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ABSTRACT We have developed an adaptive sampling algorithm for an Explorer autonomous underwater
vehicle (AUV) to conduct in-situ analysis of acoustic measurements to perform autonomous oil plume
detection and tracking. The methodology of the tracking phase involves ongoing analysis of the detected
plume, assessing target validity and proximity for AUV decision-making for plume mapping. We previously
introduced the bumblebee flight path, a new biomimetic search pattern designed to maximize the spatial
coverage in the oil plume detection phase. This paper focuses on a new tracking strategy as the key adaptive
stage in our plume delineation. For initial development we used a 360-degree scanning sonar sensor model.
Simulations were done with different plume models to assess the performance of the developed adaptive
sampling algorithm. A convergence study demonstrated that the algorithm could successfully track the
boundary of a non-regular shaped/patchy oil plume at up to a 0.05Hz sampling frequency. A sensitivity
study identified the correlations between plume feature complexity and the anticipated range of acoustic
measurement update delays. The decision-making architecture consists of three separate components which
implements either proximity or boundary following control and contributes to the final decision on the next
desired heading of the vehicle. A weight ratio, that determined the relative allocation of each component,
was varied to study its impact on the tracking performance of the AUV. The novelty of our approach is
in addressing the discontinuous and patchy nature of realistic oil plumes. Our sampling algorithm and
its performance in simulations is a significant step beyond the practical limitations of existing gradient-
following methods because it accounts for the oil patches and droplets which gradient-following algorithms
do not.

INDEX TERMS Oil pollution, acoustic sensors, sonar detection, unmanned autonomous vehicles, adaptive
algorithms.

I. INTRODUCTION
Oil spill accidents are one of the major catastrophes that can
occur in the ocean that give rise to irremediable damage to
marine wildlife and the marine ecosystem. The effects of
a large oil spill are myriad: coastal contamination, loss of
aquatic flora and fauna, impacts on human health including
death, atmospheric pollution and socio-economic losses for
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coastal industries. Continuously increasing oil transportation
has led many coastal communities to be at risk of oil spill
disasters [1]. While surface oil slicks can be detected and
mapped by satellite imagery, subsurface oil plumes are more
difficult to track, requiring the use of chemical oceanography
sensing techniques such as the fluorometric measurement of
polyaromatic, refined and crude hydrocarbons [2].

Detection of a sub-surface oil plume is not as straight-
forward as it may be on the surface. Firstly, subsurface oil
plumes are usually transferred by ambient currents from the
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origin of the spill. The mixing energy by surface waves
accelerate the physical degradation of the hydrocarbon com-
pounds [3]. Also, oil in water often forms a discontinuous
plume composed of countless undissolved droplets due to
the coalescent and clustering characteristics of oil [4], [5].
It is desirable that there is minimal to zero disturbance of an
oil plume by the detection methodology prior to its clean-
up. This promotes the use of a non-contact remote sensing
approach, as opposed to active interaction within the plume.

To date, most plume-tracking strategies in adaptivemission
planning adopt gradient-following techniques [6], [7]. Their
targets are usually continuous plumes which have a series of
continuous iso-density contours throughout their structure.
Gradient-following methods utilise one or more sensors to
measure oil concentration at a given point in time. Following
the same concentration contour of interest is one approach;
discriminating the observation field based on binary sens-
ing (either positive for presence or negative for absence) is
another. However, when the subject of interest is oil mixed
into seawater, the merits of such approaches are curtailed
by the cloud-based nature of the micro-sized droplets in the
plume. More recently, huge efforts have been put in artificial
learning for adaptive control of robots [8]–[10].

The principal objective of our project is to establish an
adaptive sampling system for an autonomous underwater
vehicle (AUV) that can swiftly delineate subsurface oil
plumes. The essence of an adaptive mission is in optimis-
ing the response of a platform to target parameters that are
unknown prior to deployment, such as where the target is or
where the target is headed. This can be achieved by utilising
in-situ data that is analysed in real-time with an additional on-
board computer called a Backseat Driver that is able to send
instructions to modify the mission of the platform. The result
is a higher intelligence approach that extends the autonomous
capabilities of an AUV platform.

Here we have developed an adaptive sampling system for
the Memorial University of Newfoundland (MUN) Explorer
AUV [11] to autonomously delineate an oil plume. The algo-
rithm successfully simulated the following tasks: oil plume
tracking, boundary mapping of a patchy plume and the trig-
gering of a water sampler. Determining our plume tracking
strategy demanded a full scan around the AUV, we extended
our sensor model from a 90-degree-forward-looking survey
to a 360-degree survey. We additionally generated different
oil plume shapes to evaluate the robustness of our tracking
algorithm. In this paper, we describe our designed adaptive
mission planning algorithm. In Section II, we summarise
our decision-making strategy for plume tracking and water
sampling. The AUV mathematical model, the sonar sensor
model, and the plume models that we generated for simu-
lation are illustrated. The simulation results are described
and analysed in Section III. As part of this analysis, we
evaluate the minimum required sampling frequency through
a convergence study; then a sensitivity study is presented so
as to investigate the influence of each parameter on tracking

behaviour. In Section IV, we present an enriched analysis to
emphasise the combined effect of multiple parameters.

II. METHODOLOGY
A. DESCRIPTION OF ADAPTIVE MISSION DESIGN
The developed adaptive sampling procedure includes two
phases: A Searching phase and a Tracking phase. Each phase
consists of two iterative modes and each mode is automat-
ically triggered when certain conditions are met (Figure 1.)
We previously presented the Initialisation, Searching and
Detection phases [11]. This paper primarily focuses on our
new tracking strategy during the Tracking phase to adaptively
track an oil plume without any prior knowledge about the
plume or pre-set AUV trajectory.

Once theAUV is deployed, randomwaypoints are assigned
within the designated two-dimensional operational area by
the waypoint-generator function during Mode 1 (Waypoint-
visiting mode). Then the trajectory-planner function gen-
erates an optimum path based on a genetic solution for the
Traveling Salesperson Problem [12]. Mode 2 (Bumblebee-
flight-search mode), is triggered to expand the search area
around each waypoint by following a bumblebee flight path.
Sensor signals are continuously observed during both modes
to seek any sign of the oil plume, alternating between Mode
1 and Mode 2 until oil detection is made and confirmed.
Further details of the Searching and Detection phase can be
found in [11].

Once it is suspected that an oil plume is present, Mode 3
(Plume-tracking mode), is triggered and the vehicle starts to
autonomously track the plume. The vehicle’s next heading
angle and location are determined based on the sensor data.
The aim of Mode 3 is to follow the boundary of the plume,
maintaining an offset distance, and mapping it in real time.
When mapping is complete and the AUV returns to the
location at which Mode 3 began, Mode 4 (Water-sampling)
starts.

This sampling procedure is conducted in a relatively less
disruptive way by having the vehicle follow a single pass
through the plume as opposed to movements involved with
making multiple turns. The decision-making mechanism
involved in each mode and the calculation algorithm are
described in the following sections.

B. PING360 SCANNING SONAR MODEL
Contactless detection of a subject in the environment around
an AUV can be performed by optical or acoustical methods
or a combination of both [13]. Optical data can be acquired
from a visual sensor such as an underwater high-resolution
still or video camera [14] or a laser system [15]. While the
use of visual detection is intuitive, optical images require a
great deal of processing time to analyse. Given present levels
of onboard computing capacity, it is currently impractical
to execute an adaptive mission that relies on optical image
analysis in real time. While sonar data tends to be noisier
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FIGURE 1. Flowchart describing the designed adaptive sampling procedure. Tracking and Sampling phases, with two independent iteration blocks, are
highlighted.

compared with camera images [16], they do not need the
high-intensity discharge lights required by optical sensors in
deep water operations. Sonar-based sensors are robust units
that have been widely used for underwater navigation [17],
bathymetry [18] as well as obstacle detection [19].

A meso-scale test was first conducted to prove the con-
cept of using sonar to detect an oil plume. In the test a
BV5000 sonar (Teledyne Blueview), with a relatively high
frequency of 1.35MHz, was found to distinctly capture oil
plume motion. We then constructed a sensor model with
360 degrees of azimuth angles relative to the AUV and a
50m range. Our sonar sensor model was built based on the
Ping360 scanning imaging sonar that is being integrated on
the Explorer AUV. The default sampling frequency of the
Ping360 is 0.2Hz; which means that it takes 5 seconds to
collect a complete set of 360-degree data. Each cell is mod-
elled to have 16-bits of data which represent the sonar echo
strength. Hence the model discretises the acoustic intensity
between 0 and 65,535.

Outputs from the model included the instantaneous AUV
location, the current AUV heading angle and an array of the
sonar intensity measurements. The sensed plume is displayed
in two frames of reference: the global view (A and C) and
the AUV view (B and D) as shown in Figure 2. The former
was used for the mapping task while the latter determines
the required change of AUV heading angle in the decision-
making step.

C. AUV MATHEMATICAL MODEL
The AUV position on the plane was specified in the global
frame of reference (GFR) as well as the local frame of refer-
ence (LFR). We used the basic kinematic model of the AUV
that was previously developed [11].

The inverse transformation matrix was used to transform
the AUV motion along the axes of the GFR to the LFR.

FIGURE 2. Example outputs from the scanning sensor model at the AUV
position: X, Y coordinates (677, 606) and (635,790) respectively. The sonar
screen is shown in the global frame of reference (A and C) and in the AUV
frame of reference (B and D).

Equation (1)-(3) show the multiplication process using the
transformation matrix.

ξposition =

 xy
θ

 ξvelocity =
 ẋẏ
θ̇

 ξacceleration =
 ẍÿ
θ̈

 (1)

R(θ )−1 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2)

ξglobal = R(θ )−1ξAUV (3)

The coordinates in both frames of reference are inter-
changeable [20]. The AUV pose (x, y, θ ) in the GFRwas used
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FIGURE 3. AUV velocity components in the global and local frames of
reference.

during plumemapping, while those in the LFRwere used dur-
ing the decision-making process. The velocity components of
the AUV in the global and the local frame of reference are
illustrated in Figure 3.

D. IN-SITU DATA ANALYSIS
The tracking algorithm consists of a recursive Measure-
Analyse-Action iteration process. The ultimate outcome of the
iteration is the next target heading angle of the vehicle.

Firstly, in the Measure stage, the sensor model continu-
ously takes data from the sonar. This data contains a set of
information including the relative position of the measure-
ment to the AUV in polar coordinates (range and azimuth
angle) and its echo strength (intensity). The total sum of
the intensities, Aggregate, is calculated using the sum equa-
tions (4)-(5). Aggregate indicates whether the vehicle has
come close to an oil plume by comparing its value with
ThresholdENTRÉE. The maximum intensity value that one grid
cell can contain is 65.5 × 103. As there are 50 grid cells
per 1 degree, the maximum value of Aggregate is approxi-
mately 11.8× 108 for the full 360-degree data set.

measurement =
[
range azimuth intensity

]
(4)

Aggregate =
360∑
k=1

measurement(k, 3) (5)

In the Analysis stage, the analysis function examines the
measured data. The obtained data is initially subject to a
Total-sum test and a Sector-sum test as illustrated in Figure 4.
The Aggregate value indicates the overall proximity of the
vehicle to the plume by comparing it with pre-set thresh-
old values. Table 1. lists the four thresholds that are set
for the detection state. These values are used to identify
the desired AUV status in relation to the plume. In the
Total-sum test, therefore, Aggregate and the Thresholds were
compared to determine the AUV status in terms of plume
detection as shown in equations (6)-(8). ThresholdENTRE and
ThresholdEXIT are entry and exit levels that indicate whether
the strength of the sonar signal is sufficiently strong or weak

FIGURE 4. Total data sum (left) and sector sums (right) of the sonar
window.

TABLE 1. Descriptions of thresholds set for detection state.

enough to presume that the plume is inside the sensing
environment of the AUV. ThresholdMIN and ThresholdMAX
indicate the minimum and maximum allowable level of
Aggregate for threshold control analogous to a thermostat
controller. The values must be given in ascending order from
ThresholdEXIT , ThresholdENTRE , ThresholdMIN , and then to
ThresholdMAX . The values of these thresholds were carefully
selected as these values influenced the performance of the
proposed process. We recommend that new users try our
adjusted values; then tune them for a given application. These
values are subject to change with respect to the desired AUV
proximity to the plume as determined by the mission details.

Boolean.Aggregate ≥ ThresholdENTRE (6)

Boolean.Aggregate ≤ ThresholdEXIT (7)

ThresholdMIN ≤ Aggregate ≤ ThresholdMAX (8)

Subsequently, the Sector-sum test splits the sonar window
into eight sectors. Then, it provides vector results which
include eight sets of desired direction and magnitude. Their
vectorized sum, combined with the pcoefficient from the first
test, finally provides the value of proximity angle, which
is the heading angle that ensures the vehicle stays between
ThresholdMAX and ThresholdMIN (See Figure 5.). However,
it is not used independently, but in combination with the edge
angle and adjustment angle to obtain the resultant angle as
described in the next sections.

E. DECISION-MAKING ARCHITECTURE OF TRACKING
In the Action stage, the information including the resultant
heading angle is calculated and then finally sent to the vehi-
cle control system. The decision on the resultant heading
angle combines three factors: edge angle, proximity angle and
adjustment angle. They are listed with a description of their
roles, respectively in Table 2.

The proximity angle is calculated using the outcomes
(pfactor and pcoefficient ) from both tests (Total-sum test and
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FIGURE 5. An Aggregate plot during Mode 3 simulation. Keeping the
vehicle at a fixed distance from the plume was done using this
thresholding control.

TABLE 2. The role of each coefficient of each angle term.

Sector-sum test). Its primary role is proximity control which
keeps the vehicle at a desired distance from the plume so
that the plume is not lost during operation nor unnecessarily
disturbed. While pfactor represents the sign (either positive
or negative), pcoefficient defines the proximity quantity (how
close the vehicle gets to the plume). These outcomes deter-
mine whether to move closer or further away from the plume.
For example, a positive pfactor means low proximity. Hence,
the vehicle needs to get closer to the plume. On the other hand,
a negative pfactor means high proximity, which indicates that
the vehicle is at a closer distance than desired. The proximity
angle is found from equation (9)-(12) as below.

proximity = arctan
{
pcoefficient (y), pcoefficient (x)

}
(9)

where pcoefficient is found by resolution from:

pcoefficient (x) =
∑k

1
cos (sec tork)× proportionk

pcoefficient (y) =
∑k

1
sin (sectork)× proportionk (10)

where the sectork determines the direction of each sector
(see Figure 6.), depending on the sign of pfactor .; and the
proportionk is the ratio of Sk (the sum of the sonar readings in
each sector) to the sectorMAX (the possible maximum value
of Sk ).

sectork =

{
mean(45◦ × k), pfactor = −1
mean(45◦ × k)+ 180, pfactor = +1

(11)

proportionk = (sk/sectormax) (12)

The edge angle is the primary angle term to enforce the
vehicle to follow the plume boundary while maintaining the

FIGURE 6. Outcomes of calculating sectork defined by pfactor . Inverse
section is used in the negative pfactor case (left) and section is used in
the positive pfactor case (right).

FIGURE 7. Three tests involved in the edge angle term calculation
including Plume-ahead test, Patch-identification test and Edge-line test.

plume on the right-hand side of the vehicle. The vehicle could
follow the plume by either keeping the plume on the left- or
right-hand side of the vehicle. In this work the plume was
always maintained on the right side of the vehicle so as to
avoid confusion with the direction of the vehicle. To calculate
the target edge angle, a set of sequential tests must be done
first including a Patch-identification test, a Plume-ahead test,
and an Edge-line test. Firstly, in the Patch-identification test,
each scan line (1◦ – 360◦) is subject to inspection to iden-
tify whether oil droplets lie on the scan line. Discrimination
among detected lines and non-detected lines indicates the
separation of each patch (discontinuity). So, the total number
of patches are identified in the first test. Subsequently, the
Plume-ahead test analyses whether the detected patches lie
within a 40-degree swath ahead of the vehicle (See Figure 7.).
This is the azimuth 20 degrees either side of the vehicle’s
zero-degree heading. If there is a patch lying ahead, any other
patches are excluded in the rest of the analysis. If there are
no patches detected ahead, the patch of the highest interest is
selected for consideration. The highest interest in this context
is defined by the relative direction of each identified patch to
the AUV heading and the patch density.

The sonar can encounter various ‘complete’ patch bound-
aries for oil plumes with different shapes and density or just
‘partial’ ones (See Figure 8.). Cases A to D are the basic
examples where an oil plume lies ahead of the vehicle. For
example in Case-A, a partial patch behind a complete but
small sized island is selected to be of interest for identifica-
tion, while in Case-B, the two light islands (less than a certain
level of oil density) are ignored and the vehicle is directed
to pass through or between them. Similarly, a partial light
peninsula is ignored in Case-C; however, an edge angle is
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FIGURE 8. Various patch boundaries that the sonar may encounter: the patch of the highest interest is selected depending on its position and its
density. The edge-angle is determined after the Plume-ahead and Edge-line test, as marked by the red arrow. A heading of 0 degrees is the heading
of the vehicle.

selected as the direction where the vehicle can pass to the left
side of the plume in Case-D. The same is true in Case-E and F
where the plume does not lie ahead. When multiple patches
are detected like in Case-G or H, either the stronger den-
sity patch is selected, or the patch ahead is selected if
there is a gap that the vehicle can pass through. Finally,
a required turning angle (edge-angle) is estimated through an
edge-line test.

The adjustment anglewas introduced to prevent the vehicle
from being stuck at a sudden bulging edge of the plume
(which was found to occur in early simulations). The adjust-
ment angle is a function of the offset and aims to prevent sharp
turns in heading. A linear interpolation formula was used to
calculate the adjustment angle as shown in (13).

adjustment angle = 2ϕ (st − st−1 − gmin) / (gmax − gmin)

(13)

where

st − st−1 = gradient of Aggregate,
gmin = minimum gradient,
gmax = maximum gradient,
2ϕ = the offset angle range,
ψ = the gradient proportion factor

Values of gmin and gmax is found from:

gmin,max = ±ψ × AggregateMAX (14)

Through empirical simulations, effective values of ϕ and
ψ were found to be 5.0 and ±2.5% of the AggregateMAX ,
respectively. If the gradient is zero (no change in the total

signal sum), the adjustment angle is set to the default value
of offset. The offset is an input set by the operator, somewhere
in the range from 10 to 40. A discussion on the choice
of this angle is given in Section IV. The pseudo code of
the decision-making process for the resultant angle is given
in Figure 9.

There are two ways in which it was assumed that the
vehicle could extract itself from being stuck in this type of
situation. Firstly, when the detection is no longer valid, i.e.
that the vehicle has lost contact with the plume, the tracking is
terminated, and the AUV reverts back to the searching mode.
Secondly, when the vehicle returns to the location at which
the tracking started, the tracking is considered complete and
the mission moves on to the next sampling mode. The vari-
ous coefficients described above were tuned via a sensitivity
study, which is described in the results section. The process
to calculate the final resultant heading angle is presented
(See Figure 10.).

F. VIRTUAL HYDROCARBON PLUME MODELS
Virtual hydrocarbon plume models were designed to emulate
as realistic an oil plume as possible in the simulation domain.
The models represented static two-dimensional discrete oil
plumes with diverse shapes and random patterns. They con-
sisted ofmixed patches ofmicro-sized oil droplets. Theywere
created based on the results obtained from two preceding oil
sensor experiments. The first test was done in the wave tank
at the Bedford Institute Oceanography (BIO) and the second
in Port au Port Bay [4]. During the first experiment, oil in
water was observed to form a number of patches and clouds
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FIGURE 9. The pseudo code for calculating the resultant heading angle
including the three terms (edge angle, proximity angle and adjustment
angle) through a sequential set of calculations.

of droplets of various sizes and hence oil concentrations. The
outcomes indicated that our AUV control algorithm should
account for the discontinuous form of a real oil plume.

Six different plume models with varied density distribu-
tion, different levels of roughness of the boundary, patchiness
and with a varied number of holes inside the plume were
generated as shown in Figure 11. They were labelled from
A to F . The reference number as given in (15) roughly indi-
cates the tendency of the plume shape and patchiness. For
example, a higher value of the term incohesion corresponds to
a relatively incohesive plume with a greater number of small
holes and patches; whereas a lower value results in a cohesive
plume consisting of a continuous body with a smaller number
of holes. The Angularity term indicates the tendency to have
more right-angled or sharp-angled corners. Therefore, a lower
Angularity number means a relatively circular shaped plume.
In summary, model F with a higher incohesion number and
angularity term is likely to be more challenging for the devel-
oped algorithm to robustly control the AUV in encircling
the plume.

Plume model Ref .no : incohesion− angularity (15)

where 20 ≤ incohesion ≤ 40 and angularity ∈ {15,25}.

G. WATER SAMPLE TRIGGER
In the final mode, the AUV makes direct contact with the
plume in order to take a water sample (or it could be another
measurement using a sensor that requires direct contact with
the plume). When the AUV has completely encircled the
plume and has reached a completed mapping, the algorithm
automatically switches on the centroid estimator which esti-
mates the approximate centroid of the mapped plume. Points
on the AUV trajectory were assumed to be a group of same-
mass particles. The location of the centre of mass of these
distributed particles was found. The weighted sum of the
positions of the particles was calculated. In this application,
the weighting factors for all particles were equally distributed
with the assumption that only the geometrical plume area was
required to be found. The method to calculate the centroid of
the plume is given in (16).

x =
∑n

k=1

mkxk∑n
k=1mk

y =
∑n

k=1

mkyk∑n
k=1mk

(16)

where

n = the number of particles,
mk = the weighed mass of the k th particle,
(xk , yk ) = the coordinate of the k th particle

The data flow diagram between the Backseat Driver Com-
puter (Payload Computer) in which our developed adaptive
sampling algorithm is implemented and the Frontseat Driver
Computer (Vehicle Control Computer) which controls the
thruster, planes, water samplers and other equipment is shown
in Figure 12. The Ping360 scanning sonar continuously col-
lects the information from the surroundings. These measure-
ments are processed and analysed; then a decision is made on
the new desired heading inside the Backseat driver computer
(the speed remains constant). This decision is passed on to the
main vehicle control computer which creates commands for
the required adjustment of the plane angles and the thruster
revolutions.

A triggering signal is sent out to the VCC when the vehicle
arrives at the estimated location of the centroid, (x, y). In the
field, there is a slight possibility that the calculated position
accidently occurs at a hole due to the patchy attribute of
a plume. To prevent such a case occurring, a hydrocarbon
sensor might be used as a backup to the primary sonar sensor
to confirm oil presence at that location. Therefore, the water
samplers are triggered only when three requirements are
satisfied: arrival of the AUV at the location of the centroid;
a positive sonar sensor reading for the presence of oil; and a
positive in-situ oil sensor reading such as a fluorometer.

III. SIMULATION RESULTS
The proposed adaptive sampling method was evaluated
though simulations targeting different plume models that
were generated. A convergence study was done by using
varied values of the sampling frequency. The results revealed
that a more complex plume model required more prompt
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FIGURE 10. The calculating process of the final resultant angle as a function of proximity angle, edge angle and adjustment angle.

adaptation to adjust the heading of the vehicle. A guideline for
the maximum time delay allowed for in-situ data processing
time between sampling. In addition, a sensitivity study was
done with coefficients and thresholds varied. The mapped
plumes are presented.

A. CONVERGENCE STUDY
In theory, more frequent sonar measurements are desired to
reduce estimation errors [21]. However, a higher number of
sensor measurements can lead to excessive computer loads
for data processing and hence, delays in real-time analysis
and control that exceed the time step between measurements.
So, it is crucial to find the operational sampling frequency
range balancing the computational load for analysing mea-
surements and the maximum tolerance required to not lose
the plume during tracking. Practically, it takes approximately
9 seconds for a complete 360-degree scan using the Ping360
scanning imaging sonar. Therefore, the algorithm must be

sufficiently robust to overcome transmission latency without
losing contact with the target plume.

In practice, approximately 72 degrees of sonar dataset
will be successively obtained every second. However, in this
simulation, we assumed that a full set of data was acquired
instantaneously; the errors induced by the actual delay were
assumed to be small.

A convergence study was conducted (see Figure 13. And
Table 3) to determine the minimum useable sampling fre-
quency, reflecting the allowable time delay that could be
tolerated in the real-time Backseat Driver adaptive opera-
tion. The useable sampling frequency varied depending on
the complexity of the plume model. The minimum useable
frequency was found to be 0.33 Hz for models A, B and
C (see Figure 14). This tolerance decreased with the com-
plexity of the model, which meant that the minimum useable
frequency must be increased for higher incohesion numbers.
Models E and F were found to require a minimum frequency
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FIGURE 11. Six virtual oil plume models, named A to F. The data set was generated based on acoustic signal strength range (0 ∼ 65,535). Density
distribution, levels of roughness of the boundary, patchiness and the number of holes inside the plume is varied between the models.

TABLE 3. The results of the convergence study.

of 0.048Hz. Hence overall, 0.05Hz was found to be the safe
minimum useable frequency for all plume models simulated.
This means that if the time lag between sonar measure-
ment updates during tracking mode takes longer than around
20 seconds (lower than 0.05Hz frequency), the vehicle is
likely to lose contact with the plume it is tracking.

The tracking trajectories for all plume models simulated
are shown in Figure 14.

B. SENSITIVITY STUDY
A sensitivity study was conducted for the coefficients that
were the key functions in calculating each angle term dur-
ing the decision-making process. Four terms were tested to
evaluate robustness and adaptive capability of the designed
algorithm. Model F, the most complicated plume model, was

selected for this study to account for the most realistic plume
representation. The test was done for the four terms including:
Thresholds, pcoefficient , weighting-factor and offset.

Adjusting the Thresholds did not noticeably affect track-
ing outcomes in terms of the AUV behaviour except for
ThresholdENTRE . The value of ThresholdENTRE determined
the proximity of the AUV to the oil plume at which the first
avoiding behaviour was taken. Normally ThresholdENTRE
was set between 0.001 – 0.1% of the AggregateMAX value.
A study was done to determine the influence of pfactor .

The value of pfactor was changed between ±1 and ±1000
(logarithmic steps were used). Changing the magnitude of
pfactor did not influence the overall tracking result.
The weighting-factor and offsetwas found to have a signif-

icant impact on the tracking behaviour (See Figure 15.). The
weighting-factor represents the weight ratio of the proximity
angle term. So, if the weighting-factor is 0.3, 30% of weight
is allocated to the proximity angle term and the rest of the
weight (70%) is allocated to the edge angle in decision-
making on the resultant heading angle (Figure 10.). The range
of successful values (that is those values for which tracking
of the plume was completed) was between 0.01 and 0.2. The
vehicle tracked at a larger distance from the plume at the
lower successful values of the weighting-factor. Increasing
theweighting-factor led the vehicle tomore closely follow the
plume. At a weighting-factor of 0.3 the vehicle became stuck
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FIGURE 12. Sensor measurement and sampling triggering data flow diagram on board the AUV through the
Backseat Driver Computer (Payload Computer) and the Frontseat Driver computer (Vehicle Control Computer). The
red dotted line corresponds with the sensor data flow for manoeuvring and plume-mapping. The blue dotted line
indicates the water sampling command line.

FIGURE 13. Result plotting the convergence study with six different
plume models.

TABLE 4. The useable ranges of each coefficient for each angle term.

near the strait in the South-East corner. This was because a
lower weight allocated to the edge angle reduced the direc-
tional influence provided by the algorithm in detecting the
position of the plume relative to the AUV and which enabled
the vehicle to avoid the components of the plume and traverse
the strait. Recommended ranges of each coefficient obtained
through the sensitivity study are given in Table 4. A combined
sensitivity study of AUV response caused by weighting-
factor and offset is described in the discussion section.

C. MISSION OUTPUTS: PLUME MAP AND SAMPLES
In the process of tracking, the mapping function maps a part
of the plume. The measured data from the sonar detection
model, which is in the AUV local frame of reference, were

transformed so that the sensed plume could be recorded on
an empty map in the global frame of reference as shown
in Figure 16.

Once the tracking and mapping were complete, the sam-
pling mode (Mode 4) was successfully executed in all cases.
The centroid was found within a margin of error of 1m and
the virtual water sampler was triggered as marked by the blue
cross.

IV. DISCUSSION
In the process of developing this adaptive sampling algo-
rithm,we analysed the effects of each coefficient or parameter
and how they affected the tracking performance of the algo-
rithm. The results are presented here to assist future users in
the practical use of the method.

We compared two weighting-factor cases (0.01 and 0.2)
with five different offset values (10, 15, 20, 25 and 30). A
weighting-factor of 0.01 means 1% (and 0.2 means 20%)
of the proximity angle term, while the rest of the weight
goes to the other angle terms in the decision-making process.
Different trends were observed in terms of the tracked path
(See Appendix). In general, a lower weighting-factor (0.01)
led to more stable tracking over a wider range of offset, while
a higher weighting-factor (0.2) produced a track trajectory
at a greater distance from the plume. Also, a higher posi-
tive weighting-factor led to a greater repulsive reaction from
the plume with increase of offset (see δ, ε, ζ and ν in the
Appendix). This implies that weighting-factor had a more
influential repulsive forcewith respect to the plume compared
with offset. Another effect of setting a higher offset was that
the AUV tracked outside of more of the small ‘‘islands’’ of
low oil density that were around the plume (see β− ζ , θ − κ ,
ι − ξ , λ − µ and γ − δ in the Appendix). The proximity
angle term resulted in a linear repulsive displacement while
the adjustment angle term was linked to an angular repulsive
change to the AUV heading. Having both terms increased
(see η in CASE-V in the Appendix), the vehicle lost track
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FIGURE 14. AUV trajectory tracking for different oil plume models A, B, C, D, E and F. The AUV operational area is marked by the dotted line.

FIGURE 15. Simulated AUV trajectories during a sensitive study that varied the weighting-factor; 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2 and 0.3.

of the plume. In contrast, the vehicle tracked the plume in the
tightest manner when both termswere low (see α in CASE-VI
in the Appendix).

The way in which offset and pcoefficient influenced the AUV
track differed. The pcoefficient controls overall proximity to
the plume based on the value of Aggregate, the sum of total
detected area and oil plume density, with respect to the thresh-
olds by forcing the AUV away from the plume if negative
and towards the plume if positive (See Figure 17). On the
other hand, the offset determined the heading angle for the
AUV to take relative to the plume boundary and controlled

the amount of the offset. In the presence of an oil patch, a low
offset brought about a modified response to a sudden increase
in the value of Aggregate by setting a heading angle closer to
the plume. Hence, the offset reduced the ‘‘flip-flop’’ nature of
the repelling reaction caused by the proximity angle.

The vertical dimension can also play an important role in
detection. A level of 3D was taken into account through the
vertical beam width of the sonar (25 degrees) which leads to
an averaged response to the oil plume over a range of depth.
In a true 3D survey, a strategy would be needed to track the
plume depending on the 3D structure of the oil in the water

VOLUME 8, 2020 198031



J. Hwang et al.: Oil Plume Mapping: Adaptive Tracking and Adaptive Sampling From an AUV

FIGURE 16. Boundary plot of the mapped plume (left); AUV trajectory
during Mode 3: Tracking is shown by the blue line and Mode 4: Sampling
is shown by the yellow line (right).

FIGURE 17. Comparison of the principles between pcoefficient control and
offset control.

column. For example, in calm water, with the oil on the water
surface, the oil does not extend substantially over depth, but
in a high energy wave environment, the waves can push the
oil down into the water column, or if the oil on the surface is
a result of oil released from a depth, then there may be pillars
of oil rising from a depth in the water column. To be able to
track such oil plumes, an appropriate sonar strategy is needed.

The sonar measurements were considered free of noise and
other spurious data in our simulation. However, a real sonar
system will have noise and false positive signals owing to
substances other than oil in the water column. These need
to be filtered in the in-situ analysis prior to using the output
for autonomous decision making. In future field work we will
collect realistic sonar data from an AUV. This will be used to
refine the analysis to include signal filtering.

Our algorithm has advanced existing published plume
tracking methods by allowing for discontinuous plumes and
plumes made up of discrete elements, in this case oil droplets.
Future work will involve developing the algorithm to model
dynamic data which evolves over time in order to more
accurately address a dispersing plume over a certain period
of time and the time delays inherent in the collection of the
scanning sonar data.

V. CONCLUSION AND FUTURE WORK
In this paper, we formulated a decision-making architecture
for the problem of setting a path to track a discontinuous
and realistic oil plume using an AUV. We have presented an
adaptive algorithm tracking a virtually generated oil plume in
a simulated environment. The plume characterized oil mixed

in water consisting of a myriad of oil droplets forming a
discontinuous plume with varied density.

The overall method was validated by using simulated sen-
sor inputs and outputs. TheAUVwas instructed tomanoeuvre
itself around and map the plume and then to take a sample at
the location that was in the centroid of themapped plume. The
results summarize the performance of the adaptive algorithm
and characterize the influence of each component term in the
decision-making process of the algorithm.

We successfully tracked a planar oil plume in a simulated
environment by using an acoustic sensor model developed for
in-situ analysis and by sending heading angle commands to
the AUV vehicle control computer. The algorithm was found
to work well in the sense that it could effectively respond
to an irregularly shaped oil plume with patches, corners and
complex boundaries. To date, the sensor model collected
data in the two-dimensional plane, and hence it provided
a two-dimensional map of the oil plume around the AUV.
By accommodating an approach using a survey, the system
overcomes the limitations involved with existing gradient-
following methods. The approach demonstrates a robust and
resilient algorithm and especially an approach that is able to
deal with regions of multiple small oil patches, which require
observations to be made beyond the edge of the target in order
that a better decisions are made on the track of the vehicle.

Our oil plume tracking algorithm works by taking into
account the multiple independent behaviours and objectives
required by the vehicle: to keep a safe distance from the
plume; to follow the plume edge; and to maintain progress
around the plume. To fulfill these objectives, the sensitivity of
the various parameters in the algorithm and their contribution
to robustness must be considered. The set of threshold values
(Thresholds) based on the summation quantities of sonar
returns taken to be from oil in the water over a 360 degree
scan around the AUV (AggregateMAX ) were used to define
when the AUV had encountered the plume; when it had lost
contact with the plume; and minimum and maximum levels
that needed to be maintained as the AUV tracked around the
plume. These latter enabled a safe distance to be maintained
between the AUV and the plume. Two other parameters,
weighting-factor and offset, formed attraction and repulsion
impacts on the tracking as well as created the impetus for the
AUV to maintain progress around the plume. Tuning these
two parameters was found to be key to successful plume
delineation. The effective working range of the weighting-
factor, through pcoefficient control, was between 0.01 and 0.2;
too high and the AUV tracked towards and then away from
the plume in a flip-flop manner, however, did not progress
around the plume. The working range of the offset control,
the parameter which enabled the vehicle to progress around
the plume, was between 15 and 25◦. Although these are
our recommendation ranges, a future user might tune the
parameters to best suit an individual mission. For example,
the parameters ThresholdENTRE and pcoefficient need to be
tuned so that the vehicle ignores small patches of oil and
progresses past them; otherwise the AUV would respond
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FIGURE 18. Sensitivity study showing trends in the AUV’s plume tracking path from various combined parameters, weighting-factor (0.01 and
0.2) and offset (10, 15, 20, 25 and 30).

to and track every small patch of oil in the water column.
On the other hand, if the weighting-factor is minimized and
a low offset value is set for a mission, the AUV will follow
every detail around the edge of the plume. To prevent the
vehicle from getting stuck during tracking or losing contact
with the plume, we had to adjust and tune the thresholds and
weighting-factor.

The convergence study shows that updating the sonar data
at a high sampling frequency is restricted by the speed of
sonar scanning and the limited processing capability of the
on-board computer. In addition, the in-situ sonar analysis
model may be confounded by a number of other undesired
manmade or natural sources of acoustic signals which can
confuse our algorithm; such as fish, marine animals or ship
propellers. For a robust, effective and efficient oil delineating
application, acoustic sensing alone may not be sufficient.
Nonetheless, in an environment where an oil plume is known
to exist, sonar sensing can be useful and allows a poten-
tial oil plume to be sensed from a distance. To enhance
decision autonomy on a sensor driven AUV, construction of
adaptive algorithms suited for subsurface surveys are a basic
essential.

The work has taken a step beyond existing plume map-
ping involving adaptive control based on gradient following
methods. It has also developed a possible solution
for practical problems and limitations of conventional
approaches.

Potentially the approach is not limited to oil plumes, rather
it might be applied for other underwater targets with similar
discontinuous physical features such as tracking a school of
fish, phytoplankton layers or locating black smokers on the
seabed.

In future work, our aim is to take these results and advance
the capability of the designed algorithm to address survey of
three-dimensional regions and to tackle the spatial-temporal
issues that result in tracking a dynamic (moving) plume that
is commonly the case in reality owing to currents. Our aim is
to equip our AUV with true intelligence.

APPENDIX
See Figure 18.
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