
Received October 13, 2020, accepted October 17, 2020, date of publication October 20, 2020, date of current version October 29, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3032545

Adaptive Resource Allocation and Consolidation
for Scientific Workflow Scheduling in
Multi-Cloud Environments
ZHEYI CHEN 1, KAI LIN2, BING LIN 2, XING CHEN 3, XIANGHAN ZHENG3,
AND CHUNMING RONG 4, (Senior Member, IEEE)
1College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF, U.K.
2College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
3College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350108, China
4Department of Electronic Engineering and Computer Science, University of Stavanger, 4036 Stavanger, Norway

Corresponding authors: Bing Lin (WheelLX@163.com) and Xing Chen (chenxing@fzu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 62072108, in part by the Natural
Science Foundation of Fujian Province for Distinguished Young Scholar, in part by the Natural Science Foundation of Fujian Province
under Grant 2019J01286, in part by the Guiding Project of Fujian Province under Grant 2018H0017, in part by the Young and Middle-aged
Teacher Education Foundation of Fujian Province under Grant JT180098, and in part by the China Scholarship Council.

ABSTRACT The emerging multi-cloud environments (MCEs) empower the execution of large-scale
scientific workflows (SWs) with sufficient resource provisioning. However, due to complex task depen-
dencies in SWs and various cost-performance of cloud resources, the SW scheduling in MCEs faces huge
challenges. To address these challenges, we propose an Online Workflow Scheduling algorithm based on
Adaptive resource Allocation and Consolidation (OWS-A2C). In OWS-A2C, the deadline reassignment is
first executed for SW tasks based on the execution performance of instance resources, which enhances
resource utilization from a local perspective when executing an SW. Next, the execution instances are
allocated and consolidated according to the performance requirements of multiple SWs, which improves
resource utilization and reduces the total costs of executing multiple SWs from a global perspective. Finally,
the SW tasks are dynamically scheduled to the execution instances with the earliest-deadline-first (EDF)
discipline and completed before their sub-deadlines. The extensive simulation experiments are conducted to
demonstrate the effectiveness of the proposed OWS-A2C on SW scheduling in MCEs, which outperforms
three baseline scheduling methods with higher resource utilization and lower execution costs under deadline
constraints.

INDEX TERMS Multi-cloud environments, scientific workflows, scheduling optimization, resource alloca-
tion, resource consolidation.

I. INTRODUCTION
In recent years, workflow technologies have been widely
adopted by many applications in science domains to han-
dle the data analysis and processing for scientific innova-
tion and knowledge discovery [1], [2]. However, due to the
ever-increasing data volumes, the performance requirements
of many scientific workflows (SWs) on data analysis and
processing have significantly increased and thus their exe-
cutions have been alternatively migrated to the cloud with
more powerful computational capacity [3]–[5]. Furthermore,

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

multi-cloud environments (MCEs) have emerged as a new
and efficient computing pattern for large-scale SWs [6]–[8],
which offer more sufficient resource provisioning and diver-
sified pricing mechanisms. Thus, the MCEs promise a larger
optimization space for SW scheduling [9]. However, SWs
contain complicated structures with complex task dependen-
cies [10], while the cost-performance of instance resources
for executing the same task might be different in MCEs [11].
Therefore, SW scheduling in MCEs can be regarded as an
NP-hard problem [12].

In response to this problem, it is necessary to design
an effective scheduling strategy to reduce the execution
costs of executing SWs while meeting the Quality-of-Service

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 190173

https://orcid.org/0000-0002-6349-068X
https://orcid.org/0000-0001-5874-4748
https://orcid.org/0000-0001-9641-3528
https://orcid.org/0000-0002-8347-0539
https://orcid.org/0000-0003-2601-9327

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

(QoS) requirements. However, most of the current schedul-
ing strategies in cloud environments focus on a single
workflow [13]–[16], and they do not fully consider the prob-
lem of irregular arrivals in large-scale SW scheduling. More-
over, most of these strategies do not well take some essential
constraints into account. For example, the deadline constraint
is an important feature in the field of emergency scien-
tific computing [17]. In addition, the existing work mainly
depends on the static SW scheduling without the consid-
eration of a real-time manner [18], [19]. Therefore, online
scheduling for large-scale SWs with deadline constraints in
MCEs has become one of the major challenges in the domain
of scientific computing [20].

To address the above challenges, in light of our previ-
ous work [21], we propose an Online Workflow Schedul-
ing algorithm based on Adaptive resource Allocation and
Consolidation (OWS-A2C). The OWS-A2C aims to improve
resource utilization and reduce the execution costs of SWs
under deadline constraints in MCEs. The main contributions
of this paper are summarized as follows.
• The deadline reassignment is first implemented accord-
ing to the execution performance of instance resources.
From a local perspective, it can improve resource uti-
lization when executing an SW. Next, the execution
instances are allocated and consolidated based on the
performance requirements of multiple SWs. From a
global perspective, it can enhance resource utilization
and reduce the total costs of executing multiple SWs.
Finally, the SW tasks are dynamically scheduled to the
execution instances with the EDF discipline while meet-
ing their deadline constraints.

• Extensive simulation experiments are conducted to
demonstrate the effectiveness of the proposed OWS-
A2C on SW scheduling in MCEs. The results show
that the proposed method can achieve higher resource
utilization and lower execution costs than three baseline
scheduling methods under deadline constraints.

The rest of this paper is organized as follows. In Section II,
we review the related work. Section III formulates the prob-
lem of SW scheduling in MCEs. In Section IV, we present
the proposed OWS-A2C method in detail. Section V eval-
uates the proposed method by simulation experiments.
In Section VI, we conclude this paper and look for future
work.

II. RELATED WORK
As an effective measure for optimizing scientific computing,
workflow scheduling has attracted much research attention,
while many scholars have contributed to addressing this
important problem. In this section, we review the relatedwork
on workflow scheduling problem with deadline constraints.

Towards a single workflow, Sakellariou et al. [14] pro-
posed a scheduling algorithm for optimizing costs with
budget constraints in grid environments, which can adjust
the scheduling plan to approach the optimal one by using
the most cost-effective allocation strategy. The algorithm

has a certain enlightening effect on our proposed work,
but it focused on grid environments without consider-
ing the resource pricing mechanisms in cloud computing.
Abrishami et al. [15] extended the workflow scheduling sce-
narios from the grid to cloud environments and designed two
workflow scheduling algorithms, including the IaaS Cloud
Partial Critical Paths (IC-PCP) and the IaaS Cloud Partial
Critical Paths with Deadline Distribution (IC-PCPD2). This
work considered some characteristics of cloud computing,
such as on-demand resource allocation and interval-based
pricing mechanisms. However, it only focused on the
scheduling problem for a single workflow but did not
well discuss the scheduling problem for multiple work-
flows. Based on the Pareto theory, Durillo et al. [16]
proposed a Multi-Objective Heterogeneous Earliest Finish
Time (MOHEFT) algorithm in cloud environments, which
optimized workflow execution time and resource utiliza-
tion. Moreover, Wang et al. [22] designed a CLoud scientific
wOrkflow SchedUling algoRithm based on attack-defensE
game model (CLOSURE), which reduced the attacker’s ben-
efits and the time costs of the algorithm. Different from
these two work, we consider optimizing resource utilization
and workflow execution costs with deadline constraints in
MCEs. Arabnejad et al. [23] designed a heuristic Budget
Deadline Aware Scheduling (BDAS) algorithm targeted for
a single workflow with budget and deadline constraints in
clouds, which made a balance between budget and deadline
constraints and thus improved the success rate of workflow
scheduling while optimizing the execution costs. However,
this work only considered the scheduling problem for a single
workflow. In our previous work [18], we adopted the PCP
theory to handle the scheduling problem for a single SWwith
deadline constraints in MCEs, which optimized the execu-
tion costs by compressing data communication. Moreover,
we developed an Adaptive Discrete Particle Swarm Opti-
mization with Genetic Algorithm (ADPSOGA) in [24] for
scheduling a single SW with deadline constraints in MCEs,
which can reduce the execution costs while meeting deadline
constraints. However, they only focused on a single work-
flow, the scheduling problem for multiple SWs was not well
considered.

In response to multiple SWs, Malawski et al. [19]
designed a dynamic scheduling algorithm, which took into
account the uncertainty of task execution time and the
start-up delay of instances, to guarantee the completion rate
of scheduling SWs under budget and deadline constraints.
However, this work only relied on one instance type but
not multiple ones in MCEs. Lorido-Botran et al. [25] and
Kang et al. [26] improved resource utilization and reduced
execution costs based on the principles of instance scheduling
scaling and rule scaling, respectively, which adaptively turned
on or off instances while meeting the performance require-
ments of SWs. To some extent, these two works enlighten
the instance allocation and consolidation proposed in our
work, but they did not consider deadline constraints. Mao
and Humphrey [27] proposed an adaptive resource scaling

190174 VOLUME 8, 2020

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

FIGURE 1. The proposed online workflow scheduling model.

method that can reduce the total cost of executing instances.
Moreover, Wangsom et al. [28] developed a new schedul-
ing framework to optimize network utilization and energy
consumption in a cloud data center. However, these two
work only targeted at a single cloud environment but did
not consider the problems of instance allocation and task
scheduling in MCEs. Based on the equal-weight task divi-
sion in multiple SWs, we designed an online fault-tolerant
scheduling strategy in our previous work [21], which can
guarantee the high success rate of completing multiple
SWs in hybrid cloud environments. By contrast, the objec-
tive of this work is to enhance the utilization of instance
resources and reduce the total costs of executing multiple
SWs in MCEs.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this section, we introduce the proposed online workflow
scheduling model in detail. As shown in Figure 1, the pro-
posed model consists of multiple scientific workflows (SWs),
a multi-cloud environment (MCE), and a cloud broker who
serves as the online workflow scheduler. In the proposed
model, multiple SWs with deadline constraints are sched-
uled by the proposed OWS-A2C, where the SW tasks are
distributed to the appropriate execution instances while the
idle ones are consolidated adaptively. Thus, not only the
utilization of instance resources is improved but also the total
execution costs are reduced. Meanwhile, the proposed
model ensures that each SW can be completed before their
sub-deadlines.

We assume that an SW wi is described by using a directed
acyclic graph (DAG), denoted by Gi(Vertexi,Edgei), where
Vertexi = {ti1, ti2, . . . , tin} and Edgei = {ei12, ei13, . . . , eijk}
are the sets of task nodes and dependencies, respectively.
More specifically, eijk = (tij, tik) indicates that there is a
dependency between the tasks tij and tik , where tik is the

child task of tij and tij is the parent task of tik . In this work,
we focus on the impact of adaptive resource allocation and
consolidation on SW scheduling, and thus the data transmis-
sion between different tasks is neglectable while the storage
capacity is assumed to be unlimited [29], [30]. During the
scheduling process, a child task can only be executed after all
its parent tasks have been completed. Moreover, each SW has
its deadline constraint, denoted by D(wi), which represents
the expected completion time of an SW.

In an MCE, there are multiple cloud service providers
(CSPs), denoted by P = {p, q, r, . . .}. For a CSP p, it can
provide different types of instances, denoted by Sp =
{sp1, sp2, . . . , spm}. We define the execution time of the task
tij on the instance spk as Texe(tij, spk), and it is assumed to
be known. Meanwhile, the cost-performance might be differ-
ent when tasks are executed on various types of instances.
Moreover, we assume that all instances are equipped with
single-core and perform serial processing, and thus only one
task can be executed at a time. Besides, a pricing unit time
(denoted by λp) is specifically set by the CSP p for providing
services, and the instance spk is set a corresponding price in
unit time (denoted by cpk).
As the objective of our work is to optimize the compu-

tational costs of execution instances, other aspects of costs
such as storage, retrieval, analysis, and task conversion are not
taken into account [18]. We define the scheduling plan as S =
(Re,Map,Ttotal,Ctotal), where Re = {vm1, vm2, . . . , vmr }
is the set of activated instances, Map = {(tij, vmk)|tij ∈
Vertexi, vmk ∈ Re} is the mapping relationship between
tasks and execution instances, Ttotal is the completion time
of SWs, and Ctotal is the total execution costs. Moreover,
the moments of turning on and off for each execution instance
are denoted by Tls(vmi) and Tle(vmi), respectively. When
the task tij is completed, its actual end and start moments
are recorded, denoted by AET (tij) and AST (tij), respectively.

VOLUME 8, 2020 190175

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

Therefore, the total execution costs are defined as

Ctotal =
|Re|∑
i=1

cs(vmi) · d
Tle(vmi)− Tls(vmi)

λp(vmi)
e, (1)

where s(vmi) is the instance type, cs(vmi) is the corresponding
unit-time price, p(vmi) is the CSP who provides the instance,
and λp(vmi) is the pricing unit time of the CSP.

Since many execution instances might be activated for
meeting the service requirements of multiple SWs, our opti-
mization objective is to improve the average resource utiliza-
tion of execution instances. Based on the above definitions,
we formulate the online scheduling problem formultiple SWs
with deadline constraints in MCEs as

Maximize Uinstance
Minimize Ctotal
Subject to ∀wi,max

tij∈wi
{ATE(tij)} ≤ D(wi), (2)

where Uinstance indicates the average resource utilization of
execution instances, and our optimization objective is to max-
imize Uinstance and minimize Ctotal while meeting deadline
constraints.

IV. DESIGN OF THE OWS-A2C
In this section, we present the proposed Online Workflow
Scheduling algorithm based on Adaptive resource Allocation
and Consolidation (OWS-A2C). The proposed method can
be used to schedule multiple SWs in real-time and effec-
tively allocate and consolidate instance resources based on
the system status of MCEs. In MCEs, pricing mechanisms
rely on unit intervals without considering the actual execution
time of instances. Therefore, it is necessary to consolidate
instances that are not fully utilized. First of all, we reassign
task deadlines according to the execution performance of
instances, which can improve resource utilization from a
local perspective when executing an SW. Next, the instances
are allocated and consolidated based on the performance
requirements of multiple SWs, which can enhance resource
utilization and reduce the total costs of executing SWs from
a global perspective. Finally, the SW tasks are dynamically
scheduled to execution instances by following the EDF dis-
cipline while ensuring that all tasks can be completed before
their sub-deadlines. More details are given in the following
sub-sections.

A. DEADLINE REASSIGNMENT
For an SW, it has its own deadline constraint. Before schedul-
ing, the tasks in an SW need to be divided so that they can
be scheduled independently (without dependencies). Next,
the deadline of the SW is reassigned to the tasks, which forms
their sub-deadlines. If all tasks in an SW are completed before
their sub-deadlines, the SW would be completed under its
deadline constraint.

The key steps of the deadline reassignment are shown in
Algorithm 1.

Algorithm 1 Deadline Reassignment
1: Procedure ReassignDll(Gi(Vertexi,Edgei),D(wi))
2: Confirm the valid instance types in an MCE.
3: for each tij in wi do
4: Schedule tij to vmpkr with the highest cost-

performance.
5: end for
6: Form a hypothetical scheduling planMap.
7: Call Pa2Se(Gi(Vertexi,Edgei),D(wi),Map).
8: while true do
9: if makespan(Map) ≤ D(wi) then
10: returnMap.
11: else
12: for each tij in wi do
13: Mapij = Map − (tij → vmpkr) + (tij →

nextFasterVM).
14: rankij =

makespan(Map)−makespan(Mapij)
cost(Mapij)−cost(Map)

.
15: end for
16: index = subscript(max(rankij)).
17: Map = Mapindex .
18: end if
19: end while
20: End Procedure

First of all, the valid instance types in an MCE need to be
confirmed, and the tasks in an SW are scheduled to the cor-
responding instances with the highest cost-performance, and
thus a hypothetical scheduling plan is formed (Lines 2∼6),
denoted by Map. This plan only represents the theoreti-
cal calculation and serves as a reference for subsequent
actual scheduling. Moreover, it should be noted that one
instance may need to execute tasks from multiple differ-
ent SWs simultaneously in the multi-workflow scheduling
problem. Next, parallel tasks are converted to serial ones
(Line 7). This is because there might be a large amount of
remaining execution time when multiple parallel small tasks
occupy execution instances alone [31]. If the makespan of
Map does not exceed the deadline of the corresponding SW,
Map will be output (Lines 9∼10). Otherwise, Map will be
updated iteratively (scheduling tasks to execution instances
with faster processing speed). Finally, among the recorded
feasible plans (meeting deadline constraints), the plan with
the highest cost-performance rank (denoted by Mapindex)
will be selected and output (Lines 12∼17). The rank is
defined as

rank =
makespan(Map′)− makespan(Map)

cost(Map)− cost(Map′)
, (3)

where the functions makespan() and cost() are used to calcu-
late the makespan and execution costs of a scheduling plan,
respectively.

Algorithm 2 shows the conversion from parallel to serial
tasks in detail, which can be used to improve the resource

190176 VOLUME 8, 2020

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

Algorithm 2 Conversion From Parallel to Serial Tasks
1: Procedure Pa2Se(Gi(Vertexi,Edgei),D(wi),Map)
2: for each tij and tik in wi do
3: if tij and tik have the same parent and child nodes

&& Texe(tij, spk) ≤ 1
2λp

&& Texe(tik , sqr) ≤ 1
2λq then

4: Convert tij and tik to serial tasks and schedule
them to instances with the fastest processing
speed.

5: if Map can not satisfy deadline constraint then
6: Rollback to the previous statusMap′.
7: end if
8: end if
9: end for

10: End Procedure

utilization of execution instances. First of all, if the parallel
tasks have the same parent and child nodes and their execu-
tion time does not exceed half of their execution instances’
pricing unit time, they will be converted to serial tasks and
scheduled to the instances with the fastest processing speed
(Lines 3∼4). During this process, the execution time of a
scheduling plan might exceed the deadline. When this hap-
pens, the rollback operation will be taken and the scheduling
status will return to the previous one that satisfies the deadline
constraint (Lines 5∼6).

Taking Figure 2 as an example, the SW occupies 5 exe-
cution instances, where the tasks t3, t4, t5, and t6 have
the same parent node t1 and child node t7, and each of
these parallel tasks occupies one execution instance, respec-
tively. By following Algorithm 2, the tasks t3, t4, t5, and t6
are converted to serial tasks and scheduled to vm3, where
vm3 is assumed to offer the fastest processing speed. Thus,
the costs of two execution instances (i.e. vm4 and vm5) can be
saved.

FIGURE 2. An example of the conversion from parallel to serial tasks.

B. INSTANCE ALLOCATION AND CONSOLIDATION
1) INSTANCE ALLOCATION
After the deadline reassignment, each task has a correspond-
ing execution interval, which is defined as

Intervalij(Tstart ,Tend) = Tend − Tstart , (4)

where Tstart and Tend represent the start and end time of the
task execution, respectively.

Moreover, we define an execution vector for the SW
wi corresponding to a certain instance type, denoted by
EV (wi, spk) = {ev(ti1, spk), ev(ti2, spk), . . . , ev(tin, spk)},
where ev(tij, spk) indicates the number of instances of the type
spk required to complete the task tij, which is defined as

ev(tij, spk) =
Texe(tij, spk)

Intervalij(Tstart ,Tend)
. (5)

When ev(tij, spk) > 1, the execution time exceeds the
corresponding execution interval, and thus the task tij can-
not be completed within its sub-deadline by using the cur-
rent instance type. For example, after deadline reassignment,
the execution interval of the task tij is Intervalij(5 : 00,
6 : 00). We assume that the execution time of this task on
the instance vmpk is 30 minutes, and thus the corresponding
value of ev(tij, spk) would be 1

2 . Since this value does not
exceed 1, the task tij can be scheduled to the instance vmpk
and completed within its execution interval.

Besides, the execution vectors for the SW wi correspond-
ing to all instance types can be expressed by using the
matrix SEV as

SEV =

ev(ti1, spk), ev(ti2, spk), . . . , ev(tin, spk)
ev(ti1, sqk), ev(ti2, sqk), . . . , ev(tin, sqk)
ev(ti1, srk), ev(ti2, srk), . . . , ev(tin, srk)

...

 . (6)

By adding the row vectors of SEV , the number of execution
instances of different types required to complete the SW
wi before its deadline D(wi) can be obtained, denoted by
Np = {Npk ,Nqk ,Nrk , . . .}, where Npk is the number of
execution instances of the type spk . During the scheduling
process, if the allocated number of execution instances is
always greater than or equal to the required ones, all SW tasks
would be completed before their sub-deadlines.

2) INSTANCE CONSOLIDATION
An expected scheduling plan is able to schedule tasks to the
execution instances with the highest cost-performance, while
the instances can achieve high resource utilization. However,
due to the different execution time of tasks, the resource
utilization of some execution instances may be low in the
scheduling process. To address this problem, it is necessary
to perform instance consolidation and migrate some tasks to
the instances that are not with the highest cost-performance,
which can help improve resource utilization and reduce exe-
cution costs. As shown in Figure 3, for example, the tasks ti1

VOLUME 8, 2020 190177

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

FIGURE 3. An example of the instance consolidation.

and ti2 are scheduled to the instances vmpk1 and vmpj1, respec-
tively. However, these two tasks only occupy a small part of
the pricing unit interval while there are no other tasks to be
executed in this interval. Therefore, they are consolidated and
scheduled to the instance vmpk1. Although the instance vmpk1
may not offer the highest cost-performance to the task ti2,
the execution costs of the instance vmpj1 in a unit time can
be saved by instance consolidation. During the process, each
task is guaranteed to be completed before their deadlines.

The key steps of the instance consolidation are shown in
Algorithm 3. First of all, the algorithm checks different types
of instance resources (denoted by Re) activated in the current
MCE and the number of different types of instances (denoted
by Repk) (Line 2). If the required number of execution
instances of the type spk is greater than the currently activated
ones, the algorithm will search for other instance types with
remaining resources and schedule the uncompleted tasks to
these instances (Lines 4∼10), where ttop_in_spk represents the
task that is closest to its sub-deadline. Finally, the algorithm
keeps running until the number of activated instances exceeds
the required ones (Lines 11∼12).

Algorithm 3 Instance Consolidation
1: Procedure ConsolidateIns(Np,Re)
2: Check the activated instance types Re and the number of

instances Repk .
3: for each spk do
4: if Npk > Repk then
5: for each sqk do
6: if Nqk + ev(ttop_in_spk , sqk) ≤ Reqk then
7: Npk = Npk − ev(ttop_in_spk , spk).
8: Nqk = Nqk + ev(ttop_in_spk , sqk).
9: Schedule ttop_in_spk to an instance of sqk .
10: end if
11: if Npk ≤ Repk then
12: break.
13: end if
14: end for
15: end if
16: end for
17: End Procedure

3) ONLINE SCHEDULING FOR MULTIPLE SWs
Through the instance allocation and consolidation, the
required number of different types of execution instances

can be determined. Furthermore, based on the earliest-
deadline-first (EDF) discipline [32], the online scheduling
is performed for the tasks whose deadlines have been reas-
signed. For a certain type of execution instances, all the
tasks on the corresponding instances are sorted by their sub-
deadlines. When an instance is available, the tasks will be
scheduled to this instance by following the EDF discipline.

More specifically, the flow of the proposed OWS-A2C
is shown in Figure 4, where the detailed steps are listed as
follows.

FIGURE 4. The flow of the proposed OWS-A2C.

Step 1: Monitor and collect the status information such
as valid instance types, activated execution instances, and
corresponding task execution progress in an MCE.
Step 2: According to Algorithm 1, reassign the task dead-

lines in SWs and calculate their corresponding execution
intervals. To reduce resource waste, Algorithm 2 is used to
convert parallel tasks to serial ones.
Step 3: Update the execution vectors corresponding to dif-

ferent instance types for each task, and generate the execution
matrix SEV for each SW.
Step 4: Check the execution status and available resources

of the activated execution instances, and perform instance
consolidation by using Algorithm 3.
Step 5: Determine whether the existing instance resources

are sufficient. If the current instance resources are insuffi-
cient, activate the required number of execution instances and
skip to Step 2. If the current instance resources are sufficient,
further determine whether the resource waste happens. If the
current instance resources are surplus, shut down idle execu-
tion instances. Otherwise, skip to Step 6.
Step 6: Based on the current status of SW tasks and exe-

cution instances, schedule the tasks by following the EDF
principle.

V. PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed
OWS-A2C for SW scheduling and make comparisons with
three baseline scheduling methods.

190178 VOLUME 8, 2020

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

FIGURE 5. Different load modes for multiple SWs.

A. SETTINGS AND DATASETS
The simulation environment is established on Windows 7
64-bit with Intelr CoreTM i7 CPU @2.30 GHz and
RAM 8.00 GB DDR4. Specifically, we implement the
multi-cloud simulation environments and the proposed
scheduling method for multiple SWs based on Python 3.6,
where NumPy is used to provide massive mathematical func-
tion libraries for array and matrix operations. Moreover, five
types of SWs are used in our simulations including Montage,
CyberShake, Epigenomics, LIGO, and SIPHT [33], where
each one has its unique structure. For example, there are
many parallel tasks in LIGO and SIPHT without obvious
task dependency. By contrast, there are many serial tasks
in Epigenomics with many task dependencies. For each SW
type, a medium-size SW with around 100 tasks is chosen.

Next, three representative load modes are selected for each
SW type [34], including the steady-load, growing-load, and
switching-load modes. As shown in Figure 5, we simulate the
arrival pattern and number of multiple SWs within 72 hours,
where the time interval of SWs’ arrivals is 5 minutes. In the
steady-load mode, the number of arriving SWs is stable with
little fluctuations. In the growing-load mode, the number
of arriving SWs grows rapidly. In the switching-load mode,
the number of arriving SWs shows a strong time correlation.

Moreover, we assume that there are three CSPs (i.e. C1,
C2, and C3) in an MCE, where each CSP offers 8 instance
types with the corresponding processing speed and execution
cost per unit time. Among the types provided by C1(C2/C3),
the fastest processing speed of a type is approximately 5(8/10)
times the slowest one. Correspondingly, the execution cost
increases by the same multiple [18]. Specifically, the execu-
tion cost per unit time of an instance type with the slowest
processing speed in each CPS is set to 2 USD/hour, and the
pricing unit time is set to 1 hour [35]. Furthermore, the task
execution time of the instance with the slowest processing
speed is the same as that generated by the workflow gen-
erator proposed in [36], which facilitates the evaluation of
scheduling systems and algorithms for different SW sizes and
parameterizes the information collected from the actual exe-
cutions of SWs to generate synthetic SWs that can resemble

those used by real-world scientific applications. In addition,
we assume that about one-third of tasks in an SW can be
executed on the instances with the corresponding highest
cost-performance [23].

Finally, we define five different deadlines for each SW as

Dk (wi) = rk ·min(wi), (7)

where k = {1, 2, . . . , 5}, min(wi) is the time required for
completing the SW wi by using the Heterogeneous Earliest-
Finish-Time (HEFT) algorithm [37], and the value of rk is
sequentially taken from the set R = {1.2, 1.5, 3, 5, 8}.

To validate the effectiveness of the proposed OWS-A2C,
we first modify three scheduling algorithms proposed in the
related work so that they can adapt to the current scenario.
Next, we regard them as baseline scheduling methods and
conduct comparative experiments. The detailed descriptions
are given as follows.
• GAINM. By extending the GAIN algorithm [14],
the GAIN with Modification GAINM) algorithm can
better adapt to the cost optimization problem of schedul-
ing multiple SWs with deadline constraints in MCEs.
Firstly, the GAINM select the instance type with the
lowest execution cost to schedule the tasks of a single
SW. Next, the scheduling plan is continuously updated
according to Equation (3) until the execution time satis-
fies the deadline constraints.

• PHGS. By referring to our previous work [21], the Par-
tition Hierarchically and Greedy Scheduling (PHGS)
algorithm first estimates the earliest start time and
sub-deadlines of unscheduled tasks based on the
equal-weight task division. Next, the tasks are scheduled
to the execution instances that satisfy the sub-deadline
constraints and consume the lowest execution cost by
the greedy algorithm.

• PHA2CI. The deadline reassignment relies on SW struc-
tures and task weights by using the equal-weight task
division [21], but it does not consider instance types.
Therefore, the Partition Hierarchically based on the
Adaptive Allocation and Consolidation for Instances
(PHA2CI) algorithm is designed to better evaluate the

VOLUME 8, 2020 190179

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

impact of deadline reassignment on scheduling results,
because it performs instance allocation and consolida-
tion during the scheduling process.

B. EXPERIMENTAL RESULTS
As load modes and the arriving number of multiple SWs
might be various, we use an average execution cost (denoted
by AvgNec(W)) and average utilization of execution instances
(denoted by AvgUti(VM)) as the performance indexes for eval-
uating different scheduling methods, which are defined as

AvgNec(W) =
Ctotal(W)

N (W) ·minwi∈W {CC(wi)}
, (8)

AvgUti(VM) =

∑M
i=1Uti(vmi)

M
, (9)

where Ctotal(W) represents the total execution costs
and N (W) is the number of arriving multiple SWs.
minwi∈W {CC(wi)} indicates the lowest cost of scheduling
each SW to the corresponding instances by using the greedy
algorithm in a single cloud environment, which does not
consider deadline constraints. Moreover, M and Uti(vmi)
represent the number of activated execution instances and the
resource utilization of each instance during the scheduling
process, respectively.

Figures 6, 7, and 8 show the average execution cost
and utilization of execution instances for scheduling three
types of SWs (i.e. CyberShake, Epigenomics, and LIGO)
under three load modes (i.e. steady-load, growing-load,
and switching-load modes), respectively. In general, these
scheduling methods achieve their corresponding best perfor-
mance in the growing-loadmode, followed by the steady-load
and switching-load modes. This is because the number of
arriving SWs in the growing-load mode is constantly increas-
ing, and thus there are fewer idle instances, which leads
to higher resource utilization and lower average execution
cost. By contrast, numerous execution instances need to be
activated during the peak period under the switching-load
mode, and thus many idle instances might occur after this
period, which will result in lower resource utilization and
higher average execution cost.

Compared to other scheduling methods, the proposed
OWS-A2C shows the best performance, while the PHGS
performs worst in most cases. This is because the PHGS per-
forms the deadline reassignment only based on the task loads,
and thus it is hard to find the best execution instance to satisfy
the reassigned sub-deadlines. Meanwhile, the PHGS uses the
greedy algorithm to select scheduling plans, which may save
some execution costs when dealing with a single SW. How-
ever, when it comes to multiple SWs, this method will cause
higher execution costs. By contrast, the PHA2CI performs the
instance consolidation after the deadline reassignment, so it
outperforms the PHGS in most cases. Moreover, the GAINM
chooses the instance with the highest cost-performance to
schedule tasks, and thus it is more suitable for scheduling
multiple SWs. Because execution instances receive more
tasks as the number of SWs rises, and thus their utilization

FIGURE 6. Performance comparisons of scheduling CyberShake under
various load modes among different methods.

will increase and execution costs will decrease. But in some
cases of the LIGO, the performance of the GAINM may be
slightly inferior to the PHGS, as shown in Figures 8(a) and
(b). This is because there are many parallel tasks in the LIGO,
which might influence the optimization effect on execution
costs when the deadline is tight (e.g. D1).

Moreover, as shown in Figures 7(b) and (c), when the
deadline is tight (e.g. D1), the performance gap between

190180 VOLUME 8, 2020

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

FIGURE 7. Performance comparisons of scheduling Epigenomics under
various load modes among different methods.

different methods is small. This is because all these methods
tend to schedule tasks to the instance with the fastest pro-
cessing speed when they face strict deadlines. Correspond-
ingly, the average resource utilization of execution instances
is not high in this case. Since there are many serial tasks
in the Epigenomics, the optimization space for execution
costs might thus be limited. With the relaxation of deadline
constraints, the performance of the OWS-A2C becomes more

FIGURE 8. Performance comparisons of scheduling LIGO under various
load modes among different methods.

excellent. This is because the proposed method comprehen-
sively considers the cost-performance, resource utilization,
and execution costs of execution instances in the process of
scheduling optimization. By contrast, the PHGS does not take
the above important factors into account, so its performance
is severely degradedwhen deadline constraints become loose.

As for the other two types of SWs including Montage
and SIPHT, their corresponding scheduling performances

VOLUME 8, 2020 190181

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

achieved by using different schedulingmethods under various
load modes are similar to the cases of the CyberShake and
Epigenomics, as shown in Figures 6 and 7, respectively.
Therefore, the descriptions will not be repeated.

VI. CONCLUSION AND FUTURE WORK
The complex task dependencies and various resource
cost-performance impose great challenges on scheduling
multiple SWs with deadline constraints in MCEs. To address
these challenges, we propose an OWS-A2C method to per-
form the online SW scheduling with adaptive resource alloca-
tion and consolidation. The extensive simulation experiments
demonstrate the effectiveness of the proposed method in
achieving adaptive and efficient SW scheduling in MCEs.
More specifically, the OWS-A2C outperforms three base-
line scheduling methods, including GAINM, PHGS, and
PHA2CI, in terms of average execution cost and resource
utilization. In future work, we will consider the interfer-
ence of fluctuations of instances’ execution performance on
scheduling results and further improve the robustness of the
proposed algorithm. Moreover, we will take the data trans-
mission between tasks into account for extending the appli-
cation scenarios of the algorithm and verify it in real-world
environments.

ACKNOWLEDGMENT
(Zheyi Chen and Kai Lin contributed equally to this work.)

REFERENCES
[1] J. Fabra, M. J. Ibanez, P. Alvarez, and J. Ezpeleta, ‘‘Behavioral analysis

of scientific workflows with semantic information,’’ IEEE Access, vol. 6,
pp. 66030–66046, 2018.

[2] B. Zhang, L. Yu, Y. Feng, L. Liu, and S. Zhao, ‘‘Application of workflow
technology for big data analysis service,’’ Appl. Sci., vol. 8, no. 4, p. 591,
Apr. 2018.

[3] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. L. Mauri,
‘‘A time-driven data placement strategy for a scientific workflow combin-
ing edge computing and cloud computing,’’ IEEE Trans. Ind. Informat.,
vol. 15, no. 7, pp. 4254–4265, Jul. 2019.

[4] M. Sardaraz and M. Tahir, ‘‘A hybrid algorithm for scheduling scientific
workflows in cloud computing,’’ IEEE Access, vol. 7, pp. 186137–186146,
2019.

[5] W. Song, F. Chen, H.-A. Jacobsen, X. Xia, C. Ye, and X. Ma, ‘‘Scientific
workflow mining in clouds,’’ IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 10, pp. 2979–2992, Oct. 2017.

[6] M. Dickinson, S. Debroy, P. Calyam, S. Valluripally, Y. Zhang,
R. B. Antequera, T. Joshi, T. White, and D. Xu, ‘‘Multi-cloud performance
and security driven federated workflow management,’’ IEEE Trans. Cloud
Comput., early access, Jun. 22, 2018, doi: 10.1109/TCC.2018.2849699.

[7] H. Hu, Z. Li, H. Hu, J. Chen, J. Ge, C. Li, and V. Chang, ‘‘Multi-objective
scheduling for scientific workflow in multicloud environment,’’ J. Netw.
Comput. Appl., vol. 114, pp. 108–122, Jul. 2018.

[8] M. Farid, R. Latip, M. Hussin, and N. A. W. Abdul Hamid, ‘‘Schedul-
ing scientific workflow using multi-objective algorithm with fuzzy
resource utilization in multi-cloud environment,’’ IEEE Access, vol. 8,
pp. 24309–24322, 2020.

[9] M.Masdari andM. Zangakani, ‘‘Efficient task and workflow scheduling in
inter-cloud environments: Challenges and opportunities,’’ J. Supercomput.,
vol. 76, no. 1, pp. 499–535, Jan. 2020.

[10] M. Zotkiewicz, M. Guzek, D. Kliazovich, and P. Bouvry, ‘‘Minimum
dependencies energy-efficient scheduling in data centers,’’ IEEE
Trans. Parallel Distrib. Syst., vol. 27, no. 12, pp. 3561–3574,
Dec. 2016.

[11] F. Xu, H. Zheng, H. Jiang, W. Shao, H. Liu, and Z. Zhou, ‘‘Cost-effective
cloud server provisioning for predictable performance of big data analyt-
ics,’’ IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1036–1051,
May 2019.

[12] V. Singh, I. Gupta, and P. K. Jana, ‘‘A novel cost-efficient approach for
deadline-constrained workflow scheduling by dynamic provisioning of
resources,’’ Future Gener. Comput. Syst., vol. 79, pp. 95–110, Feb. 2018.

[13] X. Li, J. Xu, and Y. Yang, ‘‘A chaotic particle swarm optimization-based
heuristic for market-oriented task-level scheduling in cloud workflow sys-
tems,’’ Comput. Intell. Neurosci., vol. 2015, no. 1, pp. 1–11, 2015.

[14] R. Sakellariou, H. Zhao, E. Tsiakkouri, and M. D. Dikaiakos, ‘‘Schedul-
ing workflows with budget constraints,’’ in Integrated Research in GRID
Computing. Boston, MA, USA: Springer, 2007, pp. 189–202.

[15] S. Abrishami, M. Naghibzadeh, and D. H. J. Epema, ‘‘Deadline-
constrained workflow scheduling algorithms for infrastructure as a ser-
vice clouds,’’ Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158–169,
Jan. 2013.

[16] J. J. Durillo, V. Nae, and R. Prodan, ‘‘Multi-objective workflow schedul-
ing: An analysis of the energy efficiency and makespan tradeoff,’’ in Proc.
13th IEEE/ACM Int. Symp. Cluster, Cloud, Grid Comput., May 2013,
pp. 203–210.

[17] C. S. Liew, M. P. Atkinson, M. Galea, T. F. Ang, P. Martin, and
J. I. V. Hemert, ‘‘Scientific workflows: Moving across paradigms,’’ ACM
Comput. Surv., vol. 49, no. 4, pp. 1–39, Feb. 2017.

[18] B. Lin, W. Guo, N. Xiong, G. Chen, A. V. Vasilakos, and H. Zhang,
‘‘A pretreatment workflow scheduling approach for big data applications
in multicloud environments,’’ IEEE Trans. Netw. Service Manage., vol. 13,
no. 3, pp. 581–594, Sep. 2016.

[19] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, ‘‘Algorithms
for cost- and deadline-constrained provisioning for scientific work-
flow ensembles in IaaS clouds,’’ Future Gener. Comput. Syst., vol. 48,
pp. 1–18, Jul. 2015.

[20] J. Liu, J. Ren,W. Dai, D. Zhang, P. Zhou, Y. Zhang, G. Min, and N. Najjari,
‘‘Online multi-workflow scheduling under uncertain task execution time
in IaaS clouds,’’ IEEE Trans. Cloud Comput., early access, Mar. 19, 2019,
doi: 10.1109/TCC.2019.2906300.

[21] B. Lin, W. Guo, and X. Lin, ‘‘Online optimization scheduling for scien-
tific workflows with deadline constraint on hybrid clouds,’’ Concurrency
Comput., Pract. Exper., vol. 28, no. 11, pp. 3079–3095, Aug. 2016.

[22] Y. Wang, Y. Guo, Z. Guo, T. Baker, and W. Liu, ‘‘CLOSURE: A cloud
scientific workflow scheduling algorithm based on attack–defense game
model,’’ Future Gener. Comput. Syst., vol. 111, pp. 460–474, Oct. 2020.

[23] V. Arabnejad, K. Bubendorfer, and B. Ng, ‘‘Budget and deadline aware
e-Science workflow scheduling in clouds,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 1, pp. 29–44, Jan. 2019.

[24] B. Lin, W. Guo, and G. Chen, ‘‘Scheduling strategy for science workflow
with deadline constraint on multi-Cloud,’’ J. Commun., vol. 39, no. 1,
pp. 56–69, Jan. 2018.

[25] T. Lorido-Botran, J. Miguel-Alonso, and J. A. Lozano, ‘‘A review of auto-
scaling techniques for elastic applications in cloud environments,’’ J. Grid
Comput., vol. 12, no. 4, pp. 559–592, Dec. 2014.

[26] H. Kang, J. Koh, Y. Kim, and J. Hahm, ‘‘A SLA driven VM auto-scaling
method in hybrid cloud environment,’’ in Proc. 15th Asia–Pacific Netw.
Oper. Manage. Symp., Sep. 2013, pp. 1–6.

[27] M.Mao andM.Humphrey, ‘‘Auto-scaling tominimize cost andmeet appli-
cation deadlines in cloud workflows,’’ in Proc. Int. Conf. High Perform.
Comput., Netw., Storage Anal., Nov. 2011, pp. 1–12.

[28] P. Wangsom, K. Lavangnananda, and P. Bouvry, ‘‘Multi-objective
scientific-workflow scheduling with data movement awareness in cloud,’’
IEEE Access, vol. 7, pp. 177063–177081, 2019.

[29] J. Kumar and A. K. Singh, ‘‘Workload prediction in cloud using artificial
neural network and adaptive differential evolution,’’ Future Gener. Com-
put. Syst., vol. 81, pp. 41–52, Apr. 2018.

[30] Z. Chen, J. Hu, G. Min, A. Y. Zomaya, and T. El-Ghazawi, ‘‘Towards accu-
rate prediction for high-dimensional and highly-variable cloud workloads
with deep learning,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 4,
pp. 923–934, Apr. 2020.

[31] J. Yu, R. Buyya, and C. K. Tham, ‘‘Cost-based scheduling of scientific
workflow applications on utility grids,’’ in Proc. 1st Int. Conf. E-Sci. Grid
Comput. (E-Sci.), Jul. 2005, pp. 140–147.

[32] F. M. Chiussi and V. Sivaraman, ‘‘Achieving high utilization in guaranteed
services networks using early-deadline-first scheduling,’’ in Proc. 6th Int.
Workshop Qual. Service, May 1998, pp. 209–217.

190182 VOLUME 8, 2020

http://dx.doi.org/10.1109/TCC.2018.2849699
http://dx.doi.org/10.1109/TCC.2019.2906300

Z. Chen et al.: Adaptive Resource Allocation and Consolidation for Scientific Workflow Scheduling in MCEs

[33] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and K. Vahi,
‘‘Characterization of scientific workflows,’’ in Proc. 3rd Workshop Work-
flows Support Large-Scale Sci., Nov. 2008, pp. 1–10.

[34] F. Pop, C. Dobre, V. Cristea, and N. Bessis, ‘‘Scheduling of sporadic tasks
with deadline constrains in cloud environments,’’ in Proc. IEEE 27th Int.
Conf. Adv. Inf. Netw. Appl. (AINA), Mar. 2013, pp. 764–771.

[35] M. Mao and M. Humphrey, ‘‘A performance study on the VM startup time
in the cloud,’’ in Proc. IEEE 5th Int. Conf. Cloud Comput., Jun. 2012,
pp. 423–430.

[36] R. F. Da Silva. (2020). Workflow Generator. [Online]. Available:
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowHub

[37] H. Topcuoglu, S. Hariri, and M.-Y. Wu, ‘‘Performance-effective and low-
complexity task scheduling for heterogeneous computing,’’ IEEE Trans.
Parallel Distrib. Syst., vol. 13, no. 3, pp. 260–274, Mar. 2002.

ZHEYI CHEN received the B.Sc. degree in com-
puter science from Shanxi University, China,
in 2014, and the M.Sc. degree in computer sci-
ence from Tsinghua University, China, in 2017.
He is currently pursuing the Ph.D. degree in com-
puter science with the University of Exeter, U.K.
His research interests include cloud computing,
mobile edge computing, deep learning, reinforce-
ment learning, and resource optimization.

KAI LIN received the B.S. degree in software
engineering from Fujian Agriculture and Forestry
University, China, in 2015. He is currently pur-
suing the M.S. degree in materials engineering
with the College of Physics and Energy, Fujian
Normal University, China. His current research
interests include vehicular edge computing and
cloud computing.

BING LIN received the B.S. and M.S. degrees in
computer science and the Ph.D. degree in com-
munication and information systems from Fuzhou
University, Fuzhou, China, in 2010, 2013, and
2016, respectively. He is currently an Assistant
Professor with the College of Physics and Energy,
Fujian Normal University, Fujian, China. He is
also the Academic Secretary of CCF YOCSEF
in Fuzhou. He has authored or coauthored over
20 journals and conference papers, such as IEEE

TRANSACTIONS ON INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON NETWORK

AND SERVICE MANAGEMENT, and Concurrency and Computation: Practice and
Experience. His research interests include parallel and distributed comput-
ing, computational intelligence, and data center resource management.

XING CHEN received the B.S. and Ph.D. degrees
in computer software and theory from Peking Uni-
versity, Beijing, China, in 2008 and 2013, respec-
tively. He is currently an Associate Professor and
the Deputy Director of the Fujian Provincial Key
Laboratory of Network Computing and Intelli-
gent Information Processing, Fuzhou University,
and leads the Systems Research Group. He has
authored or coauthored more than 30 journal and
conference papers. His research interests include

the software systems and engineering approaches for cloud and mobility. His
current projects cover the topics from self-adaptive software, computation
offloading, model-driven approach, and so on. He was a recipient of the first
Provincial Scientific and Technological Progress Award in 2018.

XIANGHAN ZHENG received the M.Sc. degree
in distributed system and the Ph.D. degree in
information communication technology from the
University of Agder, Norway, in 2007 and 2011,
respectively. He is currently a Professor with the
College of Mathematics and Computer Sciences,
Fuzhou University, China. His current research
interests include new generation networks with a
special focus on cloud computing services and
applications, and big data processing and security.

CHUNMING RONG (Senior Member, IEEE) is
currently a Professor and the Head of the Center
for IP-based Service Innovation (CIPSI), Univer-
sity of Stavanger (UiS), Norway. He has super-
vised 26 PhDs, nine PostDocs, and more than
60 master projects. He has extensive experience in
managing large-scale Research and Development
projects, both in Norway and EU. His research
interests include cloud computing, data analyt-
ics, cyber security, and blockchain. He has been

honored as a member of the Norwegian Academy of Technological Sci-
ences (NTVA) since 2011. He has extensive contact network and projects
in both the industry and academic. He is also a Founder and a Steering Chair
of IEEE CloudCom conference and workshop series. He is also the Chair
of IEEE CLOUD COMPUTING, an Executive Member of Technical Consortium
on High Performance Computing (TCHPC), and the Chair of STC on
Blockchain in IEEE Computer Society, and has served as a Global Co-Chair
for IEEE Blockchain in 2018. He is also an Advisor of the StandICT.EU to
support European scandalization activities in ICT. He is also the Co-Founder
of two start-ups bitYoga and Dataunitor in Norway, both received EU Seal
of Excellence Award in 2018. He was an Adjunct Senior Scientist leading
Big-Data Initiative at NORCE from 2016 to 2019, and the Vice President of
CSA Norway Chapter from 2016 to 2017. He is also a Co-Editor-in-Chief of
the Journal of Cloud Computing Springer. He has also served as the Steering
Chair from 2016 to 2019. He has also been serving a Steering Member and
an Associate Editor for the IEEE TRANSACTIONS ON CLOUD COMPUTING (TCC)
since 2016.

VOLUME 8, 2020 190183

