted during
the Nt pilot TSs, followed by T TSs for transmitting a single
frame of data symbols. Within the t-th data transmission
TS, the u-bit information uuu(t) is transmitted only by one
of the Nt TAs. More specifically, uuu(t) is first divided into
two sub-groups expressed as uuu(t) = uuu1(t)|uuu2(t). The first
u1 = log2 Nt bits of uuu1(t) are SSK modulated [15], [33],
resulting in a SSK symbol s1(t) = VSSK[uuu1(t)] ∈ M1,
where VSSK[·] refers to the SSK mapping andM1 is the SSK
symbol set, which can be expressed as M1 = {1, · · · ,Nt }.
The remaining u2 = log2 M2 bits uuu2(t) are mapped to an
APM symbol s2(t) = VAPM[uuu2(t)] ∈ M2, where VAPM[·]
refers to the APM mapping andM2 is defined as the symbol
set of M2-ary APM. Then the APM symbol s2(t) together
with the active TA index s1(t) mapped to the SSK symbol
are transmitted by a single active TA. The transmitted signal
can be expressed as

xxx(t) = eees1(t)(t)s2(t) = [0, · · · , 0, s2(t), 0, · · · , 0]T , (1)

where eees1(t)(t) is a (Nt ×1) antenna selection vector compris-
ing only a single non-zero element ‘1’ in the s1(t)-th position,
which indicates the active TA’s index.

Given the channel vector hhhs1(t) between the s1(t)-th TA and
Nr RAs in the t-th TS, the signal received by the BS can be
expressed as

yyy(t) = HHH (t)eees1(t)s2(t) + nnn(t), (2)

where HHH (t) = [hhh1(t),hhh2(t), · · · ,hhhNt (t)] and nnn(t) is the addi-
tive white Gaussian noise (AWGN) obeying a zero-mean
complex Gaussian distribution with a covariance matrix
of σ 2IIINr . Hence, 1/2σ

2 is the signal-to-noise ratio (SNR)
per SM symbol. For time-varying channels,hhhs1(t) is expressed
as [34]

hhhs1(t) =
√
αhhhs1(t−1) +

√
1− αvvv(t), t = 1, 2, · · · ,T , (3)

where hhhs1(0) obeys the independently and identically dis-
tributed (i.i.d.) complex Gaussian distribution and vvv(t) is
the unpredictable difference from the channel vector, which
also obeys the i.i.d. complex Gaussian distribution with a
mean of 0 and a covariance of INr , while α is the autore-
gressive (AR) coefficient, which can be defined as ατ/2 =
Et
[
h∗s1(t)

hs1(t+τ )
]

Et
[
h∗s1(t)

hs1(t)
] , where ατ/2 is the time-domain (TD) correla-

tion and τ is the discrete time-lag. The detailed discussion of
α can be found in [34].

III. CONVENTIONAL CHANNEL ESTIMATION AND DATA
DETECTION FOR SM
In this section, we briefly review the conventional pilot-aided
channel estimation and maximum-likelihood data detection
regime of SM in Sections III-A and III-B, respectively.

A. CONVENTIONAL CHANNEL ESTIMATION
As shown in Fig. 1, we assume that prior to the data transmis-
sion, Nt TSs are employed to transmit the pilot symbols over
the Nt TAs, where the proportion η of the Nt pilot symbols to
the T -length data frame is defined as

η =
Nt

Nt + T
. (4)

More specifically, in the p-th (1 ≤ p ≤ Nt ) pilot TS,
the p-th TA transmits its signal x(p) = 1 over the wireless
channel. The pilot signal ȳyy(p) received at the BS in the p-th
(1 ≤ p ≤ Nt ) TS can be expressed as

ȳyy(p) = hhhpx(p)+ nnn(p) = hhhp + nnn(p), (5)

where hhhp is an Nr × 1 vector representing the CSI between
the p-th TA and the Nr RAs.
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Then the received signal is considered as the estimated CSI
ĥhhp, which is expressed as

ĥhhp = ȳyy(p) = hhhp + nnn(p), 1 ≤ p ≤ Nt . (6)

After the Nt pilot TSs, we can obtain the Nr×Nt estimated
channel matrix, which can be expressed as

ĤHH (0) = [ĥhh1(0), ĥhh2(0), · · · , ĥhhNt (0)], (7)

where ĥhhp(0) = ĥhhp, p = 1, 2, · · · ,Nt , which will be employed
for the maximum-likelihood data detection in the next sub-
section.

B. MAXIMUM-LIKELIHOOD DATA DETECTION
Following the pilot transmission, data symbols are transmit-
ted from t = 1-st to t = T -th data TSs, which are detected
with the aid of the estimated channel matrix ĤHH (0) obtained
from (6). Specifically, given the received signal yyy(t) and the
estimated channel ĤHH (0), the optimal maximum-likelihood
detection finds the estimate ŝ1(t)|ŝ2(t) ∈ M = M1 ⊗M2
by solving the following optimization problem:

x̂xx(t) = min
s̃1(t)∈M1,s̃2(t)∈M2,

‖yyy(t)− ĤHH (0)eees̃1(t)s̃2(t)‖, (8)

where s̃1(t) represents the legitimate active TA index at the t-
th TS and s̃2(t) is the potential candidate of the APM symbol
in the symbol set M2 at the t-th TS. We can see that the
maximum-likelihood detector has to visit all M = Nt × M2
possible combinations of s̃1(t) ∈ M1 and s̃2(t) ∈ M2,
yielding a complexity order of O (NtM2).

IV. DATA-DRIVEN DNN-AIDED CHANNEL ESTIMATION
AND DATA DETECTION
In this section, we first introduce DNN-aided channel esti-
mation and data detection assisted SM in Section IV-A,
followed by the proposed data-driven DNN architecture
in Section IV-B.

A. CONVENTIONAL DNN ARCHITECTURE
The multi-layer fully-connected DNN architecture of Fig. 2
can be employed for replacing the conventional channel esti-
mator and data detector discussed in Section III. More specif-
ically, in time-invariant stationary scenarios, the channels
ĤHH (0) estimated from the pilot symbols can be expressed as

ĤHH (0) = ĤHH (1) = · · · = ĤHH (T ) = YYY (0), (9)

FIGURE 2. A fully-connected DNN architecture for channel estimation and
data detection in SM system.

where YYY (0) = [ȳyy(1), ȳyy(2), · · · , ȳyy(Nt )] represents the pilot
symbols of Nt pilot TSs. Hence, as shown in Fig. 2,
the received pilots YYY (0) and the signal yyy(t) received dur-
ing the t-th data TS constitute the inputs of the L-layer
fully-connected DNNs, where each layer is comprised of
Z = 64 nodes, yielding the output of

ûuu(t) = fsigmoid{WWW L · · · fRelu{WWW 2[fRelu(WWW 1yyy(t)+ bbb2)]

+bbb2} + · · · + bbbL}, (10)

where WWW l and bbbl , l = 1, · · · ,L, represent the weights and
biases, respectively, of the l-th hidden layer of the DNNs
of Fig. 2. Here, the rectified linear unit (Relu) function of
fRelu(a) = max(0, a ) is employed for activating the DNN
training, and the sigmoid function of fsigmoid(a) = 1

1+e−a
is used at the output layer to obtain the detected bits ûuu(t).
The network weights, which comprise the parameters that are
being optimized in the DNN, can be expressed as

θ = {WWW 1,bbb1,WWW 2,bbb2, · · · ,WWW L ,bbbL} . (11)

The training process optimizes the network weights θ by
minimizing the loss function. In this paper, the mean squared
error (MSE) between the output bits ûuu(t) of the DNN and
the transmitted bits uuu(t) in the t-th TS is adopted as the loss
function, which can be expressed as

ϕ1(θ ) =
1
BT

T∑
t=1

B∑
i=1

∥∥uuui(t)− ûuui(t)∥∥2 , (12)

where B is the size of a mini-batch.
The network weights θθθ are updated for the batches and

randomly picked up from the data samples, using the classic
stochastic gradient descent (SGD) algorithm [35] expressed
as

θθθ+ := θθθ − ε∇ϕ1(θ ), (13)

where ε is the learning rate of the SGD and∇ϕ1(θ ) represents
the gradient of ϕ1(θ ). In this paper, ε = 10−3 is selected for
the performance characterization of both the DNN and of our
proposed DeepSM architectures.

Note that during the training process, the popular adap-
tive moment estimation (Adam) optimizer is employed for
the off-line learning. Our experiments show that 1.5 × 105

training samples are sufficient for the training set.

B. DEEPSM
Both the maximum likelihood detection as well as the
conventional DNN architecture assume the CSI ĤHH (0) to
remain near constant during the data transmission period.
In order to dispense with this idealized simplifying assump-
tion, we now propose a novel DNN architecture, referred to
as the DeepSM, which updates the estimated CSI ĥhhŝ1(t) of the
active TA at the t-th TS for all t ∈ [1,T ] and operates in a
data-driven fashion, as shown in Fig. 3. Similar to the DNN
of Fig. 2, the proposed DeepSM technique replaces the con-
ventional channel estimation and data detection operations
relying on channel-models by the DNN of Fig. 3. A joint

VOLUME 8, 2020 191913



L. Xiang et al.: Deep-Learning-Aided Joint Channel Estimation and Data Detection for SM

FIGURE 3. The proposed DeepSM architecture for joint channel
estimation and data detection of SM.

data-driven channel estimation and data detection technique
can be designed with the aid of the multiple-layer fully-
connected DNNs, which updates the CSI at each TS.

More specifically, both the CSI matrix ĤHH (t − 1), which
is obtained from the DeepSM in the (t − 1)-st TS, and the
received data yyy(t) at the t-th TS are input to the DeepSM,
resulting in a [2NtNr + 2 Nr ]-node input layer. As shown
in Fig. 3, the hidden layers of our DeepSM architecture are
comprised of two subgroups. The upper subgroup comprising
L1 hidden layers is employed for updating ĥhhŝ1(t) at the t-th
TS and ĥhhm̂(t) = ĥhhm̂(t−1) for m̂(t) 6= ŝ1(t) ∈ M1, while the
lower subgroup comprising L2 hidden layers learns to detect
the transmitted bits ûuu(t) at the t-th TS.

For DeepSM, the number of nodes employed in the hidden
layers for both subgroups is fixed to Z1 = Z2 = 64, which is
sufficiently high for attaining a superior BER performance
for SM systems, while maintaining a moderate detection
complexity. Additionally, L1 = L2 = 3 hidden layers are
selected after the trial experiments.

The operations of DeepSM are summarized in
Algorithm 1. More specifically, the DeepSM relies on the
following steps. To start with, in the t = 1-st TS, the real
and imaginary parts of each element in ĤHH (0) are input to the
DNN via the 2NtNr -node input layer of the upper subgroup
in DeepSM. In the mean time, the real and imaginary parts
of the elements in the signal vector yyy(1) received during the
t = 1-st TS are input to the lower subgroup of the DeepSM
via the 2Nr -node input layer of the lower subgroup. Following
this, given the inputs of ĤHH (0) and yyy(1), the lower subgroup of
the proposed DeepSM is activated to obtain the output ûuu(1).
In the meantime, the upper subgroup updates the CSI ĥhhŝ1(1) at
the t = 1-st TS. Note that ŝ1(1) = VSSK [ûuu(1)] is determined
by the output ûuu(1) of the lower subgroup, which indicates the
active TA index in the t = 1-st TS. The output of the proposed
DNN architecture can be expressed as

ĥhhŝ1(t) = WWW (1)
L1
· · · fRelu

{
WWW (1)

2

[
fRelu

(
WWW (1)

1 HHH (t − 1)

+bbb(1)1

)]
+ bbb(1)2

}
+ · · · + bbb(1)L1 , (14)

ûuu(t) = fsigmoid

{
WWW (2)

L2
· · · fRelu

{
WWW (2)

2

[
fRelu

(
WWW (2)

1 yyy(t)

+bbb(1)2

)]
+ bbb(2)2

}
+ · · · + bbb(2)L2

}
, (15)

where WWW (1)
l1

and bbb(1)l1 , l1 = 1, · · · ,L1, represent the weights

and biases of the l1-th hidden layer of the upper subgroup,
respectively, whereas WWW (2)

l2
and bbb(2)l2 , l2 = 1, · · · ,L2 are the

weights and biases of the l2-th hidden layer of the lower
subgroup, respectively.

The network weights of DeepSM may be expressed as

θ (1) =
{
WWW (1)

1 ,bbb
(1)
1 ,WWW

(1)
2 ,bbb

(1)
2 , · · · ,WWW

(1)
L1
,bbb(1)L1

}
, (16a)

θ (2) =
{
WWW (2)

1 ,bbb
(2)
1 ,WWW

(2)
2 ,bbb

(2)
2 , · · · ,WWW

(2)
L2
,bbb(2)L2

}
. (16b)

After the output ĥhhs1(1) of the t = 1-st TS is obtained, ĥhhs1(1)
will be employed for updating the s1(1)-th column of ĤHH (0),
obtaining the updated CSI in the t = 1-st TS, which can be
expressed as

ĤHH (1) = [ĥhh1(0), · · · , ĥhhs1(1), · · · , ĥhhNT (0)]. (17)

Later in the t-th (t > 1) TS, the same operations as those
in the t = 1-st TS are performed, obtaining ĥhhs1(t) and ûuu(t).

Algorithm 1DeepSM for Joint Channel Estimation and Data
Detection of SM
Input:

CSI matrix ĤHH (0), received data symbols
yyy(1),yyy(2), · · · ,yyy(T ).

Output:
Detected bits ûuu(1), ûuu(2), · · · , ûuu(T ); Estimated CSI
ĥhhs1(1), ĥhhs1(2), · · · , ĥhhs1(T ).

1: for t = 1, · · · ,T do
2: Activate the proposed DeepSM of Fig. 3 with the

inputs, yyy(t) and ĤHH (t − 1);
3: Use the DeepSM with the optimized parameters of

(16b) to obtain detected bits ûuu(t);
4: Use the DeepSM with the optimized parameters of

(16a) to obtain ĥhhŝ1(t);
5: Update the ŝ1(t)-th column in ĤHH (t − 1) with ĥhhŝ1(t);
6: end for

During the training process summarized in Algorithm 2,
the MSE is employed as the loss function, which can be
expressed as

ϕ2(θ (1), θ (2)) =
1
BT

T∑
t=1

B∑
i=1

∥∥uuui(t)− ûuui(t)∥∥2
+

1
BT

T∑
t=1

B∑
i=1

∥∥∥hhhi,s1(t) − ĥhhi,s1(t)∥∥∥2 . (18)
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Algorithm 2 Training of the DeepSM
Input:

CSI matrix ĤHH (0) and received data samples
yyy(1),yyy(2), · · · ,yyy(T );
Perfect CSI hhhs1(1),hhhs1(2), · · · ,hhhs1(T ) and transmitted bits
uuu(1),uuu(2), · · · ,uuu(T ).

Output:
Trained network weights parameters θ (1) and θ (2).

Initialization:
Randomize initial weights θ (1) and θ (2).

1: repeat
2: for t = 1, · · · ,T do
3: Use samples of ĤHH (t − 1) and yyy(t) to update θ (1) and

θ (2) by minimizing ϕ2(θ (1), θ (2)) of (18);
4: Replace the s1(t)-th column in ĤHH (t − 1) with hhhs1(t);
5: end for
6: until Convergence of θ (1) and θ (2)

V. PERFORMANCE RESULTS
In this section, we characterize the performance of the con-
ventional DNN and of the proposed DeepSM architectures
for SM channel estimation and data detection in terms of the
associated loss function, BER performance and complexity,
in Sections V-A to V-C, respectively.

A. LOSS FUNCTION
First, Fig. 4 shows the loss function vs. the number of epochs
of the proposed DeepSM architecture employing L1 = L2 =
1, 2, 3 or 4 hidden layers, with each layer adopting Z1 =
Z2 = 64 nodes, where a single epoch refers to a complete
training session relying on a training data set. The SM system
considered in Fig. 4 employs Nt = 4 TAs and Nr = 4
RAs using binary phase shift keying (BPSK) modulation and
communicates over time-varying Rayleigh fading channels
associated with α = 0.98. It can be observed from Fig. 4 that
a single or a pair of hidden layers, i.e. L1 = L2 = 1 or 2 are
insufficient for the proposed DNN architecture, whereas the
employment of L1 = L2 = 4 layers may result in over-fitting,
hence requiring slightly more epochs to achieve convergence
of the loss function. Hence, L1 = L2 = 3 hidden layers are
adopted for the remaining simulations.

Furthermore, we investigate the influence of the modu-
lation order on the loss function ϕ2 of the proposed DNN
architecture for the channel estimation and data detection of
the SM system for transmission over time-varying Rayleigh
fading channels at SNR= 25 dB, where Nt = 4, Nr = 4,
α = 0.99, 0.98 or 0.97, and BPSK or quadrature phase shift
keying (QPSK) are employed. Here we adopt L1 = L2 = 3
hidden layers with each layer comprising Z1 = Z2 = 64
nodes. As shown in Fig. 5, a lower number of epochs are
required for the convergence of the loss function, when BPSK
is employed.

Additionally, observe in Fig. 5 that there is a rapid initial
convergence leading to a plateau, followed by a second rapid

FIGURE 4. Loss function of the proposed DeepSM for the channel
estimation and data detection of the SM system employing Nt = 4 TAs
and Nr = 4 RAs over time-varying Rayleigh fading channels with different
number of hidden layers under SNR= 25 dB, where η = 0.2, α = 0.98 and
BPSK are employed.

FIGURE 5. Loss function of the conventional DNN architecture for the
channel estimation and data detection of the SM system employing
Nt = 4 TAs and Nr = 4 RAs over time-variant and that of the proposed
DeepSM over time-varying Rayleigh fading channels with α = 0.99,0.98
and 0.97 under SNR= 25 dB, where η = 0.2 and BPSK or QPSK are
employed.

convergence phase. The reason lies in that the loss function
of (18) is comprised of the sum of two MSEs, which corre-
sponds to the output ĤHH (t) and ûuu(t), respectively.

B. BER PERFORMANCE
In this section, the BER performance of the proposed
DeepSM channel estimation and data detection is investi-
gated in Fig. 6 over time-invariant Rayleigh fading channels,
while in Figs. 7 and 8 for transmission over time-varying
Rayleigh fading channels1 and in Fig. 9 over quantized
time-varying Rayleigh fading channels, where low-resolution
ADCs are employed.

To elaborate, Fig. 6 characterizes the BER performance of
the conventional DNNs for the joint channel estimation and

1The block Rayleigh fading is assumed, where the fading coefficient is
fixed for each block and SNR is taken as an average over all blocks.
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FIGURE 6. Uncoded BER performance of the conventional DNNs for the
data detection of the SM system over time-invariant Rayleigh fading
channels employing Nr = 2 or 4 and Nt = 2 or 4.

FIGURE 7. Uncoded and LDPC-coded BER performance of the
model-baed, conventional DNN and DeepSM architecture for the joint
channel estimation and data detection of the SM systems employing
Nt = 4 TAs and Nr = 4 RAs over time-varying Rayleigh fading channels
under imperfect CSI with η = 0.2.

data detection scheme of our SM system for transmission
over time-invariant channels employing Nr = 2 or 4 and
Nt = 2 or 4, which shows a similar performance to that of
the conventional approach discussed in Section III. Hence,
a direct application of the DNNs is capable of achieving near
model-based channel estimation and data detection perfor-
mance for the SM channel estimation and data detection over
time-invariant channels.

However, since the conventional DNN architecture fails to
update the CSI at each TS in realistic time-varying channels,
it fails to facilitate reliable detection, hence resulting in a poor
BER performance. By contrast, the proposed DeepSM out-
performs the conventional DNN architecture in the high-SNR
region, which is an explicit benefit of exploiting the CSI at
each TS. This is shown in Figs. 7 and 8, where the uncoded
SM system employs Nt = 4 TAs and Nr = 4 RAs for
communicating over time-varying Rayleigh fading channels
under imperfect CSI in conjunction with η = 0.2 and 0.1.
Furthermore, by comparing Figs. 7 and 8, we can see the

FIGURE 8. Uncoded and LDPC-coded BER performance of the
model-baed, conventional DNN and DeepSM architecture for the joint
channel estimation and data detection of the SM systems employing
Nt = 4 TAs and Nr = 4 RAs over time-varying Rayleigh fading channels
under imperfect CSI with η = 0.1.

FIGURE 9. Uncoded BER performance of the conventional model-based
and the DeepSM for the joint channel estimation and data detection of
the SM systems employing Nt = 4 TAs and Nr = 4 RAs over the
time-invariant and time-varying quantized Rayleigh fading channels with
4-bit or 6-bit ADCs where η = 0.1 and α = 0.99.

influence of η. Naturally, having a higher percentage of pilot
symbols in a frame results in an improved BER performance.
Hence, for an uncoded system, where the target BER lies
between 10−2 to 10−3, the DeepSM advocated shows the best
performance among the three approaches.

Furthermore, the residual BER can be mitigated by for-
ward error correction (FEC) codes, as demonstrated in
Figs. 7 and 8, where a half-rate low-density parity-check
(LDPC) code is employed. We can see from both figures that
for the LDPC-coded SM systems, DeepSM still achieves the
best BER performance at high SNRs.

Fig. 9 further characterizes the BER performance of both
the conventional model-based and of the DeepSM aided joint
channel estimation and data detection in the context of SM
systems for transmission over fading channels, where 4- or
6-bit ADCs are employed by the receiver for quantizing the
received signal. The SM system of Fig. 9 adopts the same
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TABLE 2. MATLAB Runtime (ms) comparison of conventional SM channel estimation and data detection, conventional DNN as well as DeepSM, where
Nr = 4.

parameters as those of Fig. 7. We can see that our DeepSM
exhibits a lower error floor than the conventional channel
estimation and data detection approach in the case of low-cost
4-bit or 6-bit ADCs. Additionally, Fig. 9 shows that the BER
performance of the DeepSM scheme employing a 4-bit ADC
approaches that of an ideal ADC.

C. COMPLEXITY
Now we characterize the complexity when employ-
ing the different channel estimation and data detection
approaches conceived in this paper, as shown in Table 2.
In particular, the complexity order of the conventional
maximum-likelihood approach, conventional DNN-aided
approach as well as DeepSM are O(NtM2), O(Z2) and
O(Z2

1 + Z
2
2 ), respectively. Specifically, the complexity order

of the maximum-likelihood approach is determined by the
modulation order, whereas the complexity order of the
DNN-aided approaches are determined by the size of the
hidden layer in the DNNs. This indicates that when the DNN
architecture is fixed, the modulation order will not influence
the detection complexity of either conventional DNN or
DeepSM much.

Additionally, we can see from Table 2 that the MATLAB
runtime [36], [37] of the maximum-likelihood approach
increases significantly when either Nt or M2 increases.
By contrast, when DNN-aided approaches are employed,
the MATLAB runtime can be greatly reduced and remains
similar as the increase of modulation orderNt orM2, since the
DNN structure allows the parallel operations in MATLAB,
significantly reducing the communication latency. Addition-
ally, by comparing the two DNN-aided approaches, we can
see that the DeepSM requires a higher running time due to the
higher size of hidden layers, but achieves significantly better
BER performance over the time-varying channels, as demon-
strated in Section V-B.

VI. CONCLUSION AND FUTURE RESEARCH
We have first used the conventional DNN for joint chan-
nel estimation and signal detection in SM systems com-
municating over time-invariant channels. Then, a DeepSM
structure relying on a pair of DNN subgroups has been
proposed for channel estimation and data detection in SM
systems communicating over time-varying fading channels.
Our studies and simulation results have shown that the

conventional DNN based detector is capable of achieving a
similar BER performance to that of the model-based channel
estimator and detector over idealized time-invariant chan-
nels. However, the proposed DeepSM outperforms both the
model-based approach and the conventional DNN structure,
even when communicating over time-varying and non-linear
channels, since the proposed DeepSM estimates the CSI at
each TS.

Our future work will investigate data-driven DNN-aided
detection in multiuser communications in the scenarios of
non-coherent as well as coherent mMTC and Internet of
Things. Furthermore, reducing the gap to the capacity by
iterative detection and decoding approaches is worth inves-
tigating.
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