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ABSTRACT Hand gesture recognition is an attractive research field with a wide range of applications,
including video games and telesurgery techniques. Another important application of hand gesture recognition
is the translation of sign language, which is a complicated structured form of hand gestures. In sign
language, the fingers’ configuration, the hand’s orientation, and the hand’s relative position to the body
are the primitives of structured expressions. The importance of hand gesture recognition has increased
due to the prevalence of touchless applications and the rapid growth of the hearing-impaired population.
However, developing an efficient recognition system needs to overcome the challenges of hand segmentation,
local hand shape representation, global body configuration representation, and gesture sequence modeling.
In this paper, a novel system is proposed for dynamic hand gesture recognition using multiple deep
learning architectures for hand segmentation, local and global feature representations, and sequence feature
globalization and recognition. The proposed system is evaluated on a very challenging dataset, which consists
of 40 dynamic hand gestures performed by 40 subjects in an uncontrolled environment. The results show
that the proposed system outperforms state-of-the-art approaches, demonstrating its effectiveness.

INDEX TERMS 3DCNN, hand gesture recognition, hand segmentation, deep learning, computer vision,
sign language recognition.

I. INTRODUCTION
Hand gesture recognition is the first step for a computer to
understand human body language. It plays a pivotal role in
a wide range of human-computer interaction (HCI) applica-
tions such as smart TV control, video games, telesurgery,
and virtual reality [1]. Sign language translation is one of
the most important applications of hand gesture recognition.
The hand gestures involved in sign language are structured
in a very complex way as they convey important human
communication information and feelings. The primitives of
these manual expressions are the global configuration (the
hand’s orientation and its relative position to the body) and the
local fingers’ configuration. An efficient recognition system
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should consider all these complementary primitives in a
sequence of frames. However, the time dependence of these
frames makes it difficult to directly compare the primitives
in Euclidean space. Most of the existing recognition systems
only consider the local configuration of the hand. These sys-
tems either receive a segmented hand region as input or per-
form a hand segmentation preprocessing step using skin color
models or colored gloves [2]–[10]. However, such systems
performwell only for gestures involving simple alphabets and
numbers, which slightly rely on the global configuration, but
not for real sign language gestures.

Other existing systems ignore the local configuration of
the fingers and consider only the global body configuration.
These systems have been successful for some HCI applica-
tions with a small number of simple andwell-defined gestures
but have failed for real sign language gesture recognition [11].
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Traditionally, dynamic hand gesture recognition systems
use different techniques to extract handcrafted features fol-
lowed by a sequence modeling technique such as a hid-
den Markov model (HMM). However, the recent success
of deep learning techniques in image classification, object
recognition, speech recognition, and human activity recog-
nition [12]–[14] has encouraged many researchers to exploit
them for hand gesture recognition. For example, convolu-
tional neural networks (CNN) have been widely used for
learning visual features in computer vision.

On the other hand, a 3D convolutional neural network
(3DCNN) has been used for video modeling, which is an
extended version of standard CNNs that uses spatiotempo-
ral filters. This architecture has been explored previously
in several video analysis fields for spatiotemporal feature
representation; e.g., [15]–[18]. The most important charac-
teristic of 3DCNN is its ability to directly create hierarchical
representations of spatiotemporal data. However, it requires
more parameters than 2DCNN, which is one of its disadvan-
tages.Moreover, 3DCNN has an additional kernel dimension,
which makes it harder to train. Hence, instead of training a
3DCNN from scratch, using domain adaptation on pretrained
instances is preferred.

In a previous hand gesture recognition work [19],
we implemented a variation of the C3D architecture [17] and
used knowledge transfer from human action recognition to
hand gesture recognition. The C3D architecture comprises
eight convolutional layers, five pooling layers, and two fully
connected (FC) layers. However, even though we obtained
encouraging results in that work, we noticed that the direct
application of 3DCNN for hand gesture modeling has two
main drawbacks. Firstly, 3DCNN modeling is not robust
enough to capture the long-term temporal dependence of
the hand gesture signal. Secondly, modeling the hand ges-
ture signal in a video should be slightly different than other
video-based analysis for human activity recognition or event
recognition in general. For the latter case, the whole scene and
maybe multiple interacting objects in the frame are involved
discriminative descriptors for the overall recognition. In con-
trast, the discriminative features in hand gesture recognition
are located mainly in the fingers’ configuration, the hand’s
orientation, and the hand’s relative position to the body.
In other words, most of the frame area contains non-relevant
features that increase the misclassification ratio. In another
work, we addressed the first mentioned drawback of mod-
eling the long-term temporal dependence [20] by using
independent instances of 3DCNN to model the local spa-
tiotemporal features of different temporal segments. We also
explored different techniques to globalize the local repre-
sentations. Our experimental results showed that using tem-
poral modeling enhancement can improve the performance
of the 3DCNN model. In this study, we address the second
drawback by using both the local and global configurations
of the hand gesture while giving more attention to the fin-
gers’ configuration and eliminating the most non-relevant
features.

The contributions of the paper are as follows:
(1) Optimizing the level of C3D architecture knowledge

transfer between human activity recognition and hand
gesture recognition.

(2) Presenting a hand gesture recognition system based on
an optimized C3D architecture. The proposed system
uses local and global configurations efficiently with
more attention to the hand region.

(3) Presenting a novel method for hand segmentation based
on the openpose framework.

(4) Optimizing two architectures for local features aggre-
gation.

The rest of this paper is organized as follows. Section II
reviews relatedworks on hand gesture recognition. Section III
describes our dataset. Section IV presents the proposed sys-
tem. Section V discusses the experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK
During the last three decades, several works have been
conducted to tackle hand gesture recognition. Most works
have followed two approaches: a vision-based approach
and a non-vision-based approach. In the non-vision-based
approach, hand gesture data are collected via interfacing
devices such as data gloves, motion sensors, and position
trackers [21]–[25]. However, the hardware setup of this
approach is costly and is inconvenient because it restricts
the signer’s movement. On the other hand, the vision-based
approach overcomes these downsides by collecting the data
via cameras and imaging sensors. However, research works
using this approach have encountered many challenges that
degrade the performance of existing systems such as lighting
inconsistency, motion blur, background clutter, and hands
occlusion.Moreover, studies using the vision-based approach
can be classified into two categories: conventional tech-
niques (e.g., [2]–[9] and [26]–[33]) and deep learning-based
techniques (e.g., [10], [11], and [34]–[41]).

The paper byMurakami et al. is one of the earliest papers in
the field [26]. In that paper, they used an artificial neural net-
work (ANN) to recognize 42 alphabets of the Japanese sign
language. The ANN was also used with data gloves to recog-
nize isolated words of the American sign language (ASL) in
two stages, i.e., phonemic and word recognition, but it was
evaluated on a relatively limited lexicon [2]. Another robust
method based on ANN classifier and skin color segmentation
was recently presented for recognizing Thai alphabets [3].
The histogram of oriented gradient (HOG) was used in this
approach to represent the segmented hand shape. In another
work, skin color was used for hand region segmentation [4].
The segmented hand motion trajectory was then modeled by
a time-delay neural network to recognize 40 ASL words.

HMMs, on the other hand, were extensively used for hand
gesture recognition. For example, Starner et al. proposed
HMMs to recognize sentence-level continuous ASL [5],
where the skin color was used for hand segmentation. They
used a lexicon of 40 words to construct the test sentences.
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Other HMM-based methods used different combinations of
principal component analysis, kurtosis position, and motion
chain code descriptors [27]. The best accuracy was achieved
on the RWTH-BOSTON-50 database by combining the three
descriptors. Killy et al. used a single HMM for each hand
with colored gloves for hand segmentation and tracking [6]
and they evaluated their method using a small dataset of eight
gestures. Pu et al. also used HMMs to model the segmented
trajectory of hand gesture for 100 Chinese sign words [28].
The trajectory segments were represented as histograms of
shape context. In another work proposed by Li et al., an
entropy-based K-means was used to evaluate the number
of states in each HMM model [29]. A combination of the
Baum-Welch algorithm and the artificial bee colony algo-
rithm was used to determine and learn the structure of HMM.
Recently, Yang et al. classified the hand gesture trajectory
of ASL in a hierarchical way to generate a sequence of
observations [30]. HMMs were then applied to model and
classify the sequences.

An SVM classifier was also used for recognizing the Irish
sign language [7] and ASL [31]. A skin color model was
used in [7] for hand segmentation and a combination of
weight eigenspace size function and Hu moments was used
to represent the hand shape. On the other hand, the fingertips’
coordinates collected by LeapMotion and Intel RealSense 3D
cameras were used in [31]. In another work, Aly et al. used
SVM to recognize 23 Arabic sign language words [32]. They
proposed a local binary pattern in three orthogonal planes
to represent the appearance and motion features of signs.
The proposed method in [8] used particle filtering for hand
tracking. Feature covariance matrix and the minimum Rie-
mann distance metric were then used on the detected hand for
representation and classification. Lim et al. used sparse obser-
vations from a video of RGB-D frames [9], where the skin
color and depth maps were used for hand segmentation and
the HOG was used for posture representation. The similarity
between the postures of different samples was thenmeasured.
Abid et al. used bag-of-visual words with a local part model
approach to recognize six simple dynamic gestures [33].

Recently, deep neural network architectures, such as CNN
and long short-term memory (LSTM) network, have been
used for hand gesture recognition. For example, Huang et al.
used CNN and ANN for the representation and classification
of 20 Italian gestures [34]. To perform well, this method
requires a multimodality input, which includes the RGB
frames, the depth maps, and the skeleton joints. Similarly,
Lionel et al. investigated temporal convolutions with bidirec-
tional recurrence for gesture recognition in the Montalbano
dataset [35]. Another deep learning architecture was pro-
posed for ASL hand posture recognition [36], where the depth
data were used for segmenting the hand region and the deep
belief neural network and CNN were used for feature learn-
ing and classification. Another recent approach proposed by
Okan et al. involved the fusion of optical flow and RGB
frames to adapt the pretrained inception model for hand ges-
ture recognition [37]. Another CNN-based architecture was

FIGURE 1. Sample frames from the KSU-SSL dataset.

proposed in [10] for static hand gesture recognition. The input
to this architecture was a small image with a size of 32× 32
that contains only the hand region. A CNN and an LSTM
were combined for temporal 3D pose gesture recognition
[38], where the input frames contain the 3D joints of the
human body. Furthermore, in [39], two streams of 3DCNN
were presented for gesture recognition. The inputs for the
two streams were interleaved volumes of depth maps and
preprocessed Sobel gradient with different resolutions. The
ResNet architecture was used by Chen et al. for encod-
ing the features of frames’ sequence in a single 2D matrix
[40]. Then, another CNN was used to capture the evolution
of the spatiotemporal features for classification. Recently,
Hu et al. used the skeletal data of hand gestures to design
a deep learning-based control system for unmanned aerial
vehicles [11]. Both CNN and different multilayer perceptron
(MLP) architectures were investigated for feature learning.
Another recent work for Arabic sign language recognition
used semantic segmentation for detecting the hand [41].
Unsupervised learning via convolutional self-organizing map
was then applied for feature extraction and a bidirectional
LSTM was used for sequence modeling.

The proposed system in this study is based on a single
modality input (RGB video) and does not require other
modalities such as the depth maps or skeleton joints. It also
combines both the local and global configurations of hand
gestures.

III. KSU-SSL DATASET
Our experiments were conducted on the King Saud Univer-
sity Saudi Sign Language (KSU-SSL) dataset reported in
[20]. The dataset contains isolated words and phrases from
common expressions in the SSL dictionary. The dataset was
recorded by 40 participants over five recording sessions.
Some of the participants are deaf and some are well trained
by sign language experts. The recorded gestures are listed in
Appendix I. Sample frames from the dataset are illustrated
in FIGURE 1. There was no restriction on the recording
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FIGURE 2. Proposed system for hand gesture recognition using local and global configuration features.

background, participants clothes or lighting conditions. The
KSU-SSL dataset exhibits high variations in illumination and
participants’ clothes, position, scale, and gesturing speed.

IV. PROPOSED SYSTEM
Consider a set of M training video samples {xi, yi}Mi=1 of
variable duration ti such that xi is the ith sample in the set
and yi is the corresponding label vector. This label vector is
of lengthK,whereK is the number of targeted gesture classes.

One-hot encoding in amulticlass setup sets each vector ele-
ment to one if the corresponding class is present, otherwise,
it is set to zero. FIGURE 2 illustrates the proposed system.

It consists of three main phases: input preprocessing, fea-
ture learning and feature fusion, and classification. In the next
subsections, we discuss the details of the different phases.

A. INPUT PREPROCESSING
The input videos are converted into sequences of RGB frames
of different lengths. Then, linear sampling is used for tem-
poral dimension normalization, where only 16 frames are
linearly selected from each video sequence.

This temporal normalization step for the input can be
achieved by different techniques such as the bag-of-visual
words. These techniques are very efficient when the sequence
order is of low importance for discrimination such as in
video event and human action recognition. For hand gesture
recognition, the sequence order should be preserved because
it encodes highly discriminative features; hence, linear sam-
pling is the preferred technique to be used. Two cropping and
normalizationmethods are then performed simultaneously on
the selected frames. The first method locates the signer’s face
using the Viola and Jones algorithm [42]. Then, the gesture
space is estimated and cropped in each frame based on the
detected facial length and body parts ratios information [43].

Each frame is resized to a fixed size of 112×112 pixels while
preserving the aspect ratio.

This method outputs a sequence XB ∈ R112×112×3×16

of 16 frames, where each frame includes the entire gesture
space.

In addition to avoid the effects of the variations of the
signer’s height and distance from the camera, this spatial
normalization and cropping reduce the effects of nonrelevant
features in each frame. The secondmethod, on the other hand,
crops and normalizes the hand region to focus more on the
fingers’ configuration.

HAND CROPPING AND NORMALIZATION
This method uses an open-source real-time human pose
estimation framework called openpose, which is a deep
learning-based framework for detecting the 2D key points
of each individual in an image. This framework improves
the machine understanding of human activity in an
image or video sequence [44]. It takes as an input an RGB
image and returns as an output a list of (x, y) coordinates for
all human body key points. FIGURE 3 illustrates the upper
body openpose key points. From thewhole list of returned key
points, only the wrist and elbow joints are used for cropping
the hand region.

For instance, the vector from the elbow joint (xe, ye) to the
wrist joint (xw, yw) indicates the arm axis. Based on the arm
axis direction, we propose an efficient method to estimate a
small square region around the hand to be cropped. The length
of this square region is equal to the absolute value of the
distance between the wrist and the elbow joints as in Error!
Reference source not found.):

length =
√
(xw − xe)2 + (yw − ye)2 (1)
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FIGURE 3. Upper body openpose key points.

FIGURE 4. Estimated hand directions.

The proposed method estimates the hand orientation to one
of the nine basic directions illustrated in FIGURE 4. These
directions are:

1- The hand axis is perpendicular to the frame’s plane
pointing at the camera.

2- The hand axis is vertical pointing up.
3- The hand axis is diagonal pointing to the top right.
4- The hand axis is horizontal pointing to the right.
5- The hand axis is diagonal pointing to the bottom right.
6- The hand axis is vertical pointing down.
7- The hand axis is diagonal pointing to the bottom left.
8- The hand axis is horizontal pointing to the left.
9- The hand axis is diagonal pointing to the top left.

The calculation steps for estimating the top left (xB, yB)
point and the bottom right (xE , yE ) point of the square
region to be cropped are summarized in Algorithm 1 in
the Appendix II. The cropped hand region is then resized

FIGURE 5. Hand direction estimation.

FIGURE 6. Estimating the middle point and cropped region.

to 112 × 112 pixels. The horizontal and vertical distances
between the wrist and the elbow joints (X difference and Y
difference) are illustrated in FIGURE 5. Based on these two
values, the hand direction, and as a result, the square region
to be cropped can be estimated as follows:

i. If both the horizontal and vertical distances are
negligible (i.e., less than α), the two joints are nearly
identical. In other words, the hand axis is perpen-
dicular to the frame’s plane (case 1 in FIGURE 4).
Hence, the cropped region is centered on the wrist
joint. We have found that an appropriate value for α
is 40 pixels.

ii. If only the horizontal distance is negligible (i.e., less
than α), the hand axis is nearly vertical. The vertical
coordinates of the wrist and elbow joints are used to
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FIGURE 7. Effect of the number of trainable layers on the efficiency of knowledge transfer.

FIGURE 8. Heat map shows the system accuracy in the searched space of the MLP hyperparameters, where the darkest color is the highest
accuracy and the lightest color is the lowest accuracy.

FIGURE 9. Average accuracy of all architectures with different initial
learning rates.

indicate the direction of the axis. If the wrist joint is
vertically less than the elbow joint, then the direction
is up (case 2 in FIGURE 4). Hence, the lower border
of the cropped region will pass through the wrist joint.
To avoid inaccuracies, the cropped region is shifted

FIGURE 10. Behavior of the optimal MLP architecture in the signer
independent mode.

down by a small value of ε. On the other hand, if the
wrist joint is vertically greater than the elbow joint,
then the direction is down (case 6 in FIGURE 4).
Hence, the upper border of the cropped region will
pass through the wrist joint. To avoid inaccuracies,
the cropped region is shifted up by a small value of ε.
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FIGURE 11. Confusion matrix of MLP two streams fusion in the signer-independent mode.

iii. If only the vertical distance is negligible (i.e., less
than α), the hand axis is nearly horizontal. The horizon-
tal coordinates of the wrist and elbow joints are used to
indicate the direction of the axis.
If the wrist joint is horizontally less than the elbow
joint, then the direction is to the left (case 8 in
FIGURE 4). Hence, the right border of the cropped
region will pass through the wrist joint. To avoid inac-
curacies, the cropped region is shifted to the right by a
small value of ε. On the other hand, if the wrist joint is
horizontally greater than the elbow joint, then the direc-
tion is to the right (case 4 in FIGURE 4). Hence, the left
border of the cropped region will pass through the
wrist joint. To avoid inaccuracies, the cropped region
is shifted to the left by a small value of ε.

iv. If both the horizontal and vertical distances are not
negligible (i.e., each of them is greater than α), the hand
axis is nearly diagonal. Hence, there are four possible
directions for the hand axis, as shown in cases 3, 5,
7, and 9 in FIGURE 4. In all these cases, a middle
point on the hand axis is estimated, as illustrated in
FIGURE 6.

• If the horizontal and vertical coordinates of the
wrist joint are greater than those of the elbow joint,
the hand axis direction is down right. This is case 5

in FIGURE 4. Hence, the estimated middle point is
considered as the top left corner for the cropped region.

• If the horizontal and vertical coordinates of the wrist
joint are less than those of the elbow joint, the hand
axis direction is top left. This is case 9 in FIGURE 4.
Hence, the estimated middle point is considered as the
bottom right corner for the cropped region.

• If the vertical coordinate of the wrist joint is greater
than that of the elbow joint and the horizontal coordi-
nate of the wrist joint is less than that of the elbow joint,
the hand axis direction is down left. This is case 7 in
FIGURE 4. Hence, the estimated middle point is con-
sidered as the top right corner for the cropped region.

• Finally, If the vertical coordinate of the wrist joint is
less than that of the elbow joint and the horizontal
coordinate of the wrist joint is greater than that of the
elbow joint, the hand axis direction is top right. This is
case 3 in FIGURE 4. Hence, the estimated middle point
is considered as the bottom left corner for the cropped
region, as depicted in FIGURE 6.

The preprocessing phase outputs two volumes per sample,
each with a size of 112× 112× 3× 16. These two volumes
are delivered to the feature learning phase where one of them
represents the entire gesture space and the other is dedicated
to the hand region.
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FIGURE 12. Confusion matrix of MLP two streams fusion in the signer-dependent mode.

FIGURE 13. Heat map of the system accuracy in the searched space of the autoencoder hyperparameters, where the darkest color is the highest
accuracy and the lightest color is the lowest accuracy.

B. FEATURE LEARNING
We start with the pretrained C3D architecture with eight con-
volutional layers, five pooling layers, and two FC layers [17].
This model is already trained on the large-scale Sport-1M
human action recognition dataset [13]. In domain adaptation
learning, the transferred knowledge has less impact as we
move toward the layers at the top of the model, especially
when the source and target domains are far away from each
other.

Hence, we replace the last block, which has two FC lay-
ers with each having 4096 neurons, with a new FC layer
of 4096 neurons to reduce the training cost of the two FC lay-
ers with an expansive number of parameters. Then, we opti-
mize the level of knowledge transfer from the source domain
to the target domain. This optimization step is detailed in the
experimental results and discussion section. Two instances
of the optimized C3D architecture are used to represent the
spatiotemporal features in different levels of the frames’
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sequence (i.e., the hand region and the entire gesture space
region).

The first C3D instance learns the fine spatiotemporal
features of the hand configuration. The hand is dominant in
each input frame of this instance. On the other hand, the sec-
ond C3D instance learns the coarse spatiotemporal features
of the whole-body configuration. This phase produces as an
output two feature vectors with each having a dimension
of 4096.

C. FEATURE FUSION AND CLASSIFICATION
Two different techniques, i.e., MLP and autoencoder, are
investigated to fuse the two feature vectors before feeding
them to the classifier. In contrast to the system proposed in
[20], we avoid the use of LSTM with this system because the
two streams are not temporal segments of the gesture. Then,
we perform end-to-end training for the fusion architecture
with the classifier. The classification layer is activated by a
SoftMax function.

V. EXPERIMENTAL RESULTS AND DISCUSSION
To evaluate the proposed system, we conducted extensive
experiments in two scenarios as follows:
• Signer-dependent mode: In this scenario, the samples
were randomly shuffled and split into two subsets for
training and evaluation. In other words, we divided the
samples of each signer into training and evaluation with
a random ratio.

• Signer-independent mode: In this scenario, the signers
were divided into two sets. All the samples performed
by the first set of signers were used for training, while all
the samples performed by the other set of signers were
used for testing.

A. FEATURE LEARNING
1) C3D KNOWLEDGE TRANSFER OPTIMIZATION
Typically, when using transfer learning, some of the architec-
ture layers are iteratively fine-tuned on the target domain data
to adapt their parameters for the target domain. On the other
hand, the other layers are frozen to keep the original values of
their parameters. In this experiment, we investigated how the
performance of the C3D architecture is affected by changing
the number of trainable layers to find the optimal case. This
optimization step was performed in the signer-independent
mode. All the samples that were recorded by the first 32 sign-
ers (80% of the samples), were used for training the archi-
tecture. The remaining 1600 samples, that were recorded by
the other eight signers (20% of the samples), were used for
evaluation.

We linearly sampled 16 frames from each sequence
with each frame containing the entire gesture space. Then,
end-to-end training was conducted for the C3D architecture
after replacing the last two FC layers and the classification
layer. The mini-batch gradient descent with a learning rate
of 10−4, a weight decay of 10−6, and a momentum of 0.9 was
used to fit the entire model over 100 iterations. The batch size
was 16 samples. We repeated the experiment by changing the

FIGURE 14. Average accuracy of all architectures with different initial.

FIGURE 15. Behavior of the optimal autoencoder in the
signer-independent mode.

number of trainable and frozen layers each time to find the
optimal level for knowledge transfer. We started by training
only the last 3DCNN layer with the FC layer and the classi-
fication layer, while the remaining layers were frozen. Then,
in each repetition, we incremented the number of trainable
layers by activating the next nearest layer to the previously
activated ones. FIGURE 7 illustrates the results of the exper-
iment in terms of evaluation loss and recognition accuracy.
It shows that the performance of the model is improved as
we increase the number of trainable layers as long as the first
layer is frozen. That is, the best performance (80.94%) was
achieved by fine-tuning all the layers except the first one. This
result supports the intuition that the first layer learns common
preliminarymotifs in both the source and target domains. As a
result, the parameters of this layer were optimized well on the
source data and there was no need to distort them by a small
and maybe noisy data of the target domain.

This optimal case of knowledge transfer was used in our
experiments for feature representation by taking the output
of the FC layer as a feature vector for the next phase.

VOLUME 8, 2020 192535



M. Al-Hammadi et al.: Deep Learning-Based Approach for Sign Language Gesture Recognition

FIGURE 16. Confusion matrix of autoencoder two streams fusion in the signer-independent mode.

2) SIGNER-INDEPENDENT MODE
For data separation, we repeated the same criterion used
in the previous experiment; i.e., we choose 80% of the
KSU-SSL dataset for training and the remaining 20% for
testing. As detailed in the input preprocessing section, the
final output of the preprocessing phase was two clips. Each
clip had a shape of 112×112×3×16, where 112×112 is the
frame size, 3 is the RGB channels in each frame, and 16 is
the number of frames in each clip. Each of the two clips in
the training samples was used for refining the corresponding
C3D instance.

In other words, we used two instances of the C3D
architecture, which was optimized in the first part to sep-
arately learn the two types of features. Then, the trained
instances were utilized to extract the features from the cor-
responding clips in the dataset samples.

To achieve this, we removed the classification layers from
the two instances and replaced them with a single concate-
nation layer followed by a fusion and classification network.
The two output vectors of the C3D modules were concate-
nated to form a single vector of length 8192?. End-to-end
trainingwas conducted for thewhole architecturewhile freez-
ing all the layers except the fusion and classification network.

3) SIGNER-DEPENDENT MODE
In contrast to the signer-independent case where the signers
were divided into two mutually exclusive sets, in this sce-
nario, we randomly selected 80% of the dataset samples for

training and the remaining 20% for evaluation. Except for this
data separation step, the same process was repeated as in the
previous mode.

B. MLP FUSION
1) SIGNER-INDEPENDENT MODE
We investigated theMLP network for feature fusion.We stud-
ied the effect of the number of layers of the MLP (the
depth) and the number of neurons per layer on the model’s
performance. The mini-batch gradient descent optimizer was
used with an initial learning rate, a decay of 10−6, and a
momentum of 0.9.

We conducted an extensive grid search to optimize the
architecture and the initial learning rate because they are the
most important hyperparameters for theMLP fusion network.

The search space was defined as follows:
- The architecture depth in terms of number of layers d ∈
{1, 2, 3}.

- The number of neurons in any layer N ∈ {256, 512,
1024, 2048, 4096, 8192}with a constraint that the num-
ber of neurons in any layer should be less than the
number of neurons in the previous layer.

- The initial learning rate is lr = x×10n : x ∈ {1, 5} and
n ∈ {−3,−4,−5,−6,−7}.

The result of this grid search step is illustrated as a heat map
in FIGURE 8.

The average accuracy of all architectures with different
learning rates is illustrated in Error! Reference source not
found. From the heat map and the average accuracy figures,
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FIGURE 17. Confusion matrix of autoencoder two streams fusion in the signer-dependent mode.

we find that the learning rates between 10−4 and 10−5

achieved competing accuracies for all architectures.
The highest recognition accuracy of 87.69% was achieved

by the two-layer architecture, where the first layer has 2048
neurons, the second layer has 256 neurons, and the initial
learning rate is 5 × 10−5. In addition, there is no clear trend
for the performance with respect to architecture.

The behavior of the system performance during training
iterations on the training and validation datasets is illustrated
in FIGURE 10. The performance of the trained system on
the evaluation dataset is detailed in the confusion matrix in
FIGURE 11.

2) SIGNER-DEPENDENT MODE
The optimal hyperparameters obtained in the signer-
independent scenario were utilized to evaluate the system
performance in the signer-dependent scenario.

In this scenario, some of the signer’s samples were used
for training the model and the remaining of the samples
performed by the same signer were used for evaluation. The
ratios of the two sets of samples were random and varied from
one signer to another. The evaluation results are illustrated
in the confusion matrix in FIGURE 12. We find that this
scenario achieved an accuracy of 98.62%.

C. AUTOENCODER FUSION
1) SIGNER-INDEPENDENT MODE
We investigated the autoencoder network for feature fusion.

TABLE 1. Recognition accuracy (%) achieved by MLP and autoencoder
fusion in the different modes.

We also investigated the effect of the autoencoder depth
(number of hidden layers) and width (number of neurons in
each layer) on the performance of the system.

The mini-batch gradient descent optimizer was used in
this part with the same parameter setup used in the MLP
fusion. We conducted an intensive grid search to optimize the
architecture of the autoencoder and the initial learning rate.

The search space was defined as follows:
- The encoder architecture depth in terms of the number
of layers d ∈ {1, 2, 3}.

- The number of neurons in any layer N ∈ {256, 512,
1024, 2048, 4096, 8192} with a constraint that the
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FIGURE 18. Four examples of confused gestures from the KSU-SSL dataset.

number of neurons in the layers is reduced as we move
from the input layer toward the latent layer.

- The initial learning rate is lr = x×10n : x ∈ {1, 5} and
n ∈ {−3,−4,−5,−6,−7}.

The result of this grid search step is illustrated as a heat map
in FIGURE 13. The average accuracy of all architectures with
different learning rates is illustrated in FIGURE 14. From
the heat map and average accuracy figures, we find that the
system with one pair of hidden layers performed better than
the system with two pairs of hidden layers. We also find that
the maximum accuracy and the best average accuracy were
achieved using an initial learning rate of 10−5.

The highest accuracy of 84.89% was achieved by the
architecture with 2048 neurons in the latent layer and a single
pair of hidden layers with 8192 neurons each.

The system performance during training iterations on
the training and validation datasets is illustrated in Error!
Reference source not found.. On the other hand, the recog-
nition rate of the trained system on the evaluation dataset is
detailed in the confusion matrix in FIGURE 16.

2) SIGNER-DEPENDENT MODE
The optimal hyperparameters obtained in the signer-
independent scenario were utilized to evaluate the system
performance in the signer-dependent scenario. The evaluation
results are illustrated in the confusion matrix in FIGURE 17.
A recognition accuracy of 98.75% was achieved in this
scenario.

TABLE 2. Recognition accuracy (%) compared with state-of-the-art
systems.

DISCUSSION AND COMPARISON
Table I summarizes the MLP and the autoencoder accu-
racies using different batch sizes. We find that both
architectures obtained comparable performance in the
signer-dependent mode, while the performance of theMLP in
the signer-independent mode was much better than that of the
autoencoder. From the optimization heatmaps of both MLP
and autoencoder systems, we can note that:

- InMLP, there was no change in accuracy when the depth
of the architectures was changed.
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TABLE 3. KSU-SSL dataset classes.

- The performance of the autoencoder was slightly
enhanced by increasing the number of neurons while
fixing the depth of the architecture.

- The performance of the autoencoder was degraded when
the depth of the architecture was increased.

- The smallest batch size achieved the highest accuracy
for both architectures. This might be attributed to the
fact that minimizing the batch size leads to updating
the model weights more frequently. Even though, such
updates using a few noisy samples involve a regularizing
effect, which reduces generalization error.

- Moreover, in the confusion matrices, the system perfor-
mance in the signer-independent mode was weaker than
that in the signer-dependent mode.

As the gestures in the KSU-SSL dataset were recorded by
a large number of participants, the samples of the dataset
could exhibit significant variations. When the training and
evaluation samples were recorded by two mutually exclu-
sive sets of signers (i.e., the signer-independent scenario),
the intra-class variation was very high, and the recognition
accuracy was low. Furthermore, we investigated the highly
confused classes for the two architectures by analyzing the

confusion matrices. We focused more on the pairs of ges-
tures that exhibited a high level of confusion in both the
signer-dependent and signer-independent scenarios.

As illustrated in FIGURE 18, the sampled frames from
some of the confused gestures showed that the signers had
nearly common global body configuration and almost the
same relative position and orientation for the hand. Any
differences between the gestures are mainly on the fingers’
configuration.

There are two pairs of confusing gestures in FIGURE 18,
i.e., ‘‘Sorry’’ with ‘‘Vacation,’’ ‘‘File’’ with ‘‘Meeting,’’ and
‘‘Sorry’’ with ‘‘Vacation’’. It is clear in the figure that the
frame sequences of each pair are highly correlated.

The proposed system gave more consideration to the
hand region by dedicating a separate stream to learn the
hand configuration features. This consideration led to excel-
lent improvement in system performance. Compared to the
results achieved by the base C3D architecture in the first
experiment and those achieved by the temporally enhanced
system in [20], this system achieved the best recogni-
tion rate with both MLP and autoencoders in all the
scenarios.
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Algorithm 1 Hand Region Estimation
Input: The elbow coordinates (xe, ye)

The wrist coordinates (xw, yw)
The square region length (length)

Output: The top left coordinate of the square region (xB, yB)
The bottom-right coordinate of the square region (xE , yE )

Calculatetheregionlength =
√
(xw − xe)2 + (yw − ye)2

If abs (xw − xe) < αandabs (yw − ye) < α

xB = xw − length/2
yB = yw − length/2
xE = xw + length/2
yE = yw + length/2

Else If abs (xw − xe) < αandabs (yw − ye) > α

xB = xw − length
/
2

xE = xw + length
/
2

If yw < ye
yB = yw − (length− ε)
yE = yw + ε

Else
yB = yw − ε
yE = yw + (length− ε)

End If

Else If abs (yw − ye) < αandabs (xw − xe) > α

yB = yw − length/2
yE = yw + length/2
If xw > xe
xB = xw − ε
xE = xw + (length− ε)

Else
xB = xw − (length− ε)
xE = xw + ε

End If
Else If (ye − yw) > αand (xw − xe) > α

ymid = round(yw + (ye − yw)
/
2)

xmid = round(xw − (xw − xe)
/
2)

yB = ymid − length
yE = ymid
xB = xmid
xE = xmid + length

Else If (yw − ye) > αand (xe − xw) > α

ymid = round(yw − (yw − ye)
/
2)

xmid = round(xw + (xe − xw)
/
2)

yB = ymid
yE = ymid + length
xB = xmid − length
xE = xmid

Else If (ye − yw) > αand (xe − xw) > α

ymid = round(yw + (ye − yw)
/
2)

xmid = round(xw + (xe − xw)
/
2)

yB = ymid − length
yE = ymid
xB = xmid − length
xE = xmid
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Else If (yw − ye) > αand (xw − xe) > α

ymid = round(yw − (yw − ye)
/
2

xmid = round(xw − (xw − xe)
/
2)

yB = ymid
yE = ymid + length
xB = xmid
xE = xmid + length

Else:
Wrong input values

However, despite of this performance enhancement,
the system failed in recognizing some of the confusing
gestures.

The misclassifications were almost caused by hand
blurring issues and bad lighting conditions, which also illus-
trated in FIGURE 18. The recording cameras had a frame rate
of 30 fps, which was not sufficient to eliminate this motion
blur. The hand configuration details targeted by this system
were eliminated by the motion blur and bad lighting in many
cases, which are some of the challenges of the KSU-SSL
dataset.

In Table, we compare the performance of the proposed
system with those of state-of-the-art systems. We noticed that
there is a lack in the single-modality systems that are tested on
comprehensive sign language datasets of RGB frames only.
Most of the recent works utilized multimodality inputs, that
compose multiple channels such as depth maps and human
skeleton joints in addition to the RGB frames.

To make fair comparisons, we only considered those sys-
tems with an RGB video input rather than the systems with
multimodality inputs. The selected systems for comparison
used deep CNN architectures in different ways for hand ges-
ture representation. The system in [37] generated the horizon-
tal and vertical optical flow from the RGB sequence. These
optical follow channels were stacked with the RGB frames to
enhance the model performance.

On the other hand, the system in [40] started by com-
pressing the entire input sequence in a two-dimensional
matrix. This matrix was then fed as an input to the proposed
architecture.

The proposed systems with MLP and autoencoder fusion
outperformed the DenseImage Net by a large margin. In its
worst case, the proposed system with autoencoder fusion
slightly outperformed the other two state-of-the-art systems
in both scenarios. The highest accuracy of 87.69% in the
signer-independent scenario was achieved by the system with
the MLP fusion. This outperforming result can be attributed
to the enhancement of the spatial aspect as well as the
good temporal modeling of the hand gesture in the proposed
system.

The good performance achieved by the systems in [20]
and [37] can be attributed to the efficient way of utilizing
the temporal features of the hand gesture. In this regard,
the system in [20] utilized 3DCNN to model three temporal

segments, from the beginning, the middle, and the end of the
input video and then aggregated the segments’ features to
achieve a robust temporal representation.

To enhance the temporal representation, the system in [37]
combined the RGB frames with the auxiliary optical flow
channels, which involve more temporal motifs.

On the other hand, the low accuracy of the DenseImage
Net [40] might be attributed to losing the temporal aspect by
compressing the entire sequence of the video in a 2D matrix
and dealing with such matrix as a static image.

VI. CONCLUSION
This study proposed a novel system for dynamic hand ges-
ture recognition via a combination of multiple deep learn-
ing techniques. The proposed system represented the hand
gesture using local hand shape features as well as global
body configuration features, which is very efficient for com-
plicated structured hand gestures of the sign language. The
openpose framework was used in this study for hand region
detection and estimation. A robust face detection algorithm
and the body parts ratios theory were utilized for gesture
space estimation and normalization. Two 3DCNN instances
were used separately for learning the fine-grained features of
the hand shape and the coarse-grained features of the global
body configuration. MLP and autoencoders were utilized to
aggregate and globalize the extracted local features and the
SoftMax function was used for the classification. Further-
more, to reduce the training cost of the 3DCNN module,
we investigated domain adaptation and conducted extensive
experiments to optimize the level of knowledge transfer.
The proposed system was evaluated on a real and challeng-
ing sign language dataset. The experimental results showed
that the proposed system outperformed state-of-the-art
methods in terms of recognition rate, demonstrating its
effectiveness.

For future work, we will utilize other strategies for
temporal aspect modeling. We will perform extensive exper-
iments to optimize the length of the input clip. We will also
test the system for real-time hand gesture recognition.

APPENDIX I.
See Table 3.

APPENDIX II.
See Algorithm 1.

VOLUME 8, 2020 192541



M. Al-Hammadi et al.: Deep Learning-Based Approach for Sign Language Gesture Recognition

REFERENCES
[1] S. Kausar and M. Y. Javed, ‘‘A survey on sign language recogni-

tion,’’ in Proc. Frontiers Inf. Technol., Islamabad, Pakistan, Dec. 2011,
pp. 95–98.

[2] M. B. Waldron and S. Kim, ‘‘Isolated ASL sign recognition system for
deaf persons,’’ IEEE Trans. Rehabil. Eng., vol. 3, no. 3, pp. 261–271,
Sep. 1995.

[3] C. Chansri and J. Srinonchat, ‘‘Hand gesture recognition for thai sign
language in complex background using fusion of depth and color video,’’
Procedia Comput. Sci., vol. 86, pp. 257–260, Jan. 2016.

[4] M.-H. Yang, N. Ahuja, andM. Tabb, ‘‘Extraction of 2Dmotion trajectories
and its application to hand gesture recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 24, no. 8, pp. 1061–1074, Aug. 2002.

[5] T. Starner, J.Weaver, and A. Pentland, ‘‘Real-time American sign language
recognition using desk and wearable computer based video,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 20, no. 12, pp. 1371–1375, Dec. 1998.

[6] D. Kelly, J. Mc Donald, and C. Markham, ‘‘Continuous recognition of
motion based gestures in sign language,’’ in Proc. IEEE 12th Int. Conf.
Comput. Vis. Workshops, ICCV Workshops, Kyoto, Japan, Sep. 2009,
pp. 1073–1080.

[7] D. Kelly, J. McDonald, and C. Markham, ‘‘A person independent system
for recognition of hand postures used in sign language,’’ Pattern Recognit.
Lett., vol. 31, no. 11, pp. 1359–1368, Aug. 2010.

[8] K. M. Lim, A. W. C. Tan, and S. C. Tan, ‘‘A feature covariance matrix with
serial particle filter for isolated sign language recognition,’’ Expert Syst.
Appl., vol. 54, pp. 208–218, Jul. 2016.

[9] H. Wang, X. Chai, and X. Chen, ‘‘Sparse observation (SO) alignment
for sign language recognition,’’ Neurocomputing, vol. 175, pp. 674–685,
Jan. 2016.

[10] A. Mohanty, S. S. Rambhatla, and R. R. Sahay, ‘‘Deep gesture: Static hand
gesture recognition using CNN,’’ in Proc. Comput. Vis. Image Process.,
Roorkee, India, Sep. 2017, pp. 449–461.

[11] B. Hu and J. Wang, ‘‘Deep learning based hand gesture recognition and
UAV flight controls,’’ Int. J. Autom. Comput., vol. 17, no. 1, pp. 17–29,
Feb. 2020.

[12] M. Alhussein and G. Muhammad, ‘‘Voice pathology detection using
deep learning on mobile healthcare framework,’’ IEEE Access, vol. 6,
pp. 41034–41041, 2018.

[13] A. Ghoneim, G. Muhammad, S. U. Amin, and B. Gupta, ‘‘Medical image
forgery detection for smart healthcare,’’ IEEE Commun. Mag., vol. 56,
no. 4, pp. 33–37, Apr. 2018.

[14] R. Hou, C. Chen, and M. Shah, ‘‘An end-to-end 3D convolutional neu-
ral network for action detection and segmentation in videos,’’ 2017,
arXiv:1712.01111. [Online]. Available: http://arxiv.org/abs/1712.01111

[15] G. Muhammad, M. F. Alhamid, and X. Long, ‘‘Computing and processing
on the edge: Smart pathology detection for connected healthcare,’’ IEEE
Netw., vol. 33, no. 6, pp. 44–49, Nov./Dec. 2019.

[16] S. Ji, W. Xu, M. Yang, and K. Yu, ‘‘3D convolutional neural networks
for human action recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 1, pp. 221–231, Jan. 2013.

[17] D. Tran, L. Bourdev, R. Fergus, L. Torresani, andM. Paluri, ‘‘Learning spa-
tiotemporal features with 3D convolutional networks,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015, pp. 4489–4497.

[18] G. Varol, I. Laptev, and C. Schmid, ‘‘Long-term temporal convolutions for
action recognition,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 6,
pp. 1510–1517, Jun. 2018.

[19] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, and
M. S. Hossain, ‘‘Hand gesture recognition using 3D-CNN model,’’ IEEE
Consum. Electron. Mag., vol. 9, no. 1, pp. 95–101, Jan. 2020.

[20] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman,
M. A. Bencherif, and M. A. Mekhtiche, ‘‘Hand gesture recognition
for sign language using 3DCNN,’’ IEEE Access, vol. 8, pp. 79491–79509,
2020.

[21] X. Zhang, X. Chen, Y. Li, V. Lantz, K. Wang, and J. Yang, ‘‘A frame-
work for hand gesture recognition based on accelerometer and EMG
sensors,’’ IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 41, no. 6,
pp. 1064–1076, Nov. 2011.

[22] V. E. Kosmidou and L. J. Hadjileontiadis, ‘‘Sign language recogni-
tion using intrinsic-mode sample entropy on sEMG and accelerome-
ter data,’’ IEEE Trans. Biomed. Eng., vol. 56, no. 12, pp. 2879–2890,
Dec. 2009.

[23] T. D. Bui and L. T. Nguyen, ‘‘Recognizing postures in vietnamese sign
language with MEMS accelerometers,’’ IEEE Sensors J., vol. 7, no. 5,
pp. 707–712, May 2007.

[24] G. Fang, W. Gao, and D. Zhao, ‘‘Large-vocabulary continuous sign lan-
guage recognition based on transition-movement models,’’ IEEE Trans.
Syst., Man, Cybern. A, Syst., Humans, vol. 37, no. 1, pp. 1–9, Jan. 2007.

[25] U. Cote-Allard, C. L. Fall, A. Drouin, A. Campeau-Lecours, C. Gos-
selin, K. Glette, F. Laviolette, and B. Gosselin, ‘‘Deep learning for elec-
tromyographic hand gesture signal classification using transfer learning,’’
IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 4, pp. 760–771,
Apr. 2019.

[26] K. Murakami and H. Taguchi, ‘‘Gesture recognition using recurrent
neural networks,’’ in Proc. SIGCHI Conf. Hum. Factors Comput. Syst.
Reaching Through Technol. (CHI), New Orleans, LA, USA, Apr. 1991,
pp. 237–242.

[27] M. M. Zaki and S. I. Shaheen, ‘‘Sign language recognition using a combi-
nation of new vision based features,’’ Pattern Recognit. Lett., vol. 32, no. 4,
pp. 572–577, Mar. 2011.

[28] J. Pu, W. Zhou, J. Zhang, and H. Li, ‘‘Sign language recognition based
on trajectory modeling with HMMs,’’ in Proc. Int. Conf. Multimedia
Modeling, Miami, FL, USA, Jan. 2016, pp. 686–697.

[29] T.-H.-S. Li, M.-C. Kao, and P.-H. Kuo, ‘‘Recognition system for home-
service-related sign language using entropy-based K -means algorithm and
ABC-based HMM,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 46, no. 1,
pp. 150–162, Jan. 2016.

[30] J. Yang, J. Yuan, and Y. Li, ‘‘Parsing 3D motion trajectory for gesture
recognition,’’ J. Vis. Commun. Image Represent., vol. 38, pp. 627–640,
Jul. 2016.

[31] L. Quesada, G. López, and L. Guerrero, ‘‘Improving deaf people acces-
sibility and communication through automatic sign language recognition
using novel technologies,’’ in Advances in Design for Inclusion. Orlando,
FL, USA: Walt Disney World, Jul. 2016, pp. 497–507.

[32] S. Aly and S.Mohammed, ‘‘Arabic sign language recognition using spatio-
temporal local binary patterns and support vector machine,’’ in Proc.
Int. Conf. Adv. Mach. Learn. Technol. Appl., Cairo, Egypt, Nov. 2014,
pp. 36–45.

[33] M. R. Abid, E. M. Petriu, and E. Amjadian, ‘‘Dynamic sign language
recognition for smart home interactive application using stochastic linear
formal grammar,’’ IEEE Trans. Instrum.Meas., vol. 64, no. 3, pp. 596–605,
Mar. 2015.

[34] J. Huang et al., ‘‘Sign language recognition using convolutional neural net-
works,’’ in Proc. Eur. Conf. Comput. Vis., Zürich, Switzerland, Sep. 2014,
pp. 572–578.

[35] L. Pigou, A. van den Oord, S. Dieleman, M. Van Herreweghe, and
J. Dambre, ‘‘Beyond temporal pooling: Recurrence and temporal convo-
lutions for gesture recognition in video,’’ Int. J. Comput. Vis., vol. 126,
nos. 2–4, pp. 430–439, Apr. 2018.

[36] A. Tang, K. Lu, Y. Wang, J. Huang, and H. Li, ‘‘A real-time hand posture
recognition system using deep neural networks,’’ ACM Trans. Intell. Syst.
Technol., vol. 6, no. 2, pp. 1–23, May 2015.

[37] O. Kopuklu, N. Kose, and G. Rigoll, ‘‘Motion fused frames: Data level
fusion strategy for hand gesture recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. Workshops (CVPRW), Salt Lake City, UT,
USA, Jun. 2018, pp. 2103–2111.

[38] J. C. Núñez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Vélez,
‘‘Convolutional neural networks and long short-termmemory for skeleton-
based human activity and hand gesture recognition,’’ Pattern Recognit.,
vol. 76, pp. 80–94, Apr. 2018.

[39] P. Molchanov, S. Gupta, K. Kim, and J. Kautz, ‘‘Hand gesture recognition
with 3D convolutional neural networks,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Boston,MA, USA, Jun. 2015,
pp. 1–7.

[40] X. Chen and K. Gao, ‘‘DenseImage network: Video spatial-temporal
evolution encoding and understanding,’’ May 2018, arXiv:1805.07550.
[Online]. Available: http://arxiv.org/abs/1805.07550

[41] S. Aly and W. Aly, ‘‘DeepArSLR: A novel signer-independent deep learn-
ing framework for isolated arabic sign language gestures recognition,’’
IEEE Access, vol. 8, pp. 83199–83212, 2020.

[42] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade of
simple features,’’ in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Kauai, HI, USA, Jun. 2001, p. 1.

[43] A. Özaslan, M. Y. İşcan, İ. Özaslan, H. Tuğcu, and S. Koç, ‘‘Estimation
of stature from body parts,’’ Forensic Sci. Int., vol. 132, no. 1, pp. 40–45,
Mar. 2003.

[44] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh,
‘‘OpenPose: Realtime multi-person 2D pose estimation using part
affinity fields,’’ Dec. 2018, arXiv:1812.08008. [Online]. Available:
http://arxiv.org/abs/1812.08008

192542 VOLUME 8, 2020


