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ABSTRACT As accuracy of optimization can not be guaranteed without high-quality samples, the dis-
tribution of a finite number of evaluation points where experiments should be conducted in design space
is an important issue, particularly when the experiment to obtain sample is expensive. To utilize limited
number of evaluation points to represent the design space, optimal latin-hypercube design (OLHD), with
considerable space-filling quality, is widely used as a methodology in design of experiments (DOE).
However, OLHD generation requires significant time. This study focuses on further improvement of
efficiency in generation of OLHD in terms of both time and latin-hypercube design (LHD) optimization.
Two modified algorithms, namely the modified enhanced stochastic evolutionary (MESE) and translational
propagationmodified enhanced stochastic evolutionary (TPMESE) algorithms, based on existing algorithms,
are proposed. The MESE algorithm is modified from the enhanced stochastic evolutionary (ESE) algorithm
by using a new update method for ‘‘temperature,’’ while the TPMESE algorithm optimizes the LHD via
translational propagation (TPLHD) instead of optimizing a random LHD like the MESE algorithm does.
Their performance is evaluated by comparison with several famous heuristic algorithms and each original
algorithm using optimization tests of LHDswith various sizes. For all cases, proposed algorithms show better
performance of convergence than other heuristic algorithms participated in our comparison. For large and
medium LHDs, the MESE algorithm faster converges to a solution with the same level as original algorithm
(ESE). For large LHDs, the TPMESE algorithm is themost time efficient algorithm in obtaining near-optimal
or sufficient near-optimal designs.

INDEX TERMS Optimal latin-hypercube design, design of experiments, evolutionary algorithm, transla-
tional propagation.

I. INTRODUCTION
Optimization has become considerably popular in engineer-
ing design. In general, typical processes of optimization
can be divided into three parts: sampling, construction of
response surface, and search for optimal value [1]. Here,
the response surface is an approximate model to establish
the relationship between variables and the objective [2].
It can also be considered as a regression function to pre-
dict unknown space and filter numerical noise based on
discrete samples. The selection of evaluation points in sam-
pling is a critical step in obtaining a high-quality response
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surface in such a manner that the optimal value can be
accurately searched in the next process. As most practical
engineering problems are time-consuming, it is unfeasible
to conduct a lot of experiments. Therefore, effectively uti-
lizing finite evaluation points to exhibit the properties of
design space is a good choice to reduce experimental costs.
The methodologies known as design of experiments (DOE)
are widely used to assign locations for evaluation points.
In these methodologies, the latin-hypercube design (LHD),
proposed by Michael et al. [3] and Iman and Conover [4],
has interesting characteristics, such as non-collapsing fea-
tures and orthogonality [5]. If there is a design with np
points and nv dimensions, LHD cuts every dimension into
np equal levels to satisfy the main property of LHD, one
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point per level. However, because of the random permu-
tation of evaluation points in LHD, their uniform dis-
tribution over the entire region can not be guaranteed.
In literatures, the space-filling quality of the design is consid-
ered importantly to describe the entire design space. There-
fore, many studies used different methods to optimize the
space-filling quality of LHD. For example, Kenny et al. [6]
utilized the columnwise–pairwise (CP) algorithm proposed
in literature [7] to generate optimal symmetrical LHD.
Fang et al. [8] adopted the threshold accepting (TA) algo-
rithm in constructing optimal LHD (OLHD). Bates et al. [9]
presented a permutation genetic algorithm (PermGA) to
search an optimal LHD. Grosso et al. [5] developed the
iterated local search (ILS) algorithm for LHD optimiza-
tion. In particular, Jin et al. [10] proposed the enhanced
stochastic evolutionary (ESE) algorithm, which has signif-
icant capability for LHD optimization through balancing
global exploration and local exploitation. It should be noted
that there are numerous possible solutions for a design with
high dimensions and many evaluation points. Searching
for an optimal solution for such design consumes consid-
erable time. Hence, the balance between time costs and
optimality of solution in the global optimization of LHD
interests and challenges researchers. Thus, many outstanding
efforts for improving efficiency in construction of LHDs
with high space-filling quality were made, which include
enhancement of enhanced stochastic evolutionary (EESE)
algorithm (Chantarawong et al. [11]), successive local enu-
meration (SLE) algorithm (Zhu et al. [12]), particle swarm
optimization (PSO) algorithm (Chen et al. [13]), sequenc-
ing optimization based on simulated annealing (SOBSA)
algorithm (Pholdee and Bureera [14]), a new DOE frame-
work based on PermGA (Kianifar et al. [15]), PermGA
based on chromosome-length-expansion (CLE) scheme
(Mahmoudi and Zimmermann [16]), slice latin-hypercube
design (SLHD) (Ba et al. [17]), maximum projection design
(Joseph et al. [18] and Joseph [19]), sequential-successive
local enumeration (S-SLE) algorithm (Long et al. [20]),
inflate, expand and stack (IES) algorithm (GuiBan et al. [21]),
an efficient method for constructing space-filling and
near-orthogonality Sequential LHD (Wu et al. [22]), a novel
extension algorithm (Li et al. [23]), maximin distance
latin squares and related latin-hypercube design based on
Costas arrays and the Welch, Gilbert and Golomb methods
(Xiao and Xu [24]) and local search-based genetic algorithm
(LSGA) (Shang et al. [25]). Additionally, in publications,
we noticed a quite efficient algorithm, the latin-hypercube
via translational propagation (TPLHD), was developed by
Viana et al. [26] to faster construct a near high-quality design.
According to the paper, this is suitable as an initial design for
typical optimization using optimization algorithms.

However, there are some important conclusions in rela-
tive literatures which deserve reviewing. Damblin et al. [27]
compared the performance of simulated annealing (SA) and
ESE algorithms in the construction of LHD with good
space-filling quality. Husslage et al. [28] made a comparison

of simulated annealing (SA), ESE and PermGA algorithms
and the results showed that the ESE algorithm found bet-
ter results than SA and PermGA algorithms for almost all
of the cases. Moreover, the performance of ESE algorithm
for establishment of OLHD with high space-filling quality
was further validated in literatures [14], [22], [23] and [25]
through comparing with SOBSA, GA, SLE, SLHD, LSGA
and a novel extension algorithms. The results revealed that
the ESE algorithm is a significantly efficient and robust algo-
rithm for optimizations of LHDs within 10 dimensions.

This study focues on the development of an efficient tech-
nology to generate an OLHD with high space-filling quality,
whichmatches the expectation of an issue in engineering opti-
mization with considerably experimental costs. Considering
the significant capability of ESE algorithm, an optimization
algorithm for fast construction of OLHD is proposed, which
is modified from ESE by introducing a new update method
of the threshold ‘‘temperature’’ to enhance efficiency and
maintain sufficient global searching capability. Furthermore,
our proposed algorithm is combined with the TPLHD to
directly optimize a near high-quality design instead of a
random LHD for further acceleration of search for a suffi-
cient near-optimal LHD in the beginning of the optimization
process, particularly in the case of large size LHDs. It can
be predicted that these efforts are significantly beneficial to
efficiently obtain high-quality samples in practical optimiza-
tion problems. The proposed algorithms are performed in
optimization tests with various LHD sizes. The test results
are compared with other well-known algorithms, including
PermGA, ILS and LSGA, and the original algorithms. Then,
their performance is demonstrated.

II. FUNDAMENTAL TECHNOLOGY
In this Section, some important fundamental techniques,
including optimality criterion used in optimization (Sub-
set A), TPLHD (Subset B) and ESE algorithms (Subset C),
are reviewed, so that the study can be more clearly
understood.

A. CRITERION OF JUDGEMENT FOR OPTIMIZATION
As in other optimization problems, some criteria were
proposed by researchers to evaluate the performance of
space-filling for LHD optimization. φp is a popular criterion
improved byMorris andMitchell [29] to be used in estimating
uniformity of LHD space. It is calculated as follows:

φp = [
np−1∑
i=1

np∑
j=i+1

d−pij ]1/p (1)

where dij is the distance between two random points and
np is the number of points. In the LHD optimization, max-
imizing the distance between two random points satisfies the
requirement of the spacing-filling property. From the expres-
sion, maximizing the distance between points is equivalent to

VOLUME 8, 2020 191645



Q. Wang et al.: Modified Algorithms for Fast Construction of OLHD

minimizing the φp value. dij can be expressed as follows:

dij = [
nv∑
k=1

|xik − xjk |t ]1/t (2)

where xik and xjk indicate the kth component of i and j points,
respectively. Normally, p = 50 and t = 1 are suitable settings
for most situations in LHD optimization [10]. In this study,
the performance of LHD optimization is evaluated using φp.

B. TRANSLATIONAL PROPAGATION ALGORITHM
TPLHD is an algorithm that aims to fill up the space of LHD
by a translational process from small seed design.

FIGURE 1. Process of translational operation in TPLHD. After the
stratification of 9 blocks for LHD space, the point placed in the original
coordinates translates in the horizontal direction until the situation seen
in step 3 occurs. Then, the three points, as the new seed, repeat the
translational process in the vertical direction.

Figure 1 shows the details of this process using the con-
struction of a 9 × 2 TPLHD (np = 9 points, nv = 2
dimensions) that is started from a 1 × 2 (ns = 1 point of
seed) seed as an example. Initially, the entire design space is
distributed into nb blocks. The number nb can be calculated
by the following expression:

nb = np/ns (3)

In sequence, the seed point located at the original coordi-
nates translates in the first dimension (horizontal direction)
per nd levels until all the divisions in the first dimension are
filled by seeds, where nd divisions are expressed as:

nd = n1/nvb (4)

In addition, to ensure that there is a single point per level,
one level should be simultaneously translated through another
dimension (vertical direction in this example) in the afore-
mentioned seed translation process.When the divisions of the
first dimension are filled by seeds, this process is repeated in
the second dimension. To construct a TPLHD of any size,
particularly when the number of points in the TPLHD is
not the required number, the resizing process is employed to

FIGURE 2. Resizing process in TPLHD. To construct an 8 × 2 LHD using the
Translational Propagation algorithm, a larger sized TPLHD (9 × 2) is
initially constructed. Then, distance between the center of design and
every point is evaluated. Finally, the point that is farthest away from the
center of design and its corresponding levels are removed.

remove points and their corresponding levels from a TPLHD
of larger size according to descending permutation of dis-
tances between the center of the TPLHD and every point in
it. Figure 2 exhibits the resizing process.

It is notable that TPLHD has high efficiency as only the
translational process is performed without any mathematic
calculation. Thus, comparing it with other optimization algo-
rithms, the TPLHD focuses on the improvement of efficiency
for the construction of a near high-quality LHD, not the best
one. In contrast, different TPLHD spacing-filling properties
can be obtained using different seed points for the construc-
tion of TPLHD [26]. Considering its low time cost, it is
possible to select the best TPLHD from several TPLHDs
constructed using different seeds. To build an initial near
high-quality LHD in the global optimization based on the new
algorithm we modified, the seed points from 1 to 5 are used
to construct different TPLHDs of the required points.

TABLE 1. Pseudo code for TPLHD procedure.

Then, the best one is selected as the initial LHD for global
optimization on the basis of comparison via φp criterion. The
procedure is listed in Table 1.
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C. ENHANCED STOCHASTIC EVOLUTIONARY ALGORITHM
The ESE algorithm is derived from a normal stochastic evo-
lutionary algorithm [30]. It involves two loops, the inner
and outer loops, to automatically update ‘‘temperature’’ in
accordance with the degree of improvement and perform
the classical element-exchange operation within a column
for LHD. In the inner loop, J distinct element-exchanges
within one column are implemented based on current design
X in every iteration. In the next step, the best design Xtry
is selected from the J randomly distinct element-exchanges.
If the Xtry meets the requirement of the acceptance criterion,
the current design X is replaced by Xtry. Then, the design
X and the current best design Xbest are compared based on
the φp criterion. Finally, the best design between X and Xbest
is chosen. This process is performed until M iterations are
completed. The acceptance criterion mentioned is as follows:

f (Xtry)− f (X) ≤ Th · rand(0, 1) (5)

where f (Xtry) and f (X) are the values of φp for X and Xtry
design, respectively. Th is the value of ‘‘temperature’’ as the
threshold. The function rand(0,1) selects a random number
from 0 to 1.

The main function of the outer loop is to control the
change of ‘‘temperature’’ Th. According to judgement of
tolerance, the outer loop can be divided into improvement and
exploration processes. Then, Th is adjusted using different
equations based on the acceptance nacpt /M and improvement
nimp/ M ratios updated in the inner loop.
The procedure for ESE algorithm is shown in Table 2 and

Figure 3 (the figure was drawn based on literature [10]). For
the settings of some basic parameters, the author of the origi-
nal paper suggests thatM and J are set asM = 2nem / J and
J = ne/ 5, respectively. In addition, it is reasonable that J and
M should not be larger than 50 and 100, respectively. Here,
ne is the number of all possibilities for element-exchanges in
one column.

FIGURE 3. Flowchart of the ESE algorithm. The figure was drawn based
on literature [10].

In the ESE algorithm, the main property is the update of
‘‘temperature’’ in the outer loop. As mentioned, the update

TABLE 2. Pseudo code for ESE procedure.

process can be divided into improvement and exploration
processes. For the improvement process, if the acceptance
ratio nacpt / M is larger than a threshold such as 0.1 and
the improvement ratio nimp/M , the ‘‘temperature’’ will be
reduced through the equation Th = α1Th_old . When the
acceptance ratio nacpt / M is larger than a small value
(e.g., 0.1) but equal to the improvement ratio nimp/ M , Th
is maintained. Otherwise, Th is increased by equation Th =
Th_old/α1. The improvement process aims to promote the
fast convergence of the algorithm close to a local solution.
In contrast, Th is decreased by Th = α2Th_old when nacpt / M
is larger than a large percentage like 0.8 in the exploration
process. While the nimp/ M is smaller than a small threshold
(e.g., 0.1), Th is increased by Th = Th_old/α3. Unlike the
improvement process, this process focuses on escaping from
the local solution to find an optimal design. According to the
original literature, α1, α2 and α3 are set to 0.8, 0.9, and 0.7,
which can adequately work for all tests.

III. MODIFIED ALGORITHMS FOR OPTIMIZATION OF LHD
BASED ON TPLHD AND ESE ALGORITHMS
To overcome certain shortcomings in the ESE algorithm and
further accelerate its convergence, the modified enhanced
stochastic evolutionary (MESE) algorithm is proposed. In this
section, we firstly discuss the details of MESE algorithm
(Subset A). In the following, another algorithm combin-
ing MESE and TPLHD algorithms to further shorten the
computational time from a poor starting design to a near
high-quality design is elaborated (Subset B).
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A. MODIFIED ENHANCED STOCHASTIC EVOLUTIONARY
ALGORITHM
Similar to the ESE algorithm, the MESE algorithm also
contains two loops (inner and outer loops). The process in
the inner loop is the same; the main modification occurs
in the outer loop. Two updating processes involving ‘‘tem-
perature’’ Th, the improvement and exploration processes,
in the ESE algorithm, are combined in the MESE algo-
rithm. In addition, to meet the complicated requirements of
Th updating at different stages in the optimization process,
some scale factors of variable step length are used to replace
constant factors such as α1, α2 and α3 in the ESE algorithm.
As the performance shows in ESE tests, ‘‘temperature’’ can
be adaptively adjusted with the implementation of algorithm.
Constant scale factors easily lead to oversized or undersized
skip distance; this causes the loss of possible intermediate
solutions that can generate a better result after several evolu-
tions. The loss of intermediate solutions decelerates the con-
vergence and increases the processing time as the algorithm
needs to search again. In contrast, the improvement process
is usually performed during the initial stage of optimization
because of adequate diversity of individuals based on mon-
itored values. In other words, Th quickly decreases to find
a local solution by running the improvement process at the
beginning and vibrating during the rest of the period based
on the exploration process.

Considering the disadvantages and properties of the update
method for Th, the new update method of Th in MESE aims
to inherit the basic properties of Th shifted and employ scale
factors of variable step length to increase the searching for
intermediate solutions. For the new update method, the Th
is reduced if the acceptance ratio nacpt / M exceeds a large
percentage C1. In this case, unlike in the ESE case, the scale
factor controlling the reduction of Th is not a constant but an
adaptive value that will be updated with the acceptance ratio
nacpt / M as in the following expression:

Th = Th_old × (0.9− β
((1−C1)/(nacpt/M−C1))n1
1 ) (6)

In Eq. (6), if the acceptance ratio nacpt / M tends to 1,
the equation changes to Th = (0.9 – β1) × Th_old . The
reduction of Th can be approximately treated as the reduction
of Th in the improvement process of the ESE algorithm at the
beginning of optimization through a small factor. When the
acceptance ratio nacpt /M is close to a threshold C1, the scale
factor is increased to 0.9 to provide a slight reduction of Th.
In particular, an exponent n1 is applied to control the speed of
shift for the scale factor. β1,C1 and n1 are set to 0.1, 0.8 and 4,
respectively, which can obtain good results for most tested
problems. Th is increased with different speeds if the accep-
tance ratio nacpt / M is less than a value C2, say, 0.2 and no
better design is available, which means nimp = 0. The update
method has the same format as Eq. (6). Therefore, if the
acceptance ratio nacpt / M approaches C2, the scale factor is
adjusted to 0.7+β2 to provide a slow increase of Th. The scale
factor can also be changed to 0.7 to accelerate the increase of

Th and rapidly improve the diversity of the individual. The
update method described is expressed as follows:

Th = Th_old/(0.7+ β
(1+(M/nacpt−1)×(1−nacpt/M/C2))n2
2 ) (7)

where β2 and n2 are 0.2 and 0.125, respectively, in accordance
with test results.

FIGURE 4. Flowchart of MESE algorithm. In the MESE algorithm, the outer
loop is simplified in one integrative process to update ‘‘temperature’’.

TABLE 3. Pseudo code for outer loop of MESE algorithm.

When there are still many replacements to be conducted
between design Xtry and current design X to consume con-
siderable computational time, the Th continues to slowly
decrease by a simple expression Th = αTh_old to further pro-
mote convergence. Specifically, this operation is performed if
the acceptance ratio nacpt /M is within the range fromC2 toC1
and satisfies one of the conditions: at least one improvement
design is produced (nimp 6= 0) or the current design X is
worse than the current best design Xbest over restriction, such
as f (X) > S × f (Xbest ). The reasonable scale factor α and
restriction S could be 0.9 and a value which is no larger than
1.015, respectively. For other situations, Th is maintained.
Figure 4 shows the procedure of MESE, while Table 3 lists
the procedure for the new outer loop.
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B. SERIES BETWEEN TPLHD AND GLOBAL OPTIMIZATION
ALGORITHM
In the past, LHD optimization usually started from a random
LHD. Therefore, the convergence depended on the quality of
the initial LHD. Thus, if the space-filling quality of the initial
LHD is poor, the algorithm spends more time converging to a
local solution in the optimization until the optimal solution
is found. As there is only one final optimal result for the
same size and range of every dimension of LHD, it is possible
to accelerate convergence by shortening the time from a
poor starting design to a near high-quality design. However,
two preconditions should be satisfied before achieving this
acceleration. The first one is that a near high-quality design
can be generated fast, which implies its time cost should be
shorter than the time from a random LHD to the equal-quality
solution optimized by a global optimization algorithm. Sec-
ond, the algorithm needs to have sufficient capability to
rapidly escape from the local solution.

In Section II, an efficient algorithm, TPLHD, which can
rapidly generate a near high-quality solution via translational
operation, was illustrated. According to practical tests, gen-
erating a TPLHD with large size, such as 100 × 10, only
requires several seconds, while it has almost no time costs
for constructions of smaller size TPLHDs. Moreover, its time
cost is shorter than the optimization process started from a
random LHD to equal-quality LHD, regardless of the MESE
or ESE used in the optimization. Thus, the combination of
TPLHD and MESE or ESE seems a good choice to improve
efficiency of optimization in initial stage. Therefore, in this
paper, a new algorithm, namely translational propagation
modified enhanced stochastic evolutionary (TPMESE) algo-
rithm, is proposed to optimize LHD. As indicated in the
name, this algorithm uses MESE to directly optimize a near
high-quality design generated by TPLHD.Correspondingly, a
TPESE algorithm, starting from TPLHD to use ESE perform-
ing optimization, is also applied to compare with TPMESE.
Our motivation for developing this algorithm is to emphasize
high efficiency at the beginning stage for a near-optimal or
sufficient near-optimal designs, particularly when the time
cost is the first concern.

IV. RESULTS AND DISCUSSION
In this section, the performance of proposed algorithms is
evaluated through the experiments. Meanwhile, the analyses
with respect to computational complexities and mechanisms
of proposed algorithms acted in the tests are offered.

A. EXPERIMENTAL SETTING
To confirm the performance of the TPMESE and MESE
algorithms, the proposed algorithms and each original ones
were compared with several famous algorithms, including
PermGA, ILS and LSGA. Such comparison aimed to confirm
the convergence performance of the proposed algorithms and
each original ones with respect to other heuristic algorithms

for tested cases. Later, the performance of TPMESE, MESE,
TPESE and ESE algorithms in the whole period of global
convergence would be compared. Different from the com-
parison with other heuristic algorithms, this comparison was
devoted to show the specific improvement of TPMESE and
MESE with respect to original algorithms. All of compar-
isons were performed on three tested classifications based on
LHDs sizes in optimization. Here, ESE andMESE algorithms
start the optimization process from random LHD, while
the remaining algorithms start from TPLHD. Regarding the
tested classifications, two small (30 × 3 and 40 × 4), one
medium (50 × 5), and two large size LHDs (60 × 6 and
100× 10) were used. For the range of each variable, we kept
it the same as that in literature [10].

During the experiment, all of algorithms would repeat the
LHD optimization with different sizes for 100 times. For all
tests, the φp criterion was used to evaluate the property of
space-filling for LHD. Additionally, in comparing ESE and
its variants, a global stopping criterion was used to indicate
the time in which optimization can be treated as global con-
vergence. If no better solution is generated within 1000 gen-
erations, global convergence can be regarded as reached [28].
Here, generation means the number of both outer and inner
loops finished. To set parameters for TPMESE and MESE
algorithms, the proposed algorithms were used to generate
OLHD using the tests of 30× 3, 50× 5 and 100× 10 LHDs
for different values of parameters. For each combination of
values of parameters, each simulation was repeated 10 times.
We have to commit that in this stage the focus was not on
the exploration of the optimal values of parameters for our
algorithms. Therefore, we simply set β1, β2, n1, n2 and α to
[0.1, 0.2], [0.1, 0.2], [2, 2.5, 3, 3.5, 4], [0.125, 0.25, 0.5] and
[0.8, 0.85, 0.9, 0.95], respectively. In tests, each simulation
was evaluated 0.5 million for φp criterion. The suitable values
of parameters for most of tested cases were already described
in Section III, except the 100 × 10 LHD. Here, β1 was 0.2,
while n1, n2 andαwere 2.5, 0.5, 0.95, respectively. Regarding
the parameter settings of other algorithms, we kept the same
values suggested in Section II for ESE and TPESE algo-
rithms. In addition, the initial value of ‘‘temperature’’ T0 for
both ESE and the three variants was calculated as 0.005×φp,
based on the initial design. The tolerance in ESE was set as
0.0001 [11].

According to publication [31], population sizes were 20×
dimensions for small size LHDs, 10 × dimensions for
medium and large size LHDs, respectively, in PermGA, while
elite size, crossover and mutation rates were 5, 0.8, 0.05 [15],
respectively. For LSGA, the author of literature [25] sug-
gested that population number P, mutation probability pm,
parameters pmax, pmin and distance ratio c were 10, 0.2, 0.3,
0.01 and 0.5, respectively, while there was no parameter
settings for ILS.

To ensure the results of comparative investigations are
statistically significant, t-test was used to compare mean
values of φp criterion obtained in repeated simulations for
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all of tests according to literature [10]. In hypothesis test-
ing, p-value was applied to evaluate the level of statistically
significant difference. Here, the standard of p-value was
set to 0.025%. In other words, if the p-value is smaller
than the standard set between two groups of comparative
samples, the null hypothesis (meaning values are equal)
can be rejected. To help with clearer illustration in the
following, symbols ‘‘algorithm-algorithm’’ or ‘‘algorithm-
algorithm∗’’ (e.g. ‘‘TPMESE-MESE∗’’) were used to indi-
cate the p-value was computed based on two groups of
independent results from corresponding algorithms, where
marker ‘‘∗’’ denotes p-value is smaller than our standard.
In contrast, no maker indicates p-value is larger than our stan-
dard. Particularly, symbol ‘‘algorithm-’’ indicates all p-values
among ones and the remaining algorithms. To keep fair in
comparisons, all of tests were conducted on a computer with
32GB RAM, eight-core CPU with clock speed of 3.60 GHz
(Core i7-9700K) using MATLAB R2019b.

B. ANALYSIS OF COMPUTATIONAL COMPLEXITY
In the optimization of LHD, objective function will be repeat-
edly calculated whenever a new design is generated. Taking
the φp criterion such Eq. (1) as an example, re-evaluation
of φp criterion has to repeatedly evaluate the distances of
all evaluation points and p-powers. Thus, re-evaluation of
optimality criterion in optimization is significantly time-
consuming [10], especially for the distance matrix of eval-
uation points in large size.

Considering the main computational costs came from
re-evaluation of φp criterion, Here, we evaluated the com-
putational complexity for different algorithms in the process
of one evaluation of φp criterion. For our proposed algo-
rithms, TPMESE and MESE algorithms, whose process is
the same as ESE in inner loop, an evaluation of φp crite-
rion for both ESE and its three variants will take O(n2pnv)
for the calculations of inter-site distances and O(n2p log2 p)
for the computation of p-powers, respectively. In general,
the overall computational complexities of TPMESE, MESE,
TPESE and ESE algorithms are all O(n2pnv) + O(n2p log2 p).
Similar with ESE algorithm, the ILS will also take O(n2pnv)+
O(n2p log2 p). Regarding the LSGA and PermGA algorithms,
the LSGA algorithm will additionally take O(npnv) and
O(nv) for Modified Order Crossover (MOX) and Proba-
bilistic Mutation operators, respectively, to generate a new
design before each evaluation of φp criterion, while the Per-
mGA algorithm requires extra O(np) for Cycle Crossover
operator in an evaluation of φp criterion. Thus, there are
totally O(npnv + nv + n2pnv + n

2
p log2 p) and O(np + n2pnv +

n2p log2 p) for LSGA and PermGA algorithms, respectively,
in each evaluation of φp criterion. When we pick the term
which grows the fastest, their computational complexities
are both bounded by O(n2pnv) + O(n2p log2 p). Therefore,
these algorithms have the same overall computational com-
plexity as each other in the process of an evaluation of φp
criterion.

FIGURE 5. Comparison of optimization performance of different
algorithms with 30 × 3 LHD. In this figure, every group of lines includes
4 lines gathered together. Every line has the same evaluation number of
optimality criterion within one group. The mean values of the optimality
criterion and the convergent curve are lower and the optimization
converges faster. The gradient of the convergent curve indicates
convergent speed; a steeper curve implies higher convergent speed.

FIGURE 6. Comparison of optimization performance of different
algorithms with 40 × 4 LHD.

C. RESULTS AND DISCUSSION OF COMPARATIVE
INVESTIGATIONS
To illustrate the performance of TPMESE and MESE algo-
rithms, we compared the mean values of the φp criterion
and the corresponding standard deviations (std) for LHDs
with different sizes and evaluation numbers of φp crite-
rion in optimization, as shown in Tables 4 and 6, while
Table 5 shows the mean values of computational time of
different heuristic algorithms to reach the same near-optimal
value of φp criterion. Particularly, the global optimal values
of the φp criterion obtained after reaching global convergence
in the 100 time tests are also listed in table 6, when our
proposed algorithms were compared with ESE and TPESE
algorithms. Figures 5 to 9 provide a distinct visualization of
the optimization performance of the proposed algorithms
with different LHD sizes. In these figures, the markers indi-
cate the mean values at evaluation numbers of φp criterion,
while the distances of vertical lines up and below the points
are the standard deviations (std). It should be noted that
equal intervals between any two adjacent vertical lines are
maintained at every evaluation number of φp criterion we
focused on, enabling a clear visualization of data. In other
words, a group of different vertical lines gathered together
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TABLE 4. Numerical results for optimization of LHDs with different sizes using different heuristic algorithms.

TABLE 5. Computational time for optimization of LHDs with different sizes using different heuristic algorithms.

has the same evaluation number of φp criterion. Moreover,
in Tables 4 to 6, the best values gotten in different stages of
tests are already marked by bold (the differences between the
results marked and others are also statistically significant at
the same measurement point).

1) COMPARISON OF DIFFERENT HEURISTIC ALGORITHMS
To validate the improved performance of our proposed algo-
rithms, the TPMESE, MESE, TPESE and ESE algorithms
with other 3 famous heuristic algorithms, PermGA, LSGA
and ILS, were compared. Table 4 shows the results with

respect to the evaluation number of φp criterion. The follow-
ing analysis is based on Table 4.

The TPMESE, MESE and each original algorithm, TPESE
and ESE, absolutely show better performance than other
algorithms for most of tested cases except the tests of 100×10
LHD. This can be supported by not only the smaller mean val-
ues of φp criterion over 100 runs, but also the p-values of ‘‘one
of TPMESE, MESE, TPESE and ESE-one of ILS, LSGA and
PermGA∗’’ in t-test. The worst algorithm is the PermGA. The
largest mean values and the p-values of ‘‘PermGA-∗’’ can
confirm it. The performance of the ILS is closest to ESE algo-
rithm and its variants, but there is still statistically significant
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TABLE 6. Numerical results for optimization of LHDs with different sizes using TPMESE, MESE and each original algorithm.

FIGURE 7. Comparison of optimization performance of different
algorithms with 50 × 5 LHD.

difference between them in terms of p-values of ‘‘ILS-ESE∗’’
for most of tested cases except the case with the largest size.
For the tests of 100× 10 LHD, ILS slightly converges faster
than ESE but still is worse than TPMESE and MESE at the

FIGURE 8. Comparison of optimization performance of different
algorithms with 60 × 6 LHD.

first monitored evaluation number of φp criterion. However,
its leading position is quickly reversed by ESE. The smaller
mean value of φp criterion obtained by ESE and the p-values
of ‘‘ESE-ILS∗’’ at the second monitored evaluation number
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FIGURE 9. Comparison of optimization performance of different
algorithms with 100 × 10 LHD.

of φp criterion illustrate it. Therefore, the ILS, LGSA and Per-
mGA algorithms are significantly time-consuming compared
with ESE and its variants, if we expect them to converge to a
sufficient near-optimal or optimal solution.

In addition, according to the results in Table 4, the per-
formance of MESE and TPMSE are better than each orig-
inal algorithm, and both converging faster than ESE in the
entire corresponding measurement interval except the opti-
mization of LHD with the smallest size. All of smaller
mean values respectively obtained by TPMESE and MESE,
and the p-values of ‘‘TPMESE-MESE∗’’, ‘‘MESE-ESE∗’’
and ‘‘TPMESE-ESE∗’’ can verify the conclusion, while
the p-values of ‘‘TPMESE-MESE∗’’, ‘‘MESE-ESE∗’’ and
‘‘TPMESE-ESE∗’’ are only satisfied at the beginning with
respect to the tests of 30 × 3 LHD. Therefore, our proposed
algorithms just outperform each original algorithm, TPESE
and ESE, at the initial measurement for the optimization
of 30 × 3 LHD. In addition, optimization starting from a
TPLHD can accelerate the convergence at the beginning,
because under the first monitored evaluation number of φp
criterion for all of cases, TPMSE and TPESE can always
converge to better designs than MESE and ESE, respectively.
The p-values of ‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’
can confirm it too. However, with the increase of evaluations
of φp criterion, the acceleration of convergence obtained from
a TPLHD as an initial design become no longer conspicu-
ous, except the tests of LHD with the largest size. This can
also be validated by the p-values of ‘‘TPMESE-MESE’’ and
‘‘TPESE-ESE’’ at the second monitored evaluation number
of φp criterion with respect to the tests of 30 × 3, 40 × 4,
50 × 5 and 60 × 6 LHDs. For the optimization of 100 ×
10 LHD, the acceleration originating from a TPLHD as an
initial design influences the whole interval of measurement.
Correspondingly, the p-values of ‘‘TPMESE-MESE∗’’ and
‘‘TPESE-ESE∗’’ illustrate it. The reason is simple. On the
one hand, the optimization initializing from a TPLHD can
directly optimize a near high-quality design almost without
time costs, on the other hand, improvement designs can be
easily searched owing to high diversity of individuals. These
factors significantly promote convergence at the initial stage.
As a cogent evidence, optimization can always begin from a

TPLHD whose value of φp criterion is 1.6412 for the tests
of 40 × 4 LHD, while the ESE has to evaluate at least
several thousand evaluations of φp criterion to reach the same
level solution. However, with the lack of diversity between
different designs, it will become more and more difficult to
generate a better individual, especially for low-dimensional
LHD. Therefore, the leading-position originating from initial
design is no longer obvious. In contrast, the algorithm has
to take more time escaping from the local solution, which
can be reflected by the gradual variations of p-values from
‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’ to ‘‘TPMESE-
MESE’’ and ‘‘TPESE-ESE’’.

Table 5 shows the computational time of different algo-
rithms to reach the same near-optimal value of φp criterion,
where the near-optimal value of φp criterion for each size test
is lower than 104% the final mean value of φp criterion listed
in Table 6. To ensure the statistical significance of the time
difference between different algorithms, the results over 100
time runs were averaged on the one hand, on the other hand,
t-test was used to comparemean values of computational time
for all tests. Meanwhile, the standard of p-value was set to
0.05%. Additionally, 5, 8, and 10 million evaluation numbers
of φp criterion are considered as the thresholds for the tests of
LHDs with small, medium and large size, respectively. If no
corresponding near-optimal solution was obtained within the
evaluation number, optimizationwill be treated to divergence.
We used the symbol ‘‘/’’ to indicate algorithm that can not
converge to our near-optimal solution over half of 100 runs
in Table 5.

According to the results shown in Table 5, our proposed
algorithms, TPMESE and MESE, even each of original algo-
rithms, TPESE and ESE are significantly efficient than other
three heuristic algorithms, which could be confirmed by the
p-values of ‘‘one of TPMESE, MESE, TPESE and ESE-one
of ILS, LSGA and PermGA∗’’. PermGA and LSGA show
poor global exploration capability to search for a near-optimal
solution, especially for the cases of LHDs with small and
medium sizes. The TPMESE and MESE are faster than
each original algorithm, TPESE and ESE, which can also
be confirmed by the p-values of ‘‘TPMESE-TPESE∗’’ and
‘‘MESE-ESE∗’’. In general, ESE is the most inefficient algo-
rithm in the four approximate algorithms, namely TPMESE,
MESE, TPESE and ESE, and it is still significantly faster
than ILS, LSGA and PermGA. Correspondingly, the p-values
of ‘‘TPMESE-ESE∗’’, ‘‘MESE-ESE∗’’, ‘‘TPESE-ESE∗’’ and
‘‘ESE-one of ILS, LSGA and PermGA∗’’ validate statisti-
cally significant differences between them.

2) INTERNAL COMPETITION OF PROPOSED ALGORITHMS
AND EACH ORIGINAL ALGORITHM
In this part, we compared TPMESE and MESE with each
of original algorithms, TPESE and ESE, in the whole period
of convergence. The reason why we only compared the four
approximate algorithms was that ILS, LSGA and PermGA
are significantly time-consuming to reach a near-optimal
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solution of the same level as ESE and its variants, which we
already discussed in above part.

There are different tendencies of performance for opti-
mizationwith two types of small size LHDs by using different
algorithms. TPMESE and MESE can acquire a better design
slightly faster than each original algorithm, TPESE and ESE.
They also both converge faster than ESE at the initial stage
of optimization. The smaller mean values of φp criterion and
the p-values of ‘‘TPMESE-TPESE∗’’, ‘‘MESE-ESE∗’’ and
‘‘TPMESE-ESE∗’’ can both validate the conclusion. How-
ever, MESE is quickly exceeded by other algorithms. With
the increase of evaluation number, the convergent speed and
mean values of the φp criterion for TPMESE, TPESE, and
ESE are almost close to each other but gradually better than
MESE. This conclusion can be validated by the p-values
based on the results at the 0.5 and 2 million evaluation
numbers of φp criterion. All of the p-values between two
random sets of data obtained from different algorithms are
larger than standard at the 0.5 million evaluation number on
the one hand, on the other hand, the p-values of ‘‘MESE-∗’’
at the 2 million evaluation number can confirm the point. For
the final results after reaching global stopping criterion, four
algorithms can converge to four approximate criterion values.
The p-values are all lager than standard, which can confirm
this analysis. In addition, the optimization starting from a
TPLHD can accelerate convergence at the beginning. The
smaller mean values of φp criterion respectively obtained by
TPMESE and TPESE comparedwithMESE and ESE, as well
as the p-values of ‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’
at the 0.5 evaluation number of φp criterion can confirm this
point.

The optimization with 40 × 4 LHD, TPMESE and
MESE show better performance than each of original algo-
rithms, TPESE and ESE, and both converge faster than
ESE within 1 million evaluations of φp criterion. Here,
TPMESE and MESE have smaller mean values than each
original algorithm on the one hand, on the other hand,
the p-values of ‘‘TPMESE-TPESE∗’’, ‘‘MESE-ESE∗’’ and
‘‘TPMESE-ESE∗’’ denote difference is statistical signifi-
cance. With the increase of evaluations of φp criterion,
it can be predicted that the tendency of convergence above
described will disappear, which can be reflected from their
close mean values of φp criterion and the large p-values
between different algorithms. All p-values were both gradu-
ally larger than our standard after 1million evaluation number
of φp criterion

In other words, four algorithms converge to four approx-
imate optimal solutions with similar speed. Similarly,
the TPLHD as an initial design can also promote faster
convergence at the beginning, which can be confirmed
by the smaller mean values of φp criterion respectively
obtained by TPMESE and TPESE, as well as the p-values of
‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’ at the first moni-
tored evaluation number of φp criterion.
Regarding the optimization of LHDs with medium and

large sizes, the performance of the TPMESE and MESE

algorithms are generally better than TPESE and ESE except
the tests of 100 × 10 LHD until the global convergence is
reached. This conclusion can be drawn from the results of
Table 6 and Figures 7 to 8. For the tests of 50× 5 and 60× 6
LHDs, TPMESE and MESE can always converge to a better
solution faster than ESE and its variant, while the smaller
mean values respectively obtained by TPMESE andMESE as
well as all p-values of ‘‘MESE-ESE∗’’, ‘‘MESE-TPESE∗’’,
‘‘TPMESE-ESE∗’’ and ‘‘TPMESE-TPESE∗’’ at the all mon-
itored evaluation numbers of φp criterion confirm it. Finally,
these algorithms reach the same level solutions, which can be
confirmed by the p-values that are both larger than standard
for tests of 50× 5 LHD, while TPMESE and MESE are still
better than TPESE and ESE for the tests of 60 × 6 LHD.
In addition, TPMESE and TPESE also respectively perform
better than MESE and ESE algorithms at the first monitored
evaluation number of φp criterion. As they can quicker reach
a smaller mean value of φp criterion on the one hand, on the
other hand, their mean values of φp criterion are statistically
significant difference from each other in accordance with the
p-values of ‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’.
For the tests of 100 × 10 LHD, TPMESE and MESE

show better performance than each of original algorithms,
TPESE and ESE, respectively. A conclusion can be drawn
based on not only the smaller mean values of φp crite-
rion respectively obtained by TPMESE and MESE, but also
the p-values of ‘‘TPMESE-TPESE∗’’ and ‘‘MESE-ESE∗’’.
Of course, TPMESE and MESE both converge faster than
ESE algorithm, until reaching the global convergence. The
p-values of ‘‘TPMESE-ESE∗’’ and ‘‘MESE-ESE∗’’ can con-
firm it too. Different from the conclusion of other tested
cases, TPLHD as an initial design can always promote a faster
convergence of optimization than the optimization starting
from a random LHD owing to high diversity of individuals.
Form the results in Table 6 and Figure 9, TPMESE and
TPESE can always search a better solution than MESE and
ESE, respectively, before reaching the global convergence.
The p-values of ‘‘TPMESE-MESE∗’’ and ‘‘TPESE-ESE∗’’
can also support the point.

D. TIME SAVINGS OF NEW ALGORITHMS
According to the discussion in Subset C, TPMESE andMESE
are more efficient than TPESE and ESE in the whole period
of convergence, respectively, particularly at the beginning
stage of optimization, except in the tests of small size LHDs.
Because of the considerable time costs of the optimization for
LHDs with large size, optimizing efficiency has become a top
priority. Here, we focus on how efficiency of the TPMESE
and MESE algorithms can be improved compared to that of
TPESE and ESE algorithms for optimization of large size
LHDs. To expound the total time savings, mean time costs
for optimization of 60 × 6 and 100 × 10 LHDs using local
and global stopping criteria are listed in Table 7. It should
be noted that only a near-optimal or sufficient near-optimal
design needs to be quickly achieved sometime, particularly
when the optimization of LHD with large size is performed.
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Because we have already discussed the computational time
for generating a near-optimal design in Subset C, a rea-
sonable local stopping criterion for searching a sufficient
near-optimal design is set to abort the computation when
the value of φp criterion is lower than 102% of the final
mean value shown in Table 6. The entire process was also
repeated 100 times to obtain average results of time costs.
All results were validated by t-test to ensure there is statis-
tically significant difference from each other. The p-values
are both smaller than our standard, where the standard is
0.05%, except the tests of 60 × 6 LHD. The p-values of
TPMESE-MESE and TPESE-ESE indicate the acceleration
from a TPLHD disappears for the tests of 60×6 LHD. Due to
different performance of computers provides different results
of time costs, the time ratio, which indicates time costs of
MESE, TPESE, and ESE normalized by results of MESE,
is proposed to illustrate specific time savings.

TABLE 7. Comparison of time costs for different algorithms.

From the results listed in Table 7, the TPMESE algorithm
has the fastest convergence compared to the other algorithms
considered using a local stopping criterion; the maximum
improvement is respectively more than 50% and 45% for the
tests of 60 × 6 and 100 × 10 LHDs optimized by the ESE
algorithm. In the next stage, the acceleration from a TPLHD
as an initial design disappears under the global stopping
criterion for the tests of 60×6 LHD, which can be confirmed
by the p-values of ‘‘TPMESE-MESE’’ and ‘‘TPESE-ESE’’
after reaching the global convergence, while the TPMESE
algorithm still continues to be the most efficient algorithm
for 100 × 10 LHD. The largest time savings exceeded 45%
and 60% for tests of 60×6 and 100×100 LHDs, respectively.
Evidently, enhancement of efficiency for global convergence
of the new algorithms tends to increase with enlargement
of design size. In general, the MESE algorithm converges
faster than the ESE algorithm for optimization with large size
LHDs. Meanwhile, optimization initializing from a TPLHD
is suitable for further enhancing convergence in the initial
stage. Therefore, for the optimization of large size LHDs,
the TPMESE algorithm is best suited for obtaining a suffi-
cient near-optimal solution. The two types of new algorithms
have a few differences in efficiency for tests with different
size LHDs under global convergence. It is reasonable to
select TPMESE or MESE algorithms to implement global
optimization in real-world situations.

E. ANALYSIS OF PROPERTIES FOR MESE ALGORITHM IN
OPTIMIZATION
From the discussion in Subsets B and C, the MESE algo-
rithm shows better performance in the global optimization of
medium and large size LHDs, and its efficiency is consider-
ably higher than that of the ESE algorithm. To further inves-
tigate the reason behind its better performance, we compared
the properties of convergence, ‘‘temperature’’ Th, acceptance
number nacpt , and improvement number nimp changed with
generation for MESE and ESE algorithms started from a
random LHD. To enable the results to be universal, we also
averaged the results of optimization for 50× 5 LHD that was
repeated 100 times. However, as the efficiency of optimiza-
tion for medium and large size LHDs is our main concern,
only the results within 200 generations are exhibited. The
MESE and ESE algorithms only present a difference in the
update method of ‘‘temperature’’; therefore, the number of
evaluations of φp criterion per generation is the same. Hence,
the properties changed with generation can also be equivalent
to the shift with evaluation number of φp criterion.

FIGURE 10. Comparison of convergence properties for MESE and ESE
algorithms. The inverse region indicates an interval where the
convergence of the ESE algorithm is exceeded by the MESE algorithm.
Then, the MESE algorithm converges faster than the ESE algorithm with
generation.

FIGURE 11. Comparison of ‘‘temperature’’ shifted with generation for
MESE and ESE algorithms.

From Figures 10 and 11, we can see that a slightly slow
reduction of ‘‘temperature’’ in the initial stage and smoother
fluctuation in the following generations produce faster con-
vergence. The reason that leads to different properties of
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FIGURE 12. Comparison of acceptance number shifted with generation
for MESE and ESE algorithms.

FIGURE 13. Comparison of improvement number shifted with generation
for MESE and ESE algorithms. The inverse region indicates an interval
where the number of improvement designs generated by the ESE
algorithm is surpassed by the MESE algorithm.

‘‘temperature’’ shifted with generation for ESE and MESE
algorithms is that there is a considerable diversity of indi-
viduals at the optimization beginning. Thus, every generation
can produce abundant acceptance and improvement designs,
which can be reflected through large acceptance nacpt and
improvement numbers nimp in Figures 12 and 13. There-
fore, at this stage, the ESE algorithm always performs an
improvement process to quickly search local solutions by
rapidly reducing Th in terms of expression Th = α1Th_old ,
while the Thof MESE is only quickly decreased, when the
acceptance ratio nacpt / M is close to 1. With the reduction of
acceptance number nacpt , the Th of MESE tends to slower
reduction using a larger scale factor in terms of Eq. (6).
Correspondingly, according to Figures 11 and 12, there is
no significant difference of Th shifted between MESE and
ESE with relatively larger acceptance number within 5 gen-
erations, such as the nacpt which is larger than 45. How-
ever, when the nacpt is lower than 45 after 5 generations,
the two variation curves of the Th begin to show different
tendencies. The Th of ESE continues to be rapidly reduced
to a considerably small value which is close to 0, while the
Th of MESE maintains a smoother reduction. Accordingly,
rapid reduction of Th for ESE also implies rapid decrease of
diversity, which leads to a fast loss of necessary intermediate
solutions in accordance with considerably smaller acceptance

number nacpt of ESEwithin 20 to 40 generations in Figure 12.
As a consequence, ESE no longer has enough intermediate
solutions to generate abundant improvement designs. There-
fore, the improvement number nimp and corresponding value
of φp criterion are fast reversed by MESE within the same
interval, 30 to 40 generations as is mentioned above. The
inverse regions in Figures 10 and 13 confirm the analysis.
Even if ESE can increase Th to escape from a local solution
after deficiency of diversity begun from 35 generations from
Figure 11, it is still difficult to rapidly recover necessary
acceptance number so that the algorithm can continue to
generate a lot of improvement designs. Thus, the MESE
always keeps leading position compared to ESE algorithm in
the following generations. In contrast, for the optimization
of LHDs with small size, in the later period of convergence,
the larger Th and the corresponding acceptance number with
respect to the TPMESE and MESE algorithms imply that
there are still a lot of intermediate solutions. In other words,
a number of replacements between the current design X and
the intermediate design Xtry are still conducted in the inner
loops of MESE and TPMESE. However, due to the low
diversity among designs in the optimization of LHDs with
small size, and the continuous replacements (substantially
mutations), the relatively high mutations among designs in
terms of a number of replacements between X and Xtry are
not beneficial to remain the current superior design X so that
the convergent speed is slowed down in the later period of
convergence. It illustrates the reason why the leading posit-
ing of TPMESE and MESE disappear quickly compared to
ESE algorithm along with the increase of evaluations of φp
criterion, as is analyzed in Section C, for the optimization of
LHDs with small size.

In general, the property of update ‘‘temperature’’ for the
MESE algorithm is more suitable for the optimization of
medium and large size LHDs than the ESE algorithm. That
is the main reason why the efficiency of the MESE algorithm
is higher than that of the ESE algorithm in these situations.

V. CONCLUSION
In this study, a more efficient algorithm, MESE, than preva-
lent algorithms is proposed to optimize LHD. This algorithm
is modified from the ESE algorithm by introducing a new
update method of ‘‘temperature’’, whose shift is controlled
by scale factors of variable step length. Furthermore, consid-
ering the unique advantage of TPLHD which needs no com-
putational process to rapidly construct a near high-quality
design, we combine the new MESE algorithm with TPLHD
(TPMESE) to further improve its performance in the begin-
ning of optimization. The performance of the new algorithms
is verified by optimization tests on five sizes of LHDs,
classified into three levels: small, medium, and large. From
a comparison of the results, the following conclusions are
obtained:

1)The new algorithms, TPMESE and MESE, are consider-
ably more efficient than ILS, LSGA and PermGA for all of
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tested cases, and more suitable for the exploration of a more
optimal solution than LSGA and PermGA.

2)The TPMESE and MESE algorithms show significant
improvement in efficiency compared to that of each original
algorithm, TPESE and ESE, and they converge faster than
ESE, in the optimizations for medium and large size LHDs,
while they only perform better than each original algorithm at
the beginning of optimization for the tests of small size LHDs.
Finally, The four algorithms, TPMESE, MESE, TPESE and
ESE, exhibit approximate performance of global exploration
with each other to search for an optimal solution.

3)The optimization starting from a TPLHD effectively
promotes convergence at the beginning, while this effect
gradually disappears in the subsequent simulation. Therefore,
if there are no time constraints, MESE or TPMESE algo-
rithms are good choices to quickly reach an optimal solution.
However, when time cost is our top priority, especially for
medium or large size LHD, the TPMESE algorithm is better
than the MESE algorithm for generating a near-optimal or
sufficient near-optimal solution after several million evalua-
tions of φp criterion.

4) The proposedmethod to update the ‘‘temperature’’ in the
MESE algorithm has different properties from the ESE algo-
rithm. The updating process in the MESE algorithm is suit-
able to balance capabilities of local exploitation and global
exploration of the algorithm in the optimizations of medium
and large size LHDs. Therefore, the proposed algorithms can
converge faster to obtain an optimal solution.

It is worth noting that even though our proposed algo-
rithms, TPMSE and MESE, are efficient, and have the ability
to search for an optimal solution, there are still some limita-
tions in its application. MESE algorithm and its variant have
to set many parameters which considerably affect the perfor-
mance. In addition, the performance of the proposed algo-
rithms is only verified based on the specific computational
experiments when the dimension is not greater than 10. They
are also worthy of testing for LHDs with higher dimensions
and further investigation when proposed algorithms are used
in practical applications.
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