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ABSTRACT Considering the multichannel instability, spectral overlap and strong interference of elec-
tromagnetic radiation signals in the integrated electric propulsion systems of ships, a new method is pro-
posed which combines multivariate empirical mode decomposition (MEMD) with independent component
analysis (ICA) for synchronous blind source separation of multichannel electromagnetic radiation in the
field. In order to construct virtual channels, noise-aided MEMD is first applied to decompose multichannel
data in this approach. Then the comprehensive screening algorithm is used to filter the intrinsic mode
functions (IMFs) produced by the decomposition procedure. Finally, the new multivariate input signal is
analyzed after screening using ICA to obtain the original electromagnetic radiation source signal. This
method is able to effectively addresses several limitations of EMD including the mode mixing problem,
its inability to handle multichannel data, as well as the indeterminacy problem in ICA. The efficacy of the
MEMD-ICA algorithm was evaluated using simulated signals and real world data from a cruise ship, and
comparing ensemble empirical mode decomposition-ICA(EEMD-ICA).

INDEX TERMS Blind source separation, electromagnetic environment, independent component analysis,

integrated electric propulsion system, multivariable empirical mode decomposition.

I. INTRODUCTION

The integrated electric propulsion (IEP) system of a ship
consists of power generators, the electrical equipment in the
control room, and frequency converters/transformers. Elec-
tromagnetic radiation (EMR) is therefore most prevalent in
this section of a ship. Due to space constraints, these electrical
equipment are usually placed very close to each other. This
can lead to intense electromagnetic interference (EMI). It is
therefore necessary to perform EMR testing in IEP systems
to ensure that the electrical equipment and the systems of
a ship are operating normally. It is typically impossible or
impractical to move this equipment to standard test sites
such as electromagnetic anechoic chambers because ship-
board equipment tends to be very large and require numerous
auxiliary devices. Furthermore, devices that are individually
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EMR-compliant may exhibit incompatibilities when they are
assembled into a system, which is detrimental for the oper-
ation of IEP systems. The development of on-site multi-
equipment EMR testing methods for IEP systems is therefore
a necessity.

The difficulty of on-site measurement is related to the
filtering of the environmental background noise. The most
common methods for on-site EMR testing include the use
of virtual anechoic chambers [1], beamforming spatial fil-
tering [2] and, multichannel blind source separation. Unlike
single-device on-sitt EMR measurements where the filter-
ing of environmental background noise is the main con-
cern, inter-device interference between multiple devices must
also be accounted for in on-site IEP system EMR measure-
ments. In the latter, it is necessary to synchronously sep-
arate the EMR signals of multiple electronic devices with
unknown electromagnetic and transmission characteristics
during the filtering of the background noise. Blind source
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separation (BSS) algorithms are well-suited for the sepa-
ration of multichannel signals. However, due to the limi-
tation of shipboard space, it is not possible to use a large
number of antennas for EMR measurements. The BSS of
IEP system signals is therefore an indeterminate problem,
i.e., the number of observation signals is fewer than the
number of signals sources. Consequently, the efficacy of the
separation process is usually less than ideal. One possible
solution to the indeterminacy problem in BSS is to add an
adequate number of virtual channels via wavelet decomposi-
tion. However, this method is ill-suited to non-linear signals
and it is impossible to accurately estimate the time domain
features of the wavelet-decomposed signals. Furthermore,
a suitable set of wavelet basis functions must be selected
prior to the wavelet transform according to the features of the
signals that are transformed. Thus, it is difficult to use wavelet
decomposition-based methods without a priori knowledge of
the signals.

Independent component analysis (ICA) is the most com-
mon method for separating independent sources without prior
knowledge of the multichannel signal. However, the clas-
sic ICA algorithm is only suitable for situations where the
number of input signals is larger or equal to the num-
ber of signal sources; in indeterminate cases, the results
for ICA-based signal separation are usually not satisfac-
tory [3].An important approach for resolving the indeter-
minacy problem in ICA is to perform ICA after the input
signal is pre-decomposed to generate additional virtual chan-
nels, thus increasing the number of signals. wavelet-ICA
(WICA) [4]-[7] and single-channel ICA (SCICA) [8] are
some of the common methods based on this approach. WICA
[9] based multiresolution analysis using a discrete wavelet
transform (DWT) is shown to be more effective in remov-
ing inferences, while better preserving the structure of the
source signal in both time and frequency domains How-
ever, the WICA method requires the selection of suitable
wavelet basis functions according to the characteristics of
the signal to be analyzed, and the wavelet decomposition is
not suitable for processing non-stationary EMR signals of
shipboard equipment. In contrast, empirical mode decom-
position (EMD) is an adaptive data analysis method that is
suitable for non-linear and non-stationary signals [10]. Com-
pared to the wavelet transform, EMD does not require preset
parameters and is easy to implement. As such, this approach
is a better approach for the pre-decomposition of shipboard
EMR signals. Signal processing methods based on the com-
bination of EMD and ICA have already found widespread
use in the removal of electroencephalography (EEG) artifacts
[11]-[13] and fault diagnosis [14]-[16]. In [17], ensem-
ble empirical mode decomposition (EEMD) was used to
decompose multivariate data, and the intrinsic mode func-
tions (IMFs) that contain artifactual components were
screened based on the entropy and kurtosis of the IMFs. ICA
was then used to extract the artifacts of the multivariate data.
Finally, removal of the artifacts from the multivariate signals
was achieved by performing an inverse EEMD-ICA to obtain
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the artifact-free multivariate dataset. Although this algorithm
is widely applied in noise suppression and fault diagnosis, it is
very rarely used in on-site situations for BSS of multichannel
shipboard EMR signals. This is because shipboard space
tends to be small, whereas EMR antennas are quite large.
Thus, it is difficult to use multiple EMR antennas on a ship.
EMR signal separation in ships is therefore an indeterminate
BSS problem and the aforementioned algorithm is rarely used
to address this problem. The indeterminate BSS problem has
been discussed in [3] and [8]. In these studies, EMD was
combined with ICA to solve the indeterminate BSS problem.
The signal decomposition capabilities of EMD was used to
expand the dimensionality of the signal, while ICA was used
to separate the independent sources of the single-channel
signal, thus solving the indeterminate BSS problem for single
channels. Nonetheless, multivariate empirical mode decom-
position (MEMD) has unique advantages compared to EMD
and EEMD in the processing of multichannel signals and
these advantages have been described in [18]-[21]. EMD is
usually only used for single-channel signals; in the case of
multichannel signals, EMD can only extract the character-
istic frequencies of the IMF sets that were obtained from
the independent processing of each channel. This leads to
scale indeterminacy between different IMF sets and thus a
lack of correlation between IMFs of the same order. It is
then difficult to horizontally compare the decomposed sig-
nals. To address this problem, we propose a method for the
synchronous on-site BSS of multichannel EMR signals by
combining the MEMD and ICA algorithms. In our method,
the indeterminate BSS problem was solved by exploiting the
ability of MEMD to handle non-linear and non-stationary
signals, maintain scale invariance in multi-signal decomposi-
tion, and increase signal dimensionality. This method effec-
tively enables synchronous on-site BSS of multichannel EMR
signals in IEP systems.

The novelty of the proposed MEMD-ICA algorithm is as

follows:

1) Unlike artifact removal, the purpose of MEMD-ICA
is to isolate signal sources from multichannel signals.
It is therefore unnecessary to restore the input signals
using the inverse ICA. Hence, based on the algorith-
mic structure of EEG artifact removal via EMD-ICA,
we have proposed a novel algorithmic structure for syn-
chronous on-site BSS of multichannel signals during
shipboard EMR testing. This approach is based on the
combination of the MEMD and ICA algorithms.

2) Unlike previous EMD-ICA algorithms, MEMD was
introduced to ensure that the IMF sets produced by
multichannel signal decomposition are correlated and
scale-invariant, which is highly advantageous for the
extraction of effective IMF components.

3) The proposed MEMD-ICA algorithm does not rely on
noise removal preprocessing to address the noise sensi-
tivity of MEMD. Instead, the comprehensive screening
algorithm based on kurtosis and correlation are pro-
posed. Firstly, the kurtosis interval is set to remove
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noisy components from IMFs of MEMD (MIMFs), and
then the correlation threshold is set to remove MIMFs
that are not related to the source signals/observation
signals, thus extracting IMF components containing the

source signals and completing noise elimination.
The remaining portion of this paper is organized as fol-

lows. In Section II, the proposed MEMD-ICA algorithm is
presented in detail, while its noise resistance and ability to
handle the indeterminate BSS problem is examined through
simulation experiments in Section I1I. Furthermore, a descrip-
tion of real shipboard EMR environment, the corresponding
test stand, and separation results of real ship test data based
on the MEMD-ICA are given and discussed in Section IV.
Finally, the conclusions are drawn in Section V.

Il. THE MEMD-ICA ALGORITHM

The aim of this paper is to synchronously separate the source
signals from the observation signals of different channels.
ICA is a better analysis method for the source separation.
However, when there are fewer channels than sources, ICA
by its nature cannot guarantee an efficient separation of the
source signals from the observation signals and useful infor-
mation may be lost [17]. Thus, it is necessary to expand
the signal dimension for the decomposition of observation
signals, and at the same time ensure that the signal decom-
position does not affect the time-frequency characteristics of
the source signals. EMD is a good method for expand the
signal dimension, but the IMFs obtained for different obser-
vation channels can be different in number and properties
(frequency), heavily compromising any analysis or fusion
of multicomponent signals obtained in a channel-by-channel
basis [21]. In addition, influenced by noise, EMD produces
more irrelevant and redundant components in the decomposi-
tion process, which brings difficulties to subsequent spectral
analysis and leads to repetition and aliasing [22].

To sum up, there are three problems to be solved in the
combination of EMD and ICA to process multivariate data:

1) mode alignment problem.

2) Modal aliasing problem, namely similar frequencies

appear across different IMFs.

3) Redundancy and Noise of EMD Decomposition

Signals.

Starting from the above three problems, this paper puts
forward corresponding solutions respectively. Firstly, MEMD
is used to solve the asymmetry problem of IMFs sets between
different variables. Then a comprehensive screening algo-
rithm is proposed to solve the problems of signal redundancy
and noise. Finally, Noise-assisted MEMD and ICA are used
to solve the mode aliasing problem, and the source signals are
synchronously separated from the observed signals.

A. THE DESIGN OF A NOISE-ASSISTED MEMD METHOD
TO SOLVE THE MODE ALIASING AND MODE

ALIGNMENT PROBLEM

In view of the complexity of the test environment, the sig-
nals received by different channels are very different. When
processing multi-channel data, different channels should be
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guaranteed to correspond. This is reflected by the different
decompositions obtained for signals with similar statistics,
and the phenomenon of mode aliasing, whereby similar fre-
quencies appear across different IMFs. The advantage of this
is that the components of the channel can be analyzed by
comparing the correlation between the same component and
the observation channel, which is convenient for subsequent
screening and processing.

MEMD has its unique advantages in processing multivari-
ate data. Compared with EMD, MEMD shows significantly
enhanced alignment of corresponding IMF from different
channels in the same frequency range. The alignment of
IMFs ensures that the IMF associated with the original input
signal is aligned and has the same information at the same
decomposition level, thus providing an intuitive and strict tool
for analyzing narrow-band but non-stationary signals in real
data. In addition, MEMD can overcome modal aliasing when
processing complex multivariable data, so that other modals
are not mixed in each IMF as much as possible. Even if the
modes are aliased, the corresponding modes can be separated
by subsequent ICA processing.

The standard MEMD method has been described in detail
in [22] and will not be repeated here. MEMD can achieve
the same characteristic frequencies in the same order of
different IMF sets, which is of great significance for subse-
quent data integration and determination of effective compo-
nents. Unfortunately, MEMD is more sensitive to noise than
EMD, which will greatly limit the application of MEMD in
actual signal analysis. Influenced by noise, MEMD produces
more irrelevant and redundant components in the decompo-
sition process, which brings difficulties to subsequent spec-
tral analysis and leads to repetition and aliasing. Therefore,
when MEMD is used to decompose the multivariate signals,
an appropriate method is needed to solve the problems of
redundancy and mode aliasing.

Herein, we propose a noise-assisted MEMD method based
on EEMD listed in Algorithm 1. It should be noted that
noise-assisted MEMD is not the injection of white Gaussian
noise in every dimension of the multidimensional signal, but
rather, the use of MEMD in the (m+n) x dimension composite
space formed by noise and signals, to avoid the mode aliasing
problem in MEMD.

B. COMPREHENSIVE SCREENING ALGORITHM

Although the noise-assisted MEMD method can realize
multi-channel data alignment expansion and reduce the mode
aliasing problem, the combination of MEMD and ICA is the
core problem to be solved in this paper.

The source signals were decomposed by MEMD to pro-
duce some virtual channels. These virtual channels not only
contain some white Gaussian noise, but also a large part
is independent of the target source signals. Their existence
not only greatly increases the computation of subsequent
processing, but also affects the accuracy of separation results.
Reference [23] provides an idea that the set of averaged
IMFs derived from the EEMD is then applied to the FastICA
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Algorithm 1 A Noise-Assisted MEMD Method Based on
EEMD

Algorithm 2 Comprehensive Screening Algorithm Based
on Kurtosis and Correlation

Data: Dataframe df (N x length) composed of
observation data of n channels

Result: Processed MIMFs

1 initialization;

2 Construct a Gaussian white noise time series

Nos(M x length),

Combine df and Nos into a matrix (M + N)x length);

4 Use the standard MEMD algorithm to process the
composite (M + N) — channel signal to obtain its
corresponding sets of IMF components;

5 For the (M + N) IMFs that were obtained from step 3,
discard the noise corresponding to the M channels;

6 the remaining IMFs of the N channels will then
correspond to the signal that is being separated;

w

algorithm to recover the sources from the mixing matrix
estimate. However, this method is not suitable for multivariate
data processing. Considering that the number of MIMFs is
more than the number of separation targets, if MIMFs directly
use ICA, ICA will reduce the dimension according to the
eigenvalue of the signal covariance matrix, which may cause
MIMFs containing separation targets to be eliminated, thus
causing separation failure. In addition, the number of MIMFs
decomposed by multivariate data is several times that of
univariate data. Considering the more sampling points of
high-frequency data, this will greatly increase the compu-
tational burden. Therefore, it is necessary to perform pre-
liminary screening and dimensionality reduction on MIMFs
before ICA to avoid the loss of useful components. To sum
up, this paper designs a screening algorithm that compre-
hensively considers the kurtosis defined in equation (1) and
the correlation (equation (3)) between signals. The method
first calculates the kurtosis of MIMFs to preliminarily fil-
ter Gaussian white noise, and then calculates the correla-
tion between MIMFs and original/observed signals to further
screen MIMFs. Through this screening algorithm, the origi-
nal signal information can be preserved to the greatest extent
while reducing the dimension of MIMFs, paving the way for
subsequent ICA processing.
The kurtosis of the signal x is calculated as follows:

fart = — "1 D _3—1
ur P y— (n+ )m_%_ (n—1)

1 n
my = - Z (x;i —)_C)k (1
i=1

where 7 is the number of samples and x is the mean, and m
is the k — th central moment of a data sample.
The details of comprehensive screening algorithm based
on kurtosis and correlation are outlined in Algorithm 2.
After MEMD processing, a BSS algorithm (i.e., ICA) is
then used to perform the BSS of the EMR signal. There are
two prerequisites for using ICA to perform BSS:
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input : MIMFs: Combination of IMFs for each
channel;

S — IMFs: By traversing the array to detect whether the

index is in the interval, all non-Gaussian components are

selected;

kurtosis():According to equation (1), return unbiased

kurtosis over requested axis;

hist():Compute and draw the histogram of data;

append(): Append rows of other to the end of data;

corr():Calculate the correlation;

filter():Filter data by specified conditions;

output: SIMFs:Filtered IMFs

Initialize MIMFs,S — IMFs,SIMFs;
kurt < kurtosis(MIMFs);
n, bins <— hist(kurt);
intervals < bins;
foreach the row e of MIMFs do

if kurtosis(e) not in intervals then

‘ S — IMFs.append(e);

end
end
10 By traversing the array to detect whether the index is in
the interval, all non-Gaussian components are selected.
Calculate the correlation between S — IMF's and the
source signals/observation signals.
foreach the row e of S — IMFs do

o X NN R W N -

1

=

1

(5]

13 if corr(e, S) > threshold and n > numbers then
14 elMFs < filter(S — IMFys);

15 SIMFs.append(eIMFs),

16 end

17 end

1

o

perform deduplication and remove components with low
correlation.

1) The source signals must be statistically independent.

2) The source signals cannot be Gaussian signals [11].

While the EMR signals of the shipboard signal sources
are emitted by different equipment, each of these signals will
exhibit the intrinsic EMR of each equipment. The distribution
of the source signals is difficult to determine in advance, and
if the assumed distribution of the traditional ICA algorithm is
far from the real distribution, it may lead to poor performance.
This requires an ICA algorithm that can deal with a wide
range of distributions. The ICA algorithm used in this work
is the ICA-EBM [24], where the maximum entropy bound
is used to approximate the entropy given the observations.
By using a few simple measuring functions, a tight entropy
bound can be determined for sources that come from a wide
range of distributions. In addition, compared to traditional
ICA, ICA-EBM is more attractive due to its superior sepa-
ration performance,reliable convergence, moderate computa-
tional complexity and high flexibility of density matching.
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FIGURE 1. Block diagram of the structure of the MEMD-ICA algorithm.

ICA-EBM may therefore be used to separate the signals of
the IEP systems.

C. THE IMPLEMENTATION OF THE MEMD-ICA METHOD
A block diagram of the algorithmic structure of MEMD-ICA
is shown in Figure 1. This algorithm may be divided into three
steps:

1) The signal with N channels that was acquired by the
sensors is decomposed via MEMD into N sets of IMFs
of equal length.

2) The IMFs are re-ordered, and Algorithm 2 is per-
formed. Herein, a kurtosis interval is defined to discard
the noise component, and correlation threshold is set to
remove irrelevant components.

3) The selected IMF sets are organized to form a new
input signal, X, which is first processed using principal
component analysis (PCA) to reduce the dimensional-
ity of the raw data, thus yielding a dimension-reduced
signal, X. This signal is then passed to the ICA-EBM
algorithm to separate the Y signals from the M inputs.

The details of the MEMD-ICA algorithm are described in
Algorithm 3.

To evaluate the performance of the proposed approach,
MEMD-ICA was tested against EEMD-ICA. Three batches
of experiments on the source separation were performed
using simulated data and real world data from a cruise ship,
respectively. It is necessary to compare MEMD-ICA and
EEMD-ICA theoretically before the simulation test, which
will be helpful to the analysis of the test results. Comparing
with MEMD, EEMD has significant shortcomings as follows:

1) Nonuniformity: EEMD is not likely to yield the

same number of IMFs for every data channel.

2) Scale alignment: There is no guarantee that

same-index IMFs would contain equal scales across
data channels, and variations among distinct channels
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Algorithm 3 The MEMD-ICA Algorithm

Data: Dataframe df (N x length) composed of
observation data of n channels
Result: the estimated source signals S
1 Initialize ICA-EBM: measuring function G(x) = x4,
maximum number of iterations
max_iter = 100,threshold value tol = 0.001,number of
components to use n_components,
Perform Algorithm 1;
Set kurt interval and corr threshold;
repeat
Execute comprehensive screening algorithm listed in
Algorithm 2 ;
Discard noise and uncorrelated components;
until Number of elements in SIMFs = >n_components;
Construct new multivariate signal X;
Perform a standard preprocessing procedure;
10 Calculate ICs via ICA-EBM,;

wm s W N

e e 9

would inevitably result in differences in the extracted
IMFs.

3) Nature of IMFs: Enforcing the same number of
IMFs for every data channel may compromise time-
frequency(TF) estimation, as such IMFs are typically
not monocomponent.

4) Computational complexity: EEMD isamajor
algorithm to robustly perform EMD, at a cost of
increased computational complexity [18].

IIl. SIMULATION VALIDATION

In this section, the noise resistance of the MEMD-ICA algo-
rithm and its ability to handle the indeterminate BSS problem
is examined through simulation experiments. An approach
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upon ensemble empirical mode decomposition and ICA
algorithm(EEMD-ICA), which serves as a comparison for the
evaluation of the MEMD-ICA algorithm, has been described
in [17]. When processing multi-channel observation signals,
EEMD-ICA algorithm decomposes single-channel observa-
tion signals into a set of noise-canceled intrinsic mode
functions, which are sequentially separated by ICA-EBM
algorithm. The simulation validation of our proposed
algorithm involves two aspects:
1) Efficacy of the algorithm with the introduction of noise.
2) Validation of the algorithm’s efficacy in handling the
indeterminate BSS problem, i.e., the number of signal
sources is greater than the number of input signals.

After the MEMD-ICA algorithm realizes the separation
of multiple mixed signals, mean square error (MSE) and
cross-correlation coefficient (CRC) were regarded as the
assessment criteria to quantitatively evaluate the performance
of proposed method.

If §; is the predicted signal value of the i — th sample,
and s; is the corresponding true value, then the mean squared
error (MSE) estimated over ngamples 18 defined as

Nsamples -1

MSE(s, §) = (si — 3)° 2

Nsamples i—o

The CRC between two signals is calculated as follows:

> (x —my) (y - my)
I a—m e v -m)’

where m, is the mean of the signal x and m, is the mean of
the signal y.

Among them, MSE represents the accuracy of signal sep-
aration, and CRC measures the structural similarity and indi-
cates the degree of covariance between the separated signal
and the original signal. Considering that the ICA separation
results are inconsistent with the original signals in amplitude,
itis necessary to standardize the signals before measuring the
separation results.

A. SIMULATION VALIDATION 1

Simulation experiments verify the effectiveness of the
proposed algorithm from two aspects respectively. First, MSE
and CRC are used as indexes to verify the separation of
different types of signals by MEMD-ICA under different
signal-to-noise ratios. Secondly, by adding new source siganl
type, the number of observation channels is smaller than the
number of original signals to simulate the problem of under-
determined blind source separation, and the blind source
separation capability of MEMD-ICA under underdetermined
conditions is tested.

In order to ensure that the simulation experiment is as
close to the complex and changeable actual environment as
possible, this paper improves the scheme that the existing lit-
erature uses a single type of signal with different frequencies
as the original signal, and introduces different types of signals
as the original signal. The original signals used in this part

CRC =

3)
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FIGURE 2. Left: decomposed MIMFs, when the MEMD algorithm is
supplied with the observation signal0(top),signal1(middle), and
signal2(bottom). Right: decomposed EIMFs using the EEMD method with
the same signals.

of simulation include sinusoidal signal, square wave signal
and sawtooth wave signal. In addition, EEMD-ICA is used
as a comparison algorithm to verify the effectiveness of the
proposed MEMD-ICA algorithm.
sinusoidal signal, square wave signal and sawtooth wave

signal were configured as follows:

s1 = sin(2t)

so = sign(sin(3t))

s3 = sawtooth(2mt) “4)

The parameters of this signal are as follows: ¢ is a time
series determined by the number of sampling points N =
2000 and sampling frequency f; = 125 Hz. The sign function
returns —1 ifx < 0,0ifx == 0, 1 if x > 0. The sawtooth
waveform has a period 27, rises from —1 to 1 on the interval
0 to width x 2w, then drops from 1 to —1 on the interval
width x 27 to 2. width must be in the interval [0, 1].

In addition, in order to verify the characteristics of
the proposed algorithm under different signal-to-noise
ratio(SNR),the data of SNR was set from 0.1 to 1.5. For each
type of signal, 50 random interferences at each SNR level are
projected to 50 ““clean” epochs of various types of signals.
The average MSE of 50 simulation tests was calculated.
Afterwards, according to the mixing matrix A, the observed
signals x1, x2, x3 are obtained by linearly combining the
noise superimposed s1, s2, s3, where the mixing matrix A is
as follows:

111
A=[05 2 1 5)
15 1 2

Figure 2 shows the decomposition results of MEMD algo-
rithm and EEMD in time domain, respectively. It is worth
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TABLE 1. Key parameters of EEMD-ICA and MEMD-ICA methods.

Kkurt interval corr threshold ICA-EBM
G(x) | max_iter tol
EEMD-ICA [-0.171,0.216) 0.3 21 200 0.001
MEMD-ICA | [-0.011,0.351) 0.3 x4 200 0.001
MEMD-ICA 1CO EEMD-ICA 1C0
0.04
5.0
0.024
2.54
0.004
0.04
-0.024 254
~0.04 | 5.0
0 2 4 6 8 0 2 4 6 8
Time index Time index
MEMD-ICA 1C1 EEMD-ICA 1C1
5.0
0.024
2.54
0.004 0.04
2.5
0.02 4
5.0
T T T T 7.5 T T T T
0 2 4 6 8 0 2 4 6 8
Time index Time index
MEMD-I1CA 1C2 EEMD-1CA 1C2
0.04 4
5
0.024
0.004 0
-0.02
5]
0.04 4

0 2 4 6 8 0 2 4 6 8
Time index Time index

FIGURE 3. Decomposition results of MEMD-ICA and EEMD-ICA under
SNR =1.5

noting that the multivariate signal has the same number of
decomposition levels after MEMD decomposition, which is
determined by the algorithm characteristics of MEMD, while
EEMD is difficult to ensure the consistency of the decom-
position number of each channel because it decomposes
each channel independently. In addition, it can be seen from
MIMF9 that IMF of the same order has the same character-
istic frequency, while EEMD does not have this characteris-
tic, which is one of the advantages of MEMD over EEMD
in processing multiple input signals. This characteristic is
useful for the retrieval of source signal-containing IMFs,
because the same set of MIMFs have the similar characteristic
frequency, the selection efficiency can be improved when
IMFs component selection is carried out. In terms of modal
aliasing, MEMD decomposition can already see the single
frequency characteristics of signals in MIMF9, which shows
that MEMD has performed well compared with EEMD in
processing multivariate signals although there is still a certain
degree of modal aliasing.

After that, the IMFs are screened according to Algorithm 2,
and the key parameters used in EEMD-ICA and MEMD-ICA
are listed in Table 1. The decomposition results of
MEMD-ICA and EEMD-ICA under SNR = 1.5 are shown
in Figure 3. By comparing MEMD-ICA with EEMD-ICA,
it may be observed that MEMD-ICA decomposition can solve
the mode aliasing problem caused by using MEMD decom-
position alone. It is qualitatively proved that MEMD-ICA
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algorithm is more suitable for blind source separation of
multi-type noisy signals than EEMD-ICA.

In addition, Frequency spectra mixing tends to occur when
MEMD is used to decompose multivariate signals because the
MEMD algorithm is sensitive to noise [22]. Therefore, noise
reduction preprocessing is necessary when MEMD is used
to process multivariate signals. However, since kurtosis and
correlation-based filtering and ICA-EBM post-processing
were incorporated in the proposed MEMD-ICA algorithm,
this algorithm can be used to separate signal sources without
noise reduction preprocessing. This is also one of the major
advantages of the proposed algorithm.

The above qualitatively compares the two algorithms in
dealing with the problem of multi-type noisy blind source
separation. Next, we will quantitatively separate the changes
of performance indexes of the two algorithms under differ-
ent SNR. MSE and CRC of MEMD-ICA and EEMD-ICA
separation results with original signals under different SNR
are shown in Figure 4. First of all, from the index NMSE,
when the SNR is low, the separation effect of MEMD-ICA
and EEMD-ICA is similar, but with the increase of SNR,
the NMSE of MEMD-ICA decomposition results decreases
faster and is always smaller than that of EEMD-ICA.
Although the changes of different types of signals are differ-
ent, the general trend of the three types of signals is the same.
Then, we compare the CRC index of the two algorithms. First
of all, the CRC index of the two algorithms is increasing
with the increase of signal-to-noise ratio, and the CRC index
of MEMD-ICA is always better than that of EEMD-ICA.
From the point of view of signal type, MEMD-ICA has
greater advantages than EEMD-ICA in separating square
wave signals.

To sum up, the separation effect of MEMD-ICA is better
than that of EEMD-ICA both qualitatively and quantitatively,
and MEMD-ICA has its own unique advantages in processing
some special signals such as square wave signals.

B. SIMULATION VALIDATION 2

To verify the effectiveness of the proposed MEMD-ICA
algorithm in handling the indeterminate BSS problem,
A Frequency-swept cosine generator is added to the source
signals of simulation verification 1 to generate a chirp signal
as a new source signal, which was configured as follows:

s4 = chirp(t, f0, f1, t1, method = “linear”) (6)

The parameters of this signal are as follows: fy =6 Hz,
fi =1 Hz,t; = 8s, t is a time series determined by the
number of sampling points N = 2000 and sampling fre-
quency fy = 125 Hz. Where f0 and f 1 represent frequencies
(e.g. Hz) of the generated signal at 0 and 1, respectively. The
method = “linear”(e.g. f(£) = fO+ (f1 — f0) x t/¢1) gives
the instantaneous frequency (in Hz) of the signal generated
by chirp().

Based on the configuration of the simulated signal,
the observation signals xi, x2,x3 are linear combinations
of four signal sources, where the mixing matrix A was
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FIGURE 4. MSE and CRC of MEMD-ICA and EEMD-ICA separation results with original signals under different SNR.

TABLE 2. Key parameters of EEMD-ICA and MEMD-ICA methods.

. ICA-EBM
kurt interval corr threshold GX) | max_iter o
EEMD-ICA [-1.386,0.680) 0.3 2t 200 0.001
MEMD-ICA | [-0.041,0.103) 0.3 zt 200 0.001
configured as follows:
1 1 1 1
A=|(05 2 1 1 @)
1.5 1 2 1

If ICA-EBM is directly used to process this signal, four
signal sources have to be separated from three input sig-
nals. This is therefore an indeterminate problem and it is
difficult to obtain ideally separated signals using ICA alone.
According to the proposed MEMD-ICA algorithm, the first
step of the algorithm is to complete MEMD decomposition
of the simulated signals. Next, the kurtosis and correlation
for each component are calculated. After the first four sets
of IMFs were combined to form a new multivariate input
signal. The new input signal was then processed using the
ICA-EBM algorithm. the key parameters used in EEMD-ICA
and MEMD-ICA are listed in Table 2.

Different from the simulation verification 1, this part sim-
ulates the underdetermined blind source separation problem
by adding new noise types to make the number of observation
channels smaller than the original signal number, and tests
the blind source separation capability of MEMD-ICA under
underdetermined conditions. Similarly, this section also uses
MEMD-ICA and EEMD-ICA to process the same signal
respectively, so the process results will not be discussed again
here. This part only analyzes the final separation results,
and CRC and MSE are still used as measurement indexes
for the two algorithms. The results are shown in Figure 5.
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FIGURE 5. Measurement indexes for the MEMD-ICA and EEMD-ICA
algorithms.

As far as MSE index is concerned, in general, that MSE of
the MEMD-ICA separation result and the original signal of
each channel are always lower than that of the EEMD-ICA
separation result, but they are still very close, except that
the MSE of the MEMD-ICA for s3 is lower. This shows
that MEMD-ICA has more advantages than EEMD-ICA in
dealing with sawtooth waves. In contrast, the correlation
between MEMD-ICA and EEMD-ICA is higher than that of
EEMD-ICA in terms of CRC index, and even the correlation

between EEMD-at s4 is lower than 0.8, which indicates that

the decomposition of s4 by EEMD-ICA has been seriously
deformed. No matter from which index, MEMD-ICA is more
suitable than EEMD-ICA to deal with underdetermined blind
source separation.

Similarly, this part also compares the separation effects of
the two methods from a qualitative point of view, as shown
in Figure 6. It can be seen from the figure that the s3
separated by EEMD-ICA has been seriously deformed,
which is consistent with the results of quantitative analysis.
On the other hand, the separated s3 of MEMD-ICA is also
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FIGURE 6. Instantaneous spectrum of the MIMFs and EIMFs components of channel 0.

consistent with the quantitative analysis result, which basi-
cally coincides perfectly with the s3 of the original signal.
This shows that MEMD-ICA is very suitable for process-
ing time-varying signals, which is also consistent with the
application environment in this paper.

To sum up, MEMD-ICA has better performance than
EEMD-ICA in dealing with underdetermined blind source
separation. Of course, the conditions set by the simulation
test are relatively simple after all, which is far from being
compared with the complex electromagnetic environment in
the actual test environment. Therefore, it is necessary to
verify the processing effect of MEMD-ICA on the actual test
signal in the next part.

IV. PRACTICAL VALIDATION IN AN ACTUAL SHIP

After validating the MEMD-ICA algorithm in simulations,
it was necessary to validate the algorithm in a practical
environment (i.e., in a ship) since the simulation validation
only provides theoretical proof of the algorithm’s utility. Real
shipboard EMR environments are much more complex and
subject to interference due to a variety of sources of noise.
In this section, the proposed MEMD-ICA algorithm will be
used to process the data acquired from actual ship measure-
ments, to prove the efficacy of the algorithm in practical
applications.

The tests were performed on the propulsion system of a
cruise ship as shown in Figure 7. EMR data was collected
from its generators, control room switchboards and frequency
converters. The system that was used to record the EMR
measurements is shown in Figure 8. The measurement system
contained three embedded NI PXIe-5624R digitizers, and
the EMR signals were acquired using three measurement
antennas. In this figure, it is shown that there are many
sources of EMR in the shipboard environment. The signals
from equipment in this space are most likely coupled with
each other, and it is difficult to obtain a priori knowledge
on their EMR characteristics. Furthermore, it is very likely
that the antennas will be subjected to environmental noise
during the operations of the cruise ship. Therefore, the testing
environment in cruise ships is a classic blind multichannel
source separation problem.

VOLUME 8, 2020

FIGURE 7. The cruise ship where the actual ship tests were conducted.

FIGURE 8. Photograph of a testing site inside the cruise ship.

Figure 8 also shows that three antennas were used in the
EMR measurement system. The reason for this is because:

1) It was not possible to use more antennas due to space
limitations.

2) Three antennas provide sufficient information on
the EMR of the electrical equipment. One of the
advantages of the proposed algorithm is its abil-
ity to separate the EMR signals emitted by several

191349



IEEE Access

S. Liu et al.: Method for Blind Source Separation of Multichannel Electromagnetic Radiation in the Field

FIGURE 9. Measurement of the EMR signals from four generators that
were operated at their rated condition.

equipment using a relatively small number of hardware
devices.

The EMR data measured from four actual ship gener-
ators were used to validate the efficacy of the proposed
MEMD-ICA algorithm. The conditions were selected to
ensure that there were four well-defined signal sources. As a
comparison method, to verify the validity of the proposed
algoritm, the EEMD-ICA will also process the same sig-
nals synchronously. Furthermore, the requirements of this
experiment for high levels of noise interference and inde-
terminacy were fulfilled by the intense environmental noise
that is always present in the generator cabin. The sampling
parameters were configured as follows: sampling frequency

s = 2GSa/s, memory depth N = 4M, sampling time
% y g
t = % = giiggs = 2ms. The measurements were performed

when the cruise ship was operating at its rated condition.
The layout of the measurement system and its antennas is
illustrated in Figure 9. The gap between the antennas was
2.5 m, and each antenna was placed at a height of 1.5 m. The
three antennas were arranged in a straight line.

Figure 10(a) respectively show the magnitude spectrum
of the EMR signals acquired using Antenna 1,2,3 and the
coherence between channels. By comparing the EMR signals
that were obtained from the three antennas, it was determined
that the EMR signals produced by the generators at their rated
condition cover a broad range of frequencies, and the EMR
signals obtained by each antenna differ significantly from
each other. From the coherence between channels, it can be
seen that the common components between signals of each
channel are roughly understood, and the frequency points
with coherence above 0.8 are collected in Figure 10(b). This
result is caused by couplings between the EMR signals of
the four generators. The proposed MEMD-ICA algorithm
was then used to separate the EMR signals of each generator
from the mixed EMR signals that were collected by the three
aforementioned antennas (channels).

According to the proposed algorithm and EEMD-ICA,
MEMD decomposition and EEMD were respectively applied
to the mixed EMR signals that were collected via three

191350

channel0 ch0-ch1
P 1.00
% e 80.75
» ~100 % .
g 125 _{‘:L’ 0.50
E:o -150 80.25
=-175 0.00

0.00 0.25 0.50 0.75 1.00
1e9

0.00 0.25 0.50 0.75 1.00

1e9

Frequency (Hz) Frequency (Hz)

channe |1 ch0-ch2
1.00

80.75

5

5 0.50

<

3025
0.00

-100
-125
-150
-175

Magnitude (dB)

0.00 0.25 0.50 0.75 1.00
Frequency (Hz) Te?

channe 2 ch1-ch2
1.00

80.75

5

5 0.50

2
5025

0.00 0.25 0.50 0.75 1.00
Frequency (Hz) Te?

=75
-100
-125
-150
-175

Magnitude (dB)

00+, : : T T
0.00 0.25 0.50 0.75 1.00
Frequency (Hz) 1e9

0.00 0.25 0.50 0.75 1.00
Frequency (Hz) 19

(a) Magnitude spectrum of the EMR signals for each channel
and coherence between Channels.

Distribution of frequency points with coherence above 0.8 between two channels

0.9680.9700 o0,

Coherence

0.02 421.86 421.88 421.90 421.92
2

(b) Distribution of frequency points with coherence above
0.8 between two channels.

FIGURE 10. The magnitude spectrum of the observation channel,
the coherence between the two and the key frequency points.

observation channels(OCs). The results are shown in
Figure 11. In this figure, it is shown that the actual signals
are mixed with multifrequency source signals; consequently,
the decomposition levels of the MEMD algorithm are much
more complex in this case compared to the simulation vali-
dations. Nonetheless, a vertical comparison reveals that com-
paring with EIMFs, MIMFs still have similar time domain
waveforms. Hence, the MIMFs of the same order generally
contain the same information about the frequencies of the
source signals. Furthermore, this paper calculates the instan-
taneous frequencies of MIMF9-15 and EIMFs components of
channelO respectively, as shown in Figure 12. From the figure,
it can be found that the decomposition results of the last
layers of MEMD no longer have instantaneous frequencies,
while the corresponding parts of EEMD still contain more
instantaneous frequencies.Therefore, compared with EEMD,
MEMD has more advantages in dealing with complex and
changeable signals.

Next, according to the proposed algorithm, the kurtosis
is calculated and the distribution histogram is drawn in
Figure 13 to eliminate the Gaussian component. It is note-
worthy that the kurtosis O corresponds to the Gauss distri-
bution. Components far from the Gauss distribution contain
more source signal information. Afterwards, the correlation
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FIGURE 11. Left: decomposed MIMFs, when the MEMD algorithm is
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channel2(bottom). Right: decomposed EIMFs using the EEMD method
with the same channels.

between the remaining components and the observation chan-
nels is calculated, and the distribution histogram is drawn
in Figure 14.

According to a preset threshold, the proposed algorithm
eliminates the components with low correlation. With this,
the Gaussian noise in the MIMFs and the EIMFs and the
components independent of the original signal are all filtered
out. Subsequently, they form a new input signal matrix for
subsequent ICA-EBM. Here, the parameters of the ICA-EBM
are consistent with Table 2. After completing the above steps,
the proposed algorithm realizes the separation of the observa-
tion signals of the four generator sets, and the spectrum of the
separation results is shown in Figure 15.

Considering that the EMR signals of the generator set itself
can not be obtained in the field test environment, it is impossi-
ble to directly calculate MSE and CRC of the original signal
between ICs as performance evaluation indexes. this paper
intends to prove the effectiveness of the proposed algorithm
from three aspects:

1) Compare the performance indexes of MEMD-ICA and

EEMD-ICA.

2) Qualitative analysis of the relationship between
ICs and key frequency points of observation chan-
nels(Figure 10).

3) Compare the correlation of time and frequency domain
between ICs channels.

Firstly, Considering that each source signal is a com-

ponent of the observation signals, so ICs must have a
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components of channel 0.

high correlation with the observation signals. Of course,
because there are other components in the observation sig-
nal, their correlation will not be too high, but it is suffi-
cient as an evaluation index. Based on the above analy-
sis, We drew separately correlation between MEMD-ICA
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TABLE 3. Comparison of EEMD-ICA and MEMD-ICA methods.

IMFs Correlation (IMFs and OCs) S-IMFs Correlation(ICs and OCs) kurt interval corr threshold | wall time ‘
sl s2 s3 sl s2 s3
EEMD-ICA 21 0.7127 | 0.7237 | 0.7189 6 0.7352 | 0.5567 | 0.5602 | [-0.056,0.219) 0.4 Imin 39s
MEMD-ICA 45 0.7571 | 0.7562 | 0.7575 7 0.7742 | 0.7725 | 0.7093 [-0.042,0.081) 0.4 46s
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FIGURE 14. Comparison of correlation coefficient distribution between
MIMFs, EIMFs, and observation channels.

and EEMD-ICA separation results and OCs under different
thresholds, as shown in Figure 16. Comparing the decompo-
sition results of EEMD-ICA and MEMD-ICA horizontally,
the correlation between the decomposition results and each
observation channel is higher, which proves the advantages of
the proposed algorithm over the existing algorithms. From the
decomposition results of MEMD-ICA itself, the IMFs begin
to decrease with the increase of the threshold, and the cor-
relation between the decomposition results of MEMD-ICA
and the original channel gradually increases, which proves
that the accuracy of the decomposition results is effectively
improved through comprehensive screening algorithm. As a
summary, Table3 shows the separation performances and
process parameters for The EMR data measured from four
actual ship generators using MEMD-ICA, and EEMD-ICA
methods,where the MIMFs and EIMFs were selected based
on Figure 13 and 14 and the selection of threshold. It is
worth noting that comparing the wall time of the two algo-
rithms, we can see that EEMD-ICA has higher computational
complexity.

Secondly, from the angel of qualitative analysis, the
separation results in Figure 15 include the key coherent
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FIGURE 15. Frequency-domain waveforms of the EMR of each generator.
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FIGURE 16. Correlation between MEMD-ICA and EEMD-ICA separation
results and observation channels under different thresholds.

frequency (Figure 10 (b)) points of the observed signals.
which proves that the separation results are all related to the
source signals.

Third, the correlation coefficient of the separation results is
calculated and the results are plotted as Heatmap(Figurel7).
The correlation coefficients of different /Ci in the figure are
very low(approximately 10~%), which proves that different
ICs are irrelative in time domain. Furthermore, as shown
in Figurel8, it can be seen that although there is correlation
between ICs at individual frequencies, the maximum value
of correlation is below 0.5, indicating that ICs are not cor-
related with each other in the frequency domain. Thus, it is
proved that the ICs are uncorrelated in both time domain and
frequency domain.

To sum up, ICs contain the frequencies of the source
signals and is independent of each other, so the separation
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results can be proved to be correct. So far, this paper has real-
ized the goal of synchronously separating electromagnetic
radiation source signals from observation signals of different
channels. Considering that the number of observation chan-
nels (3) is less than the number of source signals (4), this
proves that our proposed algorithm can solve the problem of
underdetermined blind source separation in complex field test
environment. It is of great significance to accurately separate
the source signals of electromagnetic radiation equipment
from complex observation signals in the field environment
for equipment fault diagnosis, electromagnetic compatibility
test and monitoring of equipment operation status.

V. CONCLUSION

In this work, a method for synchronous multichannel EMR
signal BSS was proposed to resolve the problems of ship-
board EMR testing, i.e., high noise levels, mode mixing, and
indeterminacy. As shipboard EMR signals are non-stationary
and contain high levels of noise interference, MEMD was
used in combination with ICA to separate these signals, while
kurtosis was used as the criterion for IMF selection. Simu-
lations and actual ship-based validations were performed to
verify the efficacy of the proposed MEMD-ICA algorithm.
The experimental results demonstrate that this algorithm is
not affected by the mode mixing problems associated with
MEMD decomposition and can perform BSS in the presence
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of strong noise interference. The proposed algorithm has high
practical value as it is suitable for EMR testing in large
equipment systems like ships, aircraft, spacecraft and national
defense systems. However, there are certain limitations in the
implementation of this algorithm. Since a large amount of
EMR signal data was collected during the shipboard mea-
surements, the MEMD-ICA algorithm required a long com-
putational time. In our future work, we will further optimize
the MEMD-ICA algorithm to enable its use in real-time
shipboard EMR testing.
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