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ABSTRACT How to make an online tracking model effectively adapt to newly appearing objects and
object disappearance as well as appearance variations of target objects from few examples is an essential
issue in multiple object tracking (MOT). Learning target appearances from few examples is a few-shot
classification problem, while identifications of newly appearing objects and object disappearance has the
aspect of open-set classification. In this work, we regard online MOT as open-set few-show classification to
address both learning from few examples (few-shot classification) and unknown classes such as new objects
(open-set classification). Specifically, we develop an embedding neural network, called VOFNet, consisting
of convolutional and recurrent parts, to perform open-set few-shot classification. The convolutional part
constructs a feature from an example of a target object and the recurrent part determines a representative
feature of a target object from few examples. Then VOFNet is trained to provide effective features
for open-set few-shot classification. Finally, we develop an online multiple object tracker based on the
combination of VOFNet and the bipartite matching. The proposed tracker achieves 49.2 multiple object
tracking accuracy (MOTA) with 28.9 frames per second on MOT17 dataset, which shows a significantly
better trade-off between the accuracy and the speed than the existing algorithms. For example, the proposed
algorithm yields about 3.17 times faster speed with 0.99 times lower accuracy than recent existing MOT
algorithm [1].

INDEX TERMS Multiple object tracking, online tracking, open-set classification, few-shot classification.

I. INTRODUCTION
Nowadays, many applications including self-driving vehi-
cles [2], surveillance systems [3], and crowd analysis [4]
require various video processing technologies such as person
re-identification [5], video segmentation [6], [7] and efficient
feature processing [8]. Multiple object tracking (MOT) [9] is
one of the important problems for video analysis to estimate
the states (or bounding boxes) of as many objects as possible
in a video sequence. Many efforts have been made for devel-
oping reliableMOT systems, and tracking-by-detection is one
of the most successful approaches. The tracking-by-detection
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approach decomposes MOT into two subproblems: object
detection and data association. An object detector finds
objects in a video sequence, and then a data association
scheme links the detection results to yield object trajectories.
With the recent success of deep learning, an effective object
detector can be employed, which determines candidate states
of objects reliably and independently from the tracking pro-
cess. Hence, tracking-by-detection has the advantage of being
robust against model drifts and yields promisingMOT results.

Despite recent achievements, MOT remains a challeng-
ing problem. Especially, when an object detector provides
inaccurate detection results due to various difficulties such
as occlusion, motion blur, and object deformation, it is
hard to identify targets during the data association phase.
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FIGURE 1. An example of open-set few-shot classification to describe MOT problem. In the third figure, a new object and detection error classes are
depicted by red and yellow boxes, respectively.

Many offline (or batch) trackers [10]–[14] attempt to over-
come these difficulties based on batch data association, which
uses full frames in a video to improve the data association
accuracy. In general, they design cost functions to formulate
data association as optimization problems and then determine
optimal trajectories by minimizing the cost functions. They
alleviate adverse effects of inaccurate detection results using
the information in full frames, but these noncausal meth-
ods cannot be applied in real-world applications that require
online and real-time processing.

Contrary to offline trackers, online (or causal) track-
ers [15]–[19] utilize only previous and current frames to
link detection results. The lack of future information, how-
ever, has an additional problem, as well as the inaccurate
detection problem: when an object exists in only a few
previous frames, a tracker cannot use a sufficient number
of detections for achieving accurate data association. From
this perspective, online MOT can be regarded as a few-shot
classification problem [20], [21], in which a classifier is
designed with only a few examples per class. Few-shot learn-
ing techniques [22]–[25] hence can be employed to improve
MOT performance.

However, it is not straightforward to formulate MOT as
few-shot classification, since MOT requires a methodology
to identify newly appearing objects, which do not exist in
previous frames. In other words, theMOT problem inherently
has the aspect of open-set classification [26], [27] in that it
should be capable of handling unknown classes.

Our work is motivated by two aspects of multiple object
tracking covering open-set classification and few-shot classi-
fication. First, we introduce the notion of open-set few-shot
classification to formulate the online MOT problem. In the
open-set few-shot classification, we define two unknown
classes: 1) newly appearing objects and 2) detection errors.
In other words, we formulate MOT as the (K + 2)-way
classification, where K is the number of target objects in
the previous frame and the other two classes represent new
objects and detection errors, respectively. Figure 1 illustrates
the open-set few-shot classification system, where detected
boxes are categorized into the one of (K + 2) classes.

Second, we propose a novel embedding network, called
VOFNet (video object embedding network for few-shot

learning), which transforms an image space into an embed-
ding space to perform open-set few-shot classification for
MOT. VOFNet consists of two sub-networks: convolutional
neural network (VOF-CNN) and recurrent neural network
(VOF-RNN). VOF-CNN constructs feature vectors of detec-
tion boxes for target objects, while VOF-RNN determines the
representative feature vector of each target object by exploit-
ing its temporal information. To train the proposed network,
we perform an open-set classification based on feature dis-
tances between representative vectors and detection results.
Finally, we achieve the onlineMOT based on the combination
of VOFNet and the bipartite matching. Experimental results
demonstrate that the proposed tracker yields comparable per-
formance to the conventional state-of-the-art trackers but at a
fraction of running times on the MOT17 benchmark [28].

To summarize, this work has three main contributions:
• We introduce the concept of open-set few-shot
classification

• We propose the embedding scheme to formulate online
MOT as an open-set few-shot classification problem.

• We achieve comparable tracking performance to the
state-of-the-art trackers in the recent MOT17 bench-
mark, while demanding much lower computational
complexity.

The remainder of this paper is organized as follows:
Section II reviews related work. Section III describes the pro-
posed algorithm. Section IV discusses experimental results.
Finally, Section V draws conclusions.

II. RELATED WORK
A. MULTIPLE OBJECT TRACKING
Most MOT algorithms adopt the tracking-by-detection
approach, which decomposes the MOT task into two sub-
tasks: 1) detecting objects in each frame and 2) associating
them temporally to create trajectories. As Table 1 summa-
rizes, MOT algorithms can be categorized into offline and
online trackers. Offline trackers use a batch of frames to
formulate an optimization problem for accurate data asso-
ciation. For instance, Jiang et al. [10] proposed a linear
programming method to minimize a data association cost.
Zhang et al. [11] formulated the data association as a min-
imal cost flow problem. Berclaz et al. [29] also regarded
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TABLE 1. Summary of related multiple object trackers.

the data association as a flow optimization problem and
solved it using the k-shortest path algorithm. Milan et al. [12]
defined a continuous energy for finding target locations in
a continuous space. Also, Milan et al. [13] formulated a
discrete-continuous energy to consider both the association
of detections and the reconstruction of continuous target
states. Rezatofighi et al. [30] employed the joint probabilistic
data association [46] to link detection results and existing
targets with reasonable computation costs. However, these
trackers [10]–[13], [29], [30] utilize simple distances or weak
appearance models to compute pairwise similarity between
detections. Thus, they provide relatively low performances.

To overcome this limitation, robust pairwise simi-
larity costs for data association have been designed.
Choi [31] proposed the aggregated local flow descriptor
to encode a relative motion pattern between two objects.
Fagot-Bouquet et al. [32] adopted sparse representa-
tion to construct appearance models of detection boxes.
Kim et al. [14] used CNN features in the multiple hypoth-
esis tracking (MHT) framework [47]. Leal-Taixé et al. [33]
developed a Siamese network to encode the spatiotem-
poral structure between two objects. Son et al. [34]
introduced quadruplet CNNs to determine the similarity
between detections using their labels and temporal distances.
Sheng et al. [35] proposed the heterogeneous association
graph, which fuses high-level detections and low-level super-
pixels for data association. Sheng et al. [36] developed the
tracklet hypothesis for the MHT framework and proposed
the iterative maximumweighted independent set algorithm to
track multiple objects in polynomial time. Keuper et al. [37]
proposed a correlation co-clustering method that associates
low-level point trajectories and high-level detected boxes.

Different from offline trackers, many trackers [15]–[19],
[38]–[43] perform tracking online in a causal manner,
by exploiting the information in previous and current frames
only. Bae and Yoon [15] introduced the tracklet confidence to
represent the detectability and continuity of a target object.
They designed an online data association algorithm based
on the confidence. Chen et al. [38] utilized R-FCN detec-
tor scores [48] to select reliable candidate bounding boxes.
Yoon et al. [18] introduced an one-shot learning method for
data association and integrated it into the MHT framework.

In [16], [17], [39], RNNs have been utilized for MOT.
Milan et al. [16] solved the combinatorial problem of
the data association by employing long short-term mem-
ory (LSTM) networks. However, their tracker exploits no
appearance information and thus does not provide compet-
itive results. Kim et al. [39] introduced the bilinear LSTM,
which constrains its memory and new input to have a

linear relationship, to learn a sequential appearance model.
Sadeghian et al. [17] trained Siamese CNNs to construct
appearance, motion, and interaction features and employed
LSTMs to encode long-term temporal dependencies from
these features. Our tracker is closely related to [17] in that
we also adopt both CNN and RNN to consider spatiotemporal
information. However, ours is different from their approach
in that we develop an attention technique for RNN to alleviate
the negative effects of occlusions.

Single object trackers are employed for online MOT
in [40]–[42]. Kim and Kim [40] developed a cooperative
tracking algorithm, which uses an object detector and a
single object tracker jointly. Their algorithm traces each
detected object using the single object tracker. Similarly,
Chu et al. [41] employed a single object tracker for each
object and updated the trackers to adapt to target appearance
variations. Zhu et al. [42] separated target objects into tracked
ones and lost ones and used a single object tracker and a data
association scheme for the tracked targets and the lost targets.
Using single object tracker, these algorithms [40]–[42] can
find target objects that object detectors fails to locate, but they
require heavy computational loads due to the use of many
single object trackers.

Recently, the probability hypothesis density (PHD) fil-
ter [49] has drawnmuch attention in the onlineMOTproblem.
Fu et al. [19] proposed an adaptive gating scheme and an
online group-structured dictionary learning to improve the
PHD filter. Fu et al. [43] utilized different types of human
detector (full-body and body-part) for the PHD filter.

Most of the tracking-by-detection methods focus on the
problem of the data association. However, their performances
are strongly affected by the quality of detection results. Thus,
Zhou et al. [44], [45] proposed the deep neural networks
to revise misaligned detection results and showed that their
alignment methods are useful in the tracking-by-detection
framework.

B. FEW-SHOT LEARNING
The objective of few-shot learning is to design a classifier
using limited training data, i.e. only a few examples (in
the extreme case, one example) per class [20], [21]. Many
few-shot techniques are based on the nearest neighbor clas-
sification, which is a non-parametric model and does not
need training. However, the performance of the nearest
neighbor classification depends on the distance. Therefore,
many algorithms transform an input space into a feature
space (or embedding space), in which distances can be
computed effectively. Goldberger et al. [50] proposed the
neighborhood component analysis (NCA) to learn the linear
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transform to maximize the performance of the k near-
est neighbor classification. Salakhutdinov and Hinton [51]
extended NCA to nonlinear transforms using neural net-
works. Weinberger et al. [52] proposed the large margin
nearest neighbor classifier, which constrains examples in
different classes to be separated by a large margin, and
Min et al. [53] adopted neural networks to improve this large
margin classifier.

Vinyals et al. [22] proposed the matching network, which
performs nearest neighbor classification based on cosine
distances in embedding space, and mimics few-shot clas-
sification tasks during their training phase as well as the
test phase. Snell et al. [23] proposed the prototypical net-
work, which transforms data points in a class so that they
cluster tightly around a prototype in an embedding space.
The prototype is the mean of examples in the class. And
the classification is performed by comparing the distances
of a query point to the prototypes. Sung et al. [24] pro-
posed the relation network to learn distances for nearest
neighbor classification, instead of using conventional metrics
such as cosine distances. Li et al. [25] proposed the local
image-to-class descriptor for few-shot classification based on
pixel-wise cosine similarities between a query image and k
nearest neighbor example images in the class. These few-shot
learning algorithms [22]–[25] are related to the proposed
method in that they learn an embedding space, where a class
is represented faithfully with a few examples. However, their
algorithms may not proper to video objects, since they are
not designed to exploit the characteristics of sequential data.
In contrast, the proposed method trains RNN for this purpose
and effectively handles video objects in tracking applications.

C. OPEN-SET CLASSIFICATION
Open-set classification assumes that a training set cannot
contain all possible classes in a test set. In this scenario,
classes are categorized into either known or unknown: known
classes are included in both training and test sets, wheres
unknown classes are only in the test set. Therefore, open-set
classification extends the standard classification with the
requirement of recognizing test data in unknown classes.
For this purpose, Phillips et al. [26] proposed the operat-
ing threshold to discriminate known classes from unknown
ones. Scheirer et al. [27] formalized open-set classification
by introducing the concept of open space risk, and then
integrated it into the empirical risk minimization. In [54],
Scheirer et al. presented the compact abating probability
model to extend [27] to a multiclass setting. Bendale and
Boult [55] proposed a method to adopt deep learning for
open-set classification. They introduced the OpenMax layer
to predict the unknown class probability. In [56], Oza and
Patel trained an open-set classifier based on class conditioned
auto-encoders. Recently, Liu et al. [57] defined the open
long-tailed recognition problem that integrates difficulties
in a real world scenario such as imbalanced examples, few
examples, and open classes.

III. PROPOSED ALGORITHM
This section proposes a novel online MOT algorithm based
on open-set few-shot learning. First, we introduce the notion
of open-set few-shot classification and formulate MOT in
the framework. Second, we propose an embedding scheme
to transform an image space into an embedding space,
where the nearest neighbor classification is performed. Third,
we develop an online multiple object tracker based on the
trained embedding space.

Online MOT can be regarded as few-shot classifica-
tion [20], [21]. Queries and classes correspond to detection
results in a current frame t and identified (tracked) objects in
the previous frame t−1, respectively. As queries are classified
using only a few examples in few-shot classification, detec-
tion results are assigned object labels by a data association
scheme in online MOT. From this perspective, an effective
few-shot learning technique can be used for the data associa-
tion, thereby improving the tracking performance. However,
MOT differs from the conventional few-shot classification
in that MOT should handle unknown classes, i.e. detec-
tion results, which are unmatched with previously identi-
fied objects. Thus, MOT is also an open-set classification
problem [26], [27], since it should recognize queries in
unknown classes as well. Therefore, we introduce the notion
of open-set few-shot classification to formulate online MOT,
which has the properties of both open-set classification and
few-shot classification.

Let us consider the case that there are K classes in a train-
ing dataset. The training dataset, {(x1, y1), · · · , (xN , yN )},
contains labeled examples, where xi is the ith example and
yi ∈ {1, · · · ,K } is its class label. Then, the kth class Ck is
given by the set of examples with label k ,

Ck = {xi : yi = k}Ni=1. (1)

There are only a few examples in each class (few-shot clas-
sification). Let q be a query and y be its class label. It is
possible that q does not belong to any class Ck , 1 ≤ k ≤ K
(open-set classification). In such a case, it should be declared
to be in the unknown class. Thus, in the open-set few-shot
classification, q should be classified into one of the previously
identified classes C1, · · · , CK or the unknown class.

In MOT, we consider two cases of the unknown class:
newly appearing objects or detection errors. Note that it is
important to distinguish between the two cases. When a
detection result corresponds to a new object at a current
frame, a tracker should create a new class for the object
and construct its appearance model to estimate its states in
subsequent frames. On the other hand, when a detection result
is wrong, a tracker should discard it to prevent tracking errors
in future frames. Hence, we divide the unknown class into
two subclasses C0 and C−1, representing the new object class
and the detection error class, respectively. Let us consider a
tracking scenario in which there are K objects in the previous
frame t − 1 and N detection results in the current frame t .
By introducing the unknown classes C0 and C−1, we for-
mulate this scenario as the open-set few-shot classification,
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where the tracker classifies each of the N detection results
into one of the following K + 2 classes:
• C1, C2, · · · ,CK : previously identified object classes
• C0: new object class
• C−1: detection error class

A. EMBEDDING SPACE LEARNING
As pointed out in few-shot learning studies [22]–[25],
a well-designed embedding space enables a non-parametric
method based on a simple metric to model a class with
only a few examples. Also, an embedding space should
provide reliable metrics to discriminate unknown classes
from known classes. Therefore, learning an effective embed-
ding space φ(·) is essential for accurate open-set few-shot
classification. To this end, we develop the embedding net-
work, called VOFNet, which transforms query q and known
classes C1, · · · , CK into the embedding space, i.e. φ(q) and
φ(C1), · · · , φ(CK ), respectively. Figure 2 illustrates VOFNet
containing a CNN and an RNN. We refer to them as
VOF-CNN and VOF-RNN, respectively.

FIGURE 2. Illustration of VOFNet, composed of a CNN and an RNN. Given
an image patch, the CNN extracts the feature vector. Then, the RNN takes
a series of feature vectors from the CNN and integrates them to yield the
representative feature vector for the open-set few-shot classification.

VOF-CNN transforms queries and examples of identi-
fied objects into the embedding space. More specifically,
it takes an RGB image patch of size 96 × 192 and produces
a 512-dimensional feature vector. VOF-CNN consists of a
backbone network and a normalization layer. For the back-
bone, we employ the EfficientNet-B0 model [58] pretrained
with ImageNet [59] and replace its classification layer with a
fully-connected layer to yield a 512-dimensional output. The
normalization layer constrains an embedding space to be a
unit sphere. We set the height of patch to be larger than the
width to consider pedestrians, which is the important object
in MOT.

When a known class Ck , 1 ≤ k ≤ K , has multiple exam-
ples, we aggregate them in the embedding space to obtain

FIGURE 3. Examples and queries. In general, as in (a), the latest example
is the most similar to a query. However, in some cases, such as the
occlusion in (b), the latest example fails to represent the class properly.

the representative feature φ(Ck ). A straightforward approach
is to average features of examples, as in the prototypical
networks [23], but this cannot exploit the characteristics
of a video object effectively. For instance, in Figure 3(a),
the query is the most similar to the example in the latest
frame. In general, the recent example is closer to a query in
the embedding space than the mean vector of all examples.
However, it is not robust either to consider the recent example
only. In Figure 3(b), an object is occluded in the latest frame.
Thus, it may cause misclassification if the class is represented
by the recent example only.

For effective aggregation of examples in a class, we use
an RNN [60] that is capable of encoding temporal histories
of video objects. As illustrated in Figure 2, the proposed
VOF-RNN takes a series of feature vectors from VOF-CNN
and integrates them into the representative feature vector.
Suppose that there areN examples, {xi : yi = k}Ni=1, in the kth
object Ck . Then, we extract feature vectors of the examples
{φ(xi)}Ni=1 by applying VOF-CNN to the examples. Given the
features {φ(xi)}Ni=1, VOF-RNN updates the states {hi}Ni=1 and
produces the outputs {oi}Ni=1 recursively:

hi = (1− αi)hi−1 + αif (Wsshi−1 +Wszφ(xi)) (2)

oi = g(Wsohi) (3)

Here, Wss, Wsz, Wso are trainable weight matrices of size
512 × 512. f and g are the ReLU activation function and
the l2-normalization function, respectively. Different from
the standard RNN, Eq. (2) includes an attention weight αu to
encourage a conservative RNN state update. Given the feature
vector of the current frame example, we obtain this attention
weight using two fully-connected layers and a sigmoid acti-
vation layer. Note that MOT sequences often consider objects
in crowded scene whose appearance are distorted due to
occlusion. And this distorted example may cause inadequate
RNN update that decreases classification accuracy. In this
case, the attention weight can alleviate the negative effect of
distorted example.

Then, given a sequence of examples {xi : yi = k}Ni=1 for
the kth object, we set the representative feature φ(Ck ) as,

φ(Ck ) = oN . (4)

Specifically, the VOF-RNN updates its hidden state hi and
output vector oi via (2) and (3), respectively, until i = N ,
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FIGURE 4. An example of the proposed embedding space learning.

where N is the number of examples. In addition to the capa-
bility of encoding temporal histories, VOF-RNN has another
advantage that it requires only the previous state hi−1 and
the input φ(xi) to compute the state hi and the output oi at
the current state. Therefore, it reduces the memory resource
requirement during the tracking, by storing only the recent
state of a class, instead of its all examples.

Figure 4 illustrates the proposed training strategy for
VOFNet. Let us consider an embedding space, where feature
vectors φ(q) and φ(Ck ) represent a query q and the kth object
class Ck , respectively. The distance d(q, Ck ) between q and Ck
is defined as

d(q, Ck ) = ‖φ(q)− φ(Ck )‖2. (5)

where ‖ · ‖2 is the l2-norm of a feature vector. For learning
the embedding space, we train two binary classifiers for each
known class k , which determine whether the query belongs
to 1) kth class or not (known class classifier) and 2) detection
error or not (detection error classifier), based on the distance
d(q, Ck ). The smaller the distance d(q, Ck ), the more likely
that the query belongs to the kth class. In contrast, the larger
the distance d(q, Ck ), the query can be regarded as detection
error.

Specifically, given the query q, we estimate the proba-
bilities ŷk,1 and ŷk,2 for the known class classifier and the
detection error classifiers, which are given by

ŷk,1 = σ (ml − d(q, Ck )), ŷk,2 = 1− σ (mh − d(q, Ck ))
(6)

where σ (·) is a sigmoid function to yield probability. To com-
pute the probabilities, we use two thresholds ml and mh.
The threshold ml is the maximum distance to identify the
same object, whereas the threshold mh is used to recognize
the detection error. When the distance d(q, Ck ) is smaller
than ml , the query q has the high probability to belong to

the class k according to the sigmoid function. In contrast,
when the distance d(q, Ck ) is lager than mh, the probability
for the detection error ŷk,2 has a large value. In this work,
the thresholds ml and mh in (6) are fixed to 0.5 and 1.0,
respectively. We then compute the binary cross-entropy loss
for both classifiers in the kth class as

Lk = −yk,1 log ŷk,1 − (1− yk,1) log(1− ŷk,1)

− yk,2 log ŷk,2 − (1− yk,2) log(1− ŷk,2) (7)

where the ground-truth label yk,1 is 1 if the query q belongs
the kth class, and 0 otherwise. Similarly, the ground-truth
label yk,2 is 1 if the query q is detection error, and 0 other-
wise. Finally, we minimize total losses for all known classes,
i.e.

∑K
k=1 Lk , to train VOFNet via the stochastic gradient

decent.

B. ONLINE DATA ASSOCIATION
Let D(t)

= {q(t)1 , · · · , q
(t)
N } be the set of detections (or

detected bounding boxes) and A(t)
= {C(t)1 , C

(t)
2 , · · · , C

(t)
K (t)}

be the active set of identified object classes at frame t .
In the open-set few-shot formulation, the objective of data
association is to predict class labels {y(t)1 , · · · , y

(t)
N } of the

detections in D(t), where y(t)i ∈ {−1, 0, 1, · · · ,K
(t)
}, based

on the learned embedding space in Section III-A. Note that
the labels y(t)i = −1 and y(t)i = 0 denote the detection error
class C−1 and the new object class C0, respectively.

To initialize the active setA(1) at the first frame, we simply
regard each detection as the identified object, i.e. C(1)k =

{q(1)k }. From the second frame, given the active set A(t−1),
we perform data association to assign labels to each detection
in D(t). First, VOFNet transforms each detection q(t)i and
each identified object C(t−1)k into the embedding space to
obtain features φ(q(t)i ) and φ(C(t−1)k ), and distances between
the detections and the identified objects are computed via
Eq. (5). Then, we determine whether each detection q(t)i is the
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detection error or not by averaging distances from the object
classes in the active set A(t−1):

q(t)i ∈ C(t)
−1 if

1
K

K∑
k=1

d(q(t)i , C
(t−1)
k ) > mh (8)

where mh is the threshold that is used in VOFNet learning in
Section III-A. We discard detections in C(t)

−1 from D(t).
Next, we collect candidate detections for data association

from D(t) by exploiting distances between the detections and
the identified objects. When a detection q(t)i in D(t) has the
most similar feature to the object C(t−1)k and the distance
d(q(t)i , C

(t−1)
k ) is sufficiently small, it is likely that q(t)i belongs

to C(t−1)k . Therefore, we compose the set of candidate detec-
tions D̃(t) as follow,

q(t)i ∈ D̃(t) if min
C(t−1)
k ∈A(t−1)

d(q(t)i , C
(t−1)
k ) < ml . (9)

Otherwise, when a detection does not satisfy the candidate
condition in Eq. (9), that detection can be regarded as newly
appearing object at frame t . This is because detection errors
are excluded in the detection set D(t) via Eq. (8). We then
define the new object class as C(t)0 = D(t)

− D̃(t). Notice
that each detection in the new object class C(t)0 generates new
identified object class CK̃ (t) , where K̃ > K (t−1), in the active
set A(t) at frame t .

We associate detections in D̃(t) with the identified objects
in the active set A(t−1). We formulate data association as a
bipartite matching problem to enforce one-to-one matching
constraint. We construct a bipartite graph G = (U ,V , E),
where U = {u} and V = {v} are two independent node sets,
and E = {eu,v} is an edge set. The edge eu,v connects nodes
u and v with a nonnegative cost cu,v. In this work, detection
candidates in D̃(t) and the identified objects inA(t−1) become
the node setsU and V , respectively. The nonnegative cost cu,v
is assigned the distance in (5).

Given the bipartite graph G, we determine the matching
between the node sets U and V , which minimizes the sum
of nonnegative costs, subject to the one-to-one constraint.
To this end, we formulate the objective function for the
bipartite matching problem, which is given by

minimize
µu,v

∑
u∈U

∑
v∈V

µu,vcu,v

subject to
∑
u∈U

µu,v ≤ 1 for each v ∈ V∑
v∈V

µu,v ≤ 1 for each u ∈ U

µu,v ∈ {0, 1}. (10)

where µu,v is a matching variable that equals 1 if u is
matched to v, and 0 otherwise. We employ the Hungarian
algorithm [61] to minimize this objective function. Then,
we add each detection candidate in D̃(t) to the matched object
class to update the active set fromA(t−1) toA(t). For instance,

when a detection q(t)i is matched with the object class C(t−1)k ,
the object class for frame t is updated by C(t)k = C(t−1)k ∪ q(t)i .

Figure 5 shows examples when the number of detection
candidates and identified objects are different. Specifically,
Figure 5(a) illustrates an example of a tracking scenario,
when the number of object classes is less than that of
detection candidates. On the other hand, a tracking scenario
in Figure 5(b) includes more object classes than detection
candidates. If one-to-one matching constraint is enforced as
in (10), an object class C(t−1)3 in Figure 5(a) and a detec-
tion candidate q3 in Figure 5(b) are unmatched. Therefore,
these examples bring up the additional issues how to handle
unmatched detections and unmatched object classes. First,
we regard unmatched detection candidates as newly appear-
ing objects and include them to the new object class C(t)0 .

FIGURE 5. An example of tracking scenario. C1 and C2 denote target
objects, while q1, q2 and q3 are detection results.

For the unmatched objects, there are two possible cases:
1) failures of the object detector to find objects and 2) per-
manent object disappearance. In the first case, undetected
objects may reappear in future frames. Therefore, the tracker
should maintain those object classes to resume tracking,
when the object detector re-identify them. In the second
case, the tracker should terminate tracking of permanently
disappeared objects. To consider both temporary and per-
manent disappearance, we record the number of succes-
sive unmatched frames τ for each disappeared object. Then,
we regard that object permanently disappears when τ is
larger than a threshold θ frames and exclude the permanently
disappeared object from the active set A(t). In this work,
we experimentally set θ to 30.

Figure 6 illustrates the proposed MOT process. In this
example, the active setA(t−1) contains three objects that exist
in frame t − 1. First, VOFNet embeds the objects and the
detection results in D(t) into the embedding space. We then
perform the nearest neighbor classification, and declare the
detection q(t)3 as a new object. Using the other detections
and the objects in the active set A(t−1), we construct the
bipartite graph G and obtain the optimal matching using the
Hungarian algorithm. As a result, the bounding boxes of the
objects C(t−1)1 and C(t−1)2 are determined to be q(t)1 and q(t)2 ,
respectively. Next, we verify that q(t)3 is a new object and
include it in the active set A(t) at frame t . Finally, we check
disappearing objects. In this example, we cannot find the
bounding box of C(t)3 for a long duration. Therefore, C(t)3 is
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FIGURE 6. An example of the proposed MOT process.

not added to A(t). Algorithm 1 summarizes the online data
association method for MOT.

IV. EXPERIMENTS
In this section, we evaluate the proposed tracker on MOT
benchmark datasets [28]. We briefly introduce the datasets
and provide implementation details for our experiments.
Then, we investigate the effectiveness of the proposed tracker
by performing ablation studies. Also, we show qualitative
MOT results. Finally, we compare the performance of pro-
posed tracker with recent state-of-the-arts for quantitative
analysis.

A. DATASET
MOT17 dataset [28] consist of 14 video sequences, which
are divided into 7 training and 7 test sequences. For each
sequence, the dataset provides bounding boxes obtained from
three detectors: DPM [62], FRCNN [63], and SDP [64] detec-
tors. InMOT17, ground-truth annotations are available for the
training sequences only, to avoid fitting of the methods to test
sequences.

The benchmarks adopt various evaluation metrics to quan-
tify the MOT performance, which are defined in [9], [65].
Multiple object tracking accuracy (MOTA) is a metric to
consider several failure cases, which is composed of the num-
ber of false positives (FP), false negatives (FN), and identity
switches (IDS), where

• FP: an estimated state does not include objects
• FN: a tracker misses objects
• IDS: an object is assigned a different class label from the
label in the previous frame.

More precisely, MOTA is defined as

MOTA = 100×
(
1−

#FP+ #FN + #IDS
#GT

)
(11)

where GT denotes ground-truth states and # denotes the
number. Multiple object tracking precision (MOTP) mea-
sures the average overlap ratio between estimated states and
corresponding annotations. Identification F1 (IDF1) is the
ratio of correctly estimated states over the average number
of ground-truth and estimated states. Mostly tracked tar-
gets (MT) is the number of objects whose trajectories are
estimated accurately by tracking results more than 80% of
frames. Similarly, mostly lost targets (ML) is defined to the
number of objects whose trajectories are covered by tracking
results less than 20% of frames. For MT and ML, the bench-
marks consider that a target state is accurately estimatedwhen
the overlap ratio between it and predicted state is greater
than 0.5. Also, the runtime speed (Hz) is included as another
benchmark evaluation metric.

B. IMPLEMENTATION DETAILS
We implement the proposed tracker in the Python language
using the TensorFlow 2.0 library. Experiments are performed
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Algorithm 1 Online Data Association

Require: Detection results D(1), · · · ,D(T )

Ensure: Active sets A(1), · · · ,A(T )

1: Initialize A(1)

2: for t = 2 to T do
3: A(t)

← φ

4: Transform D(t) into the embedding space
5: Divide D(t) into D̃(t), C(t)′ , C(t)−∞
6: Add new objects in C(t)′ to A(t)

7: Associate D̃(t) with A(t−1)

8: if Unmatched detection candidate case then
9: Add this detection candidate to A(t)

10: else if Unmatched object case then
11: if τ < θ then
12: τ ← τ + 1
13: Add this object to A(t)

14: else
15: Terminate tracking of this object
16: end if
17: else
18: Update matched objects
19: Add matched objects to A(t)

20: end if
21: end for

on a personal computer with an Intel I7-7700K CPU and a
NVIDIA 2080 Ti GPU.

Training is done in two steps: First, we train VOF-CNN to
find the effective embedding space for the open-set few-shot
classification. Second, we trainVOF-RNN to learn the encod-
ing scheme for sequential data. For the VOF-CNN train-
ing, we randomly sample two successive frames from the
MOT17 training set. From the previous frame, we construct
object classes, C1, . . . , CK , using detection boxes, whose
intersection over union (IOU) scores with corresponding
annotations are larger than 0.5. Notice that each object class
contains only one example in the VOF-CNN training. In other
words, VOF-CNN is trained to consider a one-shot scenario.
In the current frame t , we collect detected bounding boxes
and regard each detection box as a query. Then, we assign
two types of labels for each query: one indicates whether
the query belongs to the object or not, and the other denotes
whether the query is a detection error or not. Thus, when K
objects exist in the previous frame, each query has total 2K
labels.

In the VOF-RNN learning, we randomly choose a frame
fromMOT17 training sequences and construct object classes,
C1, . . . , CK , from 30 consecutive previous frames. Specifi-
cally, for each object class, we randomly extract 10 exam-
ples from the 30 previous frames. Therefore, VOF-RNN is
trained to construct a representative vectors with only a few
example. As done in VOF-CNN, we extract queries from the
current frame and assign class labels for training VOF-RNN.
Notice that the trained VOF-CNN is used to extract

FIGURE 7. MOTA scores according to dimensions of the embedding space.

FIGURE 8. MOTA scores according to the threshold θ .

TABLE 2. MOTA scores according to embedding spaces and
representative vectors of object classes on the MOT17 training sequences.

feature of each query and each example for the VOF-RNN
learning.

For training both VOF-CNN and VOF-RNN, we perform
the data augmentation by applying the horizontal flipping to
training data with probability 0.5. Also, we employ the Adam
optimizer [66] with a learning rate of 0.0001. The training is
iterated for 40, 000 episodes. We decrease the learning rate
by a factor of 0.1 at the 20, 000th episode.
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TABLE 3. Performance comparison of the proposed tracker with the state-of-the art trackers on the MOT17 test sequences. The best results are boldfaced.

FIGURE 9. MOTA scores according to the thresholds ml and mh.

C. PERFORMANCE ANALYSIS
We analyze the impacts of various components in the pro-
posed algorithm. For this purpose, we use the MOT17 train-
ing sequences, since the annotations for the test sequences
are not released. We perform the cross-fold validation on the
seven training sequences. Specifically, we use six sequences
for the training and one sequence for the evaluation and repeat
this process for each sequence.

Table 2 provides MOTA scores of the proposed tracker
according to embedding spaces and feature extraction meth-
ods for encoding representative vectors of object classes.
Specifically, ‘‘Baseline’’ denotes the EfficientNet-B0 model

FIGURE 10. MOTA scores versus speed (Hz) on the MOT17 test sequences.

pretrained with ImageNet, while ‘‘VOF-CNN’’ is the trained
embedding space via section III-A. Also, as the methods for
encoding representative vectors, ‘‘Latest Example’’ utilizes
the latest example in the object class, ‘‘Average’’ computes
the mean vector of all examples in the object class as done
in [23], and ‘‘Moving average’’ computes the exponential
moving mean vector with the decay rate 0.1. For ‘‘VOF-RNN
w/o attention’’, we fix the attentionweightαu in Eq. (2) to 1.0.
Therefore, ‘‘VOF-RNN w/o attention’’ becomes the standard
RNN that does not include the attention weight.

FromTable 2, we canmake some observations: First, learn-
ing a useful embedding space is essential to yield promising
tracking performance. Notably, ‘‘VOF-CNN’’ provides better
results than ‘‘Baseline’’, for all cases of the representative
vectors. Second, we observe that it is important to exploit
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FIGURE 11. Tracking results of the proposed tracker on the MOT17 training sequences: (a) ‘‘MOT17-02,’’ (b) ‘‘MOT17-04,’’ (c) ‘‘MOT17-05,’’
(d) ‘‘MOT17-09,’’ (e) ‘‘MOT17-10,’’ (f) ‘‘MOT17-11,’’ and (g) ‘‘MOT17-13’’ sequences.
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FIGURE 12. Tracking results of the proposed tracker on the MOT17 test sequences: (a) ‘‘MOT17-01,’’ (b) ‘‘MOT17-03,’’ (c) ‘‘MOT17-06,’’
(d) ‘‘MOT17-07,’’ (e) ‘‘MOT17-08,’’ (f) ‘‘MOT17-12,’’ and (g) ‘‘MOT17-14’’ sequences.
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the characteristics of video objects. ‘‘Latest Example’’ and
‘‘Moving average’’ outperform ‘‘Averagee’’ since a object in
a video tends to have similar appearances in adjacent frames.
In this regards, ‘‘VOF-RNN’’ supports accurate tracking by
learning an effective encoding scheme for video objects.
So, it provides higher MOTA scores than simple encoding
schemes. Moreover, note that ‘‘VOF-RNN’’ requires only
the recent state vector to yield the object’s representative
feature. Therefore, it reduces memory and processing loads
during tracking. Finally, the attentionweight further improves
the proposed tracker’s performance by reducing the adverse
effect of distorted examples.

Next, we compare the performance of the proposed tracker
with different hyper-parameter settings. Figure 7 evaluates
MOTA scores according to the dimension of the proposed
embedding space. Specifically, we train five VOF-CNNs
that produce feature vectors with size of 64, 128, 256, 512,
and 1024, respectively. Thenm we train VOF-RNN for each
VOF-CNN. In Figure 7, the best performance is achieved
whenwe set the dimension of embedding space to 512. There-
fore, we use this setting for the proposed tracker. Figure 8
investigates the impact of the threshold frame θ that deter-
mines disappearing objects from the active set. In Figure 8,
we observe that the proposed tracker is not sensitive to the
threshold θ in the range from 20 to 40.

In addition, we compareMOTA scores according to thresh-
olds ml and mh. Specifically, we set the range of ml from
0.3 to 0.7 and the range of mh from 0.8 to 1.2. Figure 9
shows the results of these experiments. In Figure 9, too low
threshold ml = 0.3 decreases MOTA scores since it is too
strict condition to assign an object class to detected bounding
boxes. As a result, the number of false negatives increases.
The proposed algorithmworks reliablywhen using thresholds
ml ∈ {0.5, 0.6, 0.7} and mh ∈ {1.0, 1.1, 1.2}. In this wor,
we use ml = 0.5 and mh = 1.0, which yield the best
performance.

D. COMPARISON WITH CONVENTIONAL TRACKERS
Table 3 compares the proposed VOFNet tracker with
recent state-of-the-art offline and oneline trackers on the
MOT17 test sequences. As compared with the offline track-
ers, the proposed algorithm provides the competitive MOTA
performance, event though the offline trackers require all
frames to achievemultiple object tracking. Also, the proposed
tracker achieves the almost real-time processing (28.9 Hz)
and yields the best speed in Table 3. As compared with
the online trackers, the proposed algorithm ranks 6th in
terms of MOTA. Notice that the proposed tracker achieves
the comparable performances to the conventional online
trackers, even though the proposed one surpasses other
algorithms for speed. To analyze the trade off between
accuracy and speed, Figure 10 plots the MOTA score with
respect to the Hz. In Figure 10, we observe that the pro-
posed tracker shows the best trade-off between accuracy
and speed.

E. QUALITATIVE MOT RESULTS
Figure 11 shows qualitative tracking results of the pro-
posed algorithm on the MOT17 training sequences. In this
test, DPM is used as the detector. Each sequence con-
tains different difficulties: ‘‘MOT17-02’’ was recorded in
cloudy weather. Thus, it is difficult to identify objects due
to low contrast. ‘‘MOT17-04’’ has the highest density of
objects, in which objects experience occlusion frequently.
‘‘MOT17-05’’ contains lots of motion blur caused by camera
movements. ‘‘MOT17-09,’’ ‘‘MOT17-10,’’ ‘‘MOT17-11,’’
and ‘‘MOT17-13’ suffer from large variation in object scale
and too small objects. Despite these difficulties, we see
that the proposed VOFNet tracker yields promising track-
ing results. Finally, Figure 12 shows tracking results of the
proposed algorithm on the MOT17 test sequences with SDP
detector. Similar to training sequences, test sequences also
include various difficulties such as occlusion, scale variation,
and motion blur. We observe that the proposed algorithm
tracks multiple targets accurately.

The proposed tracker does not use additional object detec-
tors to refine object detection results. As a result, the proposed
algorithm is weak to tracking target objects whose detection
boxes are not provided by object detectors in some frames.
Figure 13 shows failure examples of the proposed algorithm
on a challenging scenario that theDPMobject detectormisses
many objects. As in Figure 13(a), the proposed tracker fails to
track a person with index 1 at the frame 313, since a detection
box for the person is not provided.

FIGURE 13. Failure examples of the proposed tracker on the MOT17 test
sequences: (a) ‘‘MOT17-01’’ and (b) ‘‘MOT17-14 sequences.

V. CONCLUSION
In this paper, we introduced the notion of open-set few-shot
classification to formulate the online MOT problem. Then,
we proposed a novel embedding network, named VOF-Net,
to perform the open-set few-shot classification. VOFNet
includes VOF-CNN and VOF-RNN. VOF-CNN finds a
non-linear mapping from an image space into an embed-
ding space, where the open-set few-shot classification is
performed effectively. VOF-RNN learns an encoding scheme
to construct the representation feature of sequential data
in the embedding space. Finally, we developed the online
tracker, based on VOFNet. Experimental results demonstrate
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that, despite of the computational simplicity, the pro-
posed VOFNet tracker yields comparable or better perfor-
mance than the conventional state-of-the-art trackers in the
MOT17 benchmark.

Nevertheless of its effectiveness, the proposed tracker has
a limitation on inaccurate detection results as in Figure 13.
This problem can be addressed by motion models such as
Kalman filter or Particle filter, which estimate object posi-
tions, even when detectors fail to find target objects dur-
ing tracking. Therefore, it remains future works to integrate
open-set few-shot learning and motion modeling techniques.
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