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ABSTRACT In obstetrics, ultrasound is used for assessment of fetal development during pregnancy. The
images generated by ultrasound are used to obtain measurements of fetal head length, body size, and the
analysis of fetal movements, to identify and prevent the onset of congenital disease. This work presents
the development of a new method for the segmentation of two-dimensional ultrasound images of fetal
skulls based on a V-Net architecture called Fully Convolutional Neural Network - Combination (VNet-c).
We created a new combination of strategies using a 3D V-Net as base, such as pre-processing, use of
Batch Normalization and Dropout, and evaluation of distinct activation layers, activation function, data
augmentation, loss function, and network depth. The computational results reveal the feasibility of the
proposal in the correct segmentation of fetal skulls and head circumference measurements, reaching up to
97.91% of correctness, overcoming states-of-the-art methods.

INDEX TERMS Convolutional neural networks, deep learning, fetal skull, measurement.

I. INTRODUCTION
Ultrasound is a pathology diagnosis method that uses ultra-
sonic waves for real-time imaging. Due to its noninvasive and
non-radioactive nature and reduced cost compared to other
imaging forms such as CT or MRI, it is the choice for many
clinical applications [1], [2]. This technique assists in the
medical diagnosis in several areas such as obstetrics, gynecol-
ogy, ophthalmology, neurology, and cardiology. Besides that,
it is used as a standard tool in therapeutic procedures [3].

In obstetrics, ultrasound is widely approached for the
assessment of fetal development during pregnancy. The
images generated by the ultrasound equipment are used by
specialists to obtain measurements of fetal head length, body
size, and the analysis of their movements, to identify and
prevent the onset of congenital disease [4].

The main measures to evaluate fetal development are
head circumference (HC), biparietal diameter, abdominal
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circumference, femur length, and humerus length [5]. The
calculation of these values is performed by specific mathe-
matical functions, helping the specialist estimate the fetus’s
gestational age and weight [6].

In practice, the delimitation of the area to be measured is
done manually by an obstetrician. This process requires spe-
cialized knowledge and is a dull and time-consuming process
[7]. Also, the contour extraction of the forming bones and
organs is influenced by the experience of the evaluator [8].

In this regard, to facilitate such a process and assist in
analyzing of the results, automatic image segmentation and
measurement techniques are natural candidates [8]. However,
ultrasound remains a challenging task because the generated
image may present various intensity distributions due to dif-
ferent acquisition conditions. Besides, a series of noise, such
as acoustic shadows, speckle noise, and low contrast, can
make border recognition difficult [2], [8].

Among the various image segmentation techniques found
in the literature, Convolutional Neural Networks (CNN) has
proven effective [9]. It is an architecture based on the structure
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of the mammalian visual cortex, which has become popular
and successful in many tasks, as visual recognition and object
detectionFaster-RCNN [10], image classificationGoogLeNet
[11], and image segmentation [12].

In this sense, this work proposes developing a new
method for the automatic segmentation of fetal skulls in
two-dimensional (2D) ultrasound images. The proposed
method is called Fully Convolutional Neural Network Com-
bination (VNet-c), and it is based on the original V-NET to
recognize and measure the circumference of the fetal skull.
We used quantitative methods based on negative and positive
rates to evaluate the performance of the developed method.
A comparative analysis with some related works reveals the
capacity to outperforming other segmentation techniques.

The main contributions of this paper are the improvement
of original VNet version adding a bunch of adaptations such
as pre-processing, use of Batch Normalization, change in
layer and function of activation, dropout application, use
of data augmentation, change in loss function and net-
work depth, besides that we use a important step of post-
processing. With that, we achieved better performance that
is proved in Section V.

The rest of this article is organized as follows: in Section II,
we show a review of the related works that use a Convo-
lutional Neural Network to solve segmentation problems.
Section III describes the background developed in this study.
Next, in Section V we detail the proposed method and pro-
vide an analysis regarding the experimental results. Finally,
the conclusion and future works perspective are shown in
Section VII.

II. RELATED WORKS
Due to the relevance of the measures to evaluate fetal devel-
opment problems, many recent investigations have addressed
improvements in the segmentation of fetal organs and bones
in two-dimensional ultrasound images. Li et al. [13] pro-
posed using of a Fully Convolutional Neural Network (FCN)
with an Encoder-Decoder structure for automatic segmenta-
tion of amniotic fluid and fetal tissues. They addressed 2D
ultrasound images at different points of view and arbitrary
positions.

The work from Sundaresan et al. [14] used a FCN to auto-
matically localize the fetal heart in ultrasound (echocardiog-
raphy) video frames and classify them as belonging to one of
three standard visualization planes, namely: left ventricular
outflow, three-vessel view, and four-chamber view of the
heart. Their primary objective was assisting the identification
of cardiac anomalies and congenital heart disease.

In 2017, Wu et al. [15] proposed a customization in the
FCN, naming it as FCN cascade (casFCN) for fully automatic
segmentation of the fetal skull and abdomen. According to the
authors, the network was successful used to exploit feature
extractions from multiple visual scales and distinguish the
anatomy with a dense prediction map.

In 2018, Sinclair and collaborators [16] used a FCN
and Ramanujan Approximation II [17] for segmentation and

FIGURE 1. Schematic representation of FCN network architecture
proposed by Long; Shelhamer; Darrell (2015) [12].

automatic measure of head circumference and biparietal
diameter in 2D ultrasound images. Heuvel et al. used a Ran-
dom Forest Classifier (RFC) to locate fetal skull throughout
Haar-like features computed from ultrasound images [18].

The work from Sobhaninia et al. [19] proposed a
deep multi-task network based on the structure of the
Link-Net network, introduced by Chaurasia and Culurciello
[20], for segmentation and measurement of fetal skulls in
two-dimensional ultrasound images.

Recently, in 2020, Sobhaninia and colleagues [21] pre-
sented a CNN multiscale based approach to localize the
fetal head region in US imaging. Qu et al. also used a
CNN-based method for the identification of fetal brain
ultrasound. They proposed a differential convolutional neu-
ral network (differential-CNN) to identify six fetal brains
automatically [22].

Wang et al. [23] published a review article of deep-
learning-based methods for ultrasound image segmenta-
tion. They analyzed and summarized several algorithms, the
performance of the methods, and their evaluation results.

III. FULLY CONVOLUTIONAL NEURAL NETWORK
Created by Long, Shelhamer, and Darrell in 2015 [12],
the Fully Convolutional Network (FCN) presents similarities
with the traditional Convolutional Network (CNN). However,
in the FCN architecture, the fully connected layer, typically
used for classification, is replaced by another convolution
layer with a large ‘‘receptive field’’ used to classify each pixel
of an image. The idea is to capture the overall context of the
scene, i.e. to define which objects are in the image, and where
they are located.

Figure 1 presents the architecture of a generic FCN used
for the semantic segmentation task, that is, classifying each
pixel of the input image according to the class it belongs to:
cat, dog, sofa, window, or background.

According to the architecture presented in Figure 1, several
convolution layers produce feature maps of different depths.
At the end of the network, there is the pixel-wise prediction,
which is also a type of convolution layer that makes a pixel-
by-pixel prediction, that is, it assigns each pixel to a respective
class. In this example, the pixel-wise prediction size is 21 due
to the existence of 21 distinct classes in the dataset.

Usually, the architecture of an FCN network can be divided
into two main parts:
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FIGURE 2. Schematic representation of the V-Net architecture proposed by Milletari, Nava, and Ahmadi [24].

• downsampling path: reduces image size using pooling
steps;

• upsampling path: is the opposite of pooling layers.
In its simplest form, it returns the image to its original
resolution.

The FCN is widely used for image segmentation because
this architecture can segment the network input and simul-
taneously classify it, without the use of other technique for
sectioning the image.

A. V-Net FULLY CONVOLUTIONAL NEURAL NETWORK
Created by Milletari, Navab, and Ahmadi in 2016, the V-Net
Fully Convolutional Neural Network is designed for segmen-
tation of three-dimensional (3D)magnetic resonance imaging
of the prostate [24]. This architecture performs convolutions
to extract data characteristics, which can be described in
two parts, the left part (compression) and the right part
(decompression), as summarized in Figure 2.

The left part consists of a compression path. This side is
divided into different stages operating at different resolutions,
and these stages present one to three convolutional layers.
As can be noted in Figure 2, the convolutions at each stage use
volumetric kernels with 5×5×5 voxels. As data proceeds at
different stages along the compression path, its resolution is
reduced. This is accomplished by convolutions with 2×2×2
wide kernel voxels and using a stride of 2.

Figure 3 presents an example of the operation of an FCN.
In Figure 3(a), for each operation, the size of feature maps
is halved. This strategy has a similar purpose to pooling
layers (not used in this network). The authors also applied
the PReLU activation function, proposed by He et al. [25],
across the network. The downsampling technique is also
addressed to reduce the signal size presented as input and

FIGURE 3. (a) Example of convolution using a 2 × 2 × 2 kernel and stride
of 2, (b) example of de-convolution using a 2 × 2 × 2 kernel and stride
of 2.

increases the receptive field of the characteristics, being com-
puted in the network layers. Each of the stages on the left side
of the network calculates several characteristics that are twice
as large as the previous layer [24].

The right side of the network extracts the features and
expands the low-resolution feature maps to gather and to
assemble the information needed to perform the segmen-
tation. After each step, a convolution operation is used to
increase the output size, as shown in Figure 3(b), followed by
one to three convolutional layers involving half the number of
5×5×5 kernels resulting from the previous layer. At the end,
the two feature maps computed by the last convolutional layer
are 1 × 1 × 1 kernel size and produce outputs the same size
as the input volume. These are processed through a Softmax
layer that generates the probability of each voxel belonging
to the background or foreground [24].

IV. PROPOSED ARCHITECTURE: VNet-C
We propose a new architecture for automatic segmentation of
fetal skulls in two-dimensional (2D) ultrasound images, and
to recognize and measure the circumference of fetal skulls,
the Fully Convolutional Neural Network - Combination
(VNet-c). We created a solution using as base the V-Net
FCN, including eight steps and techniques that can work
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FIGURE 4. Steps addressed to apply the proposed VNet-c architecture.

together to improve the accuracy in measuring the head
circumference.

We present in the flowchart of Figure 4 the steps involved
in the application of VNet-c: acquisition of the dataset,
pre-processing dataset, the definition of the better combi-
nation of the V-Net network based on some adjustments,
post-processing of segmentation, implementation of the
algorithm to calculate the HC and evaluation of the results.

To elaborate the VNet-C, many adaptations were per-
formed in the original V-Net 3D introduced byMilletari et al.
[24]. The first is to change the network to receive 2D inputs,
modifying the cost function, output layer, and activation
functions.

A new pre-processing phase was introduced in this work.
This step initially reduces the resolution of the original
images to decrease the computational cost. After, we cre-
ated an algorithm to fill the images, making them solid
ellipses.

The network has been deepened, including more stages,
to improve its learning capacity and implicit analysis of
the characteristics. However, a deeper network necessarily
increases the number of trainable parameters and may lead to
an overfitted configuration [26]. To prevent this undesirable
behavior, we added the Dropout mechanism [27], and we
propose the use of Data Augmentation to create new input
patterns, using techniques such as rotation and translation
[28]. Batch-normalization was also addressed because it has a
regularization effect and makes the most model more robust.
Also, its application accelerates the learning process [11].

An unprecedented post-processing stage was also imple-
mented to correct defective output images. The new algorithm
generates ellipses, fitting them in the contours.

It is important to mention that we evaluated the use of
distinct activation functions in the hidden layers and in the
output layer. The final choice was the use of ELU function
(intermediate layers) and hard sigmoid (in the last layer).

Many empirical adjustments we performed until we
defined the final configuration of the VNet-c. The choices
that guide our proposal are detailed in the next sections.

V. VNet-C ADAPTATION
In this Section we present in detail the steps involved in
the development and application of the VNet-c to measure
fetal skull using ultrasound images. Initially, we describe
the database addressed, and the performance metrics used
to evaluate our choices. After, we present the new pre and
post-processes schemes, as well as the formative stages of the
model.

FIGURE 5. Representation of ultrasound images and ground truth
contained in the dataset.

A. ACQUISITION OF DATASET
In this work, we addressed the dataset of the HC18 challenge,
which was provided by Heuvel and collaborators [18]. Each
image set is composed of 1,334 grayscale 2D ultrasound
images, with a resolution of 800 × 540 pixels. To adjust
the FCN, we use 999 samples, and other 297 are utilized
for testing. The training set presents a ground truth image,
a manual annotation of the head circumference performed by
a trained sonographer. Figure 5 illustrates some of the images
present in the training dataset, in which (a)-(c) are three
2D ultrasound images, and (d)-(f) their respective ground
truth.

The HC18 challenge did not provide the ground truths
of the test for outcome evaluation. Therefore, we randomly
selected 297 images from the 999 of the training set (approx-
imately 30%), with their respective pre-filled ground truths
to make comparison possible. The results obtained by the
network allowed the design of improvements in the architec-
ture, leading to a segmentation closer to that specified by the
specialist.

B. PERFORMANCE METRICS
To quantitatively evaluate the performance of fetal skull seg-
mentation obtained by the proposed network, four metrics are
addressed:
• precision: this metric measures the total of positive
ground truth pixels (tp) that are also considered positive
by segmentation, divided by the total number of pixels
identified as belonging to the positive set (the sum of
true positives (tp) and false positives (fn), which are
the incorrectly labeled pixels set). Precision is given by
Equation 1:

precision :
|tp|

|tp| + |fn|
(1)

• accuracy:The accuracy is relative to the correct answers
in the classification. It is the sum of true positives
and true negatives (tn) divided by the whole outputs,
or the sum of the true positives (tp), true negatives (tn),
false positives (fp), and false positives (fn). This metric
shows how the classifier has fared out [29]. accuracy i
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FIGURE 6. Result of filling in the ground truth.

given by Equation 2:

accuracy :
|tp| + |tn|

|tp| + |tn| + |fp| + |fn|
(2)

• dice: dice Similarity Coeficient (DSC) [30] is defined
as the intersection between two regions G and A, where
|G| is the ground truth, and |A| is the image segmented
by the algorithm. The symbol ∩ means the intersection
of these two binary masks (sets), divided by the average
volume of these two regions [31]. It can be expressed in
therms of (tp), (tn), (fp), (fn), as in Equation 3:

dice :
2|G ∩ A|
|G| + |A|

=
2(tp)

(tp+ fp)+ (tp+ fn)
(3)

• Jaccard: Jaccard Similarity Coefficient (JSC) is defined
as the intersection between two regions G and A, being
G the ground truth and A the image segmented by the
algorithm. Again, the symbol ∩ represents the inter-
section of these two binary masks, being divided by
their union, given by the symbol ∪ [31]. The Jaccard
similarity coefficient is given by Equation 4:

Jaccard :
|G ∩ A|
|G ∪ A|

=
tp

tp+ fp+ fn
(4)

C. PRE-PROCESSING
In this step two changes were made to the original dataset:
first, the image size was reduced to a resolution of
512 × 512 pixels to decrease the computational cost of the
training. The second was performed on ground truth images,
and an algorithm was created to fill the 999 images, making
them look like solid ellipses (Figure 6).

These modifications were necessary because some result-
ing ellipses from the segmentation presented incomplete
edges. It makes impractical to accurately calculate the ellipse,
as there is no way to delimit the missing area.

D. VNet-C DEFINITIONS
The network used for segmentation is an adaptation of the
original V-Net 3D designed by Milletari et al. [24]. The
source code is available for the segmentation of 2D images1.

1https://github.com/FENGShuanglang/2D-Vnet-Keras

TABLE 1. Performance and number of epoch and steps during V-Net
training.

FIGURE 7. Initial results obtained by the network.

The network was built using the Keras2 library, and Tensor-
flow was used as a backend with cuDNN for GPU network
processing. The machine configuration used for the experi-
ments was an Intel(R) Core(TM) I7-3370K processor, 8GB
RAM, and a 6GB NVIDIA GeForce GTX TITAN graphics
card.

Initially, basic changes were made to the execution of the
FCN. As mentioned, we use images in 512× 512 resolution.
The network was trained using distinct numbers of epochs
(ep) and steps (st) to find adequate values of these free
parameters. Table 1 presents the results obtained considering
precision, accuracy, dice, and Jaccard metrics considering the
segmentation obtained by the FCN in the different training
times, and the total execution time, according to the machine
configuration used.

The evaluation of the segmentation indicates that the
best result was obtained with 1000 steps and 300 epochs.
We adopted these values as a standard for network training.
Although the FCN achieved good results, Figure 7 illustrates
three failed segmentations obtained by the net in 300 training
epochs.

It can be seen in Figure 7 the results of the segmentation in
(a)-(c) are inefficient compared to their ground truth (d)-(f).
This inefficiency is related to overfitting, which is a term used
to indicate that a model was overtrained. The consequence is
that the model fits well with the previously observed dataset
but is not effective in predicting outcomes outside of the
training set. To improve the model’s performance and reduce
overfitting, some changes were made, as described below.

1) USE OF BATCH NORMALIZATION
The technique known as Batch Normalization (BN) was
developed by Ioffe and Szegedy [32] to deal with

2https://keras.io/
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TABLE 2. Performance and number of epoch and steps during V-Net
training.

TABLE 3. Comparative performance of the batch normalization
positioning.

TABLE 4. Performances regarding the type of activation function used in
the last layer.

initialization problems on CNN. A factor that hinders the
training is the values of the previous layers’ activation func-
tions, which are always changing. In this sense, BN normal-
izes the output of an activation layer to follow a Gaussian
distribution, which leads to an acceleration in the network
learning process.

Although this technique was not described in the original
3DV-Net [24], it was applied to the 2DV-Net network. In this
case, we analyze the performance during the training with
and without the BN technique. The values of the metrics are
in Table 2.

According to the superior results of precision, accuracy,
dice, and Jaccard shown in Table 2, the use of BN is an
advantage.

Another point evaluated was the positioning of the BN
in the arranged code, since it is often applied before the
PReLU activation function. However, the works [33] dis-
cusses changes in the position of using BN. Therefore,
we tested if use the BN after PReLU could improve net-
work performance. Table 3 shows the values obtained by the
metrics in this regard.

Table 3 indicates that the use of BN after the PReLU
function improved the performance of the segmentation. This
change was aggregated in the network architecture.

2) CHANGE IN ACTIVATION LAYER
The last layer of an FCN has the important task of generating
the probability that each pixel of the output image belonging
to the background or foreground. The V-Net [24] in its origi-
nal version, uses the softmax function. However, in the V-Net
2D network used as a base, the use of sigmoid function was
employed. A comparative analysis is performed using other
functions in the last layer, the softmax, and hard_sigmoid. It is
noteworthy that the tests were applied to the network already
with the changes imposed in the previous topics.

Table 4 expresses the results obtained between the seg-
ments obtained according to the activation function used in
the last layer.

As shown in Table 4, it was not possible to make com-
parisons between the segmentations obtained by the network

TABLE 5. Performances achieved for distinct activation functions.

TABLE 6. Performances achieved for distinct activation functions.

with the softmax function due to the low accuracy rate during
their training. However, with the use of the hard_sigmoid
function, there was a slight increase in segmentation accuracy
and also a decrease in the training time. Therefore, the sig-
moid function was replaced by the hard_sigmoid function.

3) CHANGE IN ACTIVATION FUNCTION
The activation function employed in the original network is
PReLU, applied to all convolution steps. To further improve
segmentation performance, tests were performed with four
other activation functions in the Keras framework: ReLU,
ELU, Leaky ReLU, and Thresholded ReLU (Table 5).

According to Table 5, the ELU function led to a better seg-
mentation, given the highest average values in the accuracy,
dice, and Jaccardmetrics. Therefore, we adopted this function
in the whole network.

4) DROPOUT APPLICATION
The dropout technique was proposed by Hinton et al. [27] to
reduce overfitting during the training. This technique works
by deactivating a set of neurons from the fully connected layer
at each iteration of the adjustment phase.

The network used as a base applied this technique to the
contraction path. Initially, the dropout was removed through-
out to analyze if it is useful. We found that overfitting
increased as the performance of segmentation worsened,
as shown in Table 6. Empirical tests were conduced with the
inclusion of this technique in the network expansion path,
being applied after all the convolution steps. The network was
trained with dropout values of 0.2, 0.5, and 0.7, ie 20%, 50%,
and 70% of activations maintained.

As shown in Table 6, the increase in dropout usage did not
outperform network segmentation, since the highest average
accuracy value was 0.98812. In this sense, the dropout was
kept only in the contraction layers.

5) USE OF DATA AUGMENTATION
The data augmentation technique is used to increase the
training dataset by generating new artificial images from
geometric transformations such as rotation, translation, noise
injections, alteration in the color, brightness, contrast, crop-
ping, among others. It creates new representations from the
original images in the dataset [34]. Although the base network
uses data augmentation, we perform some changes in order to
minimize its overfitting.
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TABLE 7. Operations and values used for synthetic image generation by
data augmentation technique.

FIGURE 8. Example of applying data augmentation to the dataset used.
(a) Original image (b) Augmented images.

TABLE 8. Performance metrics versus batch size edits.

Table 7 shows the values used for the generation of new
synthetic images for network training. It is noteworthy that
several empirical tests were performed, where distinct val-
ues were used, and other data augmentation operations were
applied. However, the network with the best performance was
achieved with the values described in this table.

As observed in Table 7 subtle values were used because
the dataset used does not contain images so different from
each other. That is, the new synthetic data generated from
the transformations of the training samples had a remarkable
resemblance to the original samples.

Figure 8 illustrates the results of some synthetic images
generated by data augmentation operations from a reference
image.

Also, other tests were performed to change the batch value
from 2 to 4 and 6. However, this process further increased the
number of artificial images generated for network training.
As a consequence, there was a considerable increase in com-
putational cost. Table 8 demonstrates network performance
with changes in batch value and total time spent during the
training.

From Table 8 it can be seen that changing the batch from
2 to 4, the processing timewas increased about 45%, and from
2 to 6 about 95%. However, the modification from 2 to 4 led

TABLE 9. Performance metrics by batch size edits.

TABLE 10. Performance metrics by number of network stage.

to an increase in segmentation performance. In this sense,
we adopted this change in network.

6) CHANGE IN LOSS FUNCTION
The loss function measures the difference between the
expected output and the actual output obtained by anticipating
network training. The higher the loss value, the less accurate
the model is. Milletari et al. [24] proposed a new loss function
based on the dice similarity metric for the V-Net network.

In this work, tests were also performed with other loss
functions, such as the binary cossentropy, function used
by the U-Net [28], the Tversky loss function proposed by
Salehi et al. [35], the Focal loss function proposed by
Lin et al. [36], and the Lovasz-Softmax loss designed
by Berman et al. [37]. The results found using such functions
are summarized in Table 9.

Table 9shows that the use of the Tversky loss function
led to a better performance in fetal skull segmentation.
We replaced the dice loss function by the Tversky loss
function.

7) CHANGE IN NETWORK DEPTH
The last modification employed in the FCN addressed in
this work was about using of a more or less dense ‘‘deep’’
network. By default, the network contains 5 stages. Tests
were performed with different number of stages to analyze
if the depth of the network influences the segmentation
performance. The results are in Table 10.

From Table 10, it can be seen that the change in the
depth of the network led to an increase in the segmentation
performance, in which the 7-stage net reached the highest
values in the metrics values. In this sense, this change was
employed in network architecture.

However, the change in network depth resulted in a signif-
icant increase in computational cost due to the necessity of
performing more convolutions. It is noteworthy that use more
than 7 stages, would require a more powerful video card, with
a higher amount of memory, which is not available.

E. POST-PROCESSING
To further improve the segmentation results, an algorithmwas
created in Python OpenCV3 for post-processing, in order to

3https://opencv-python-tutroals.readthedocs.io/en/latest/
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FIGURE 9. Example of the application of the post-processing algorithm.

TABLE 11. Comparison between the segmentations of Figure 9 (wopp)
and with post-processing (wpp).

TABLE 12. Comparison between the segmentations of Figure 9 (wopp)
and with post-processing (wpp).

correct defective segments. The goal is to generate a new
ellipse fitting it to its contours. Figure 9 (a) illustrates a failed
segmentation result obtained by the VNet-c; (b) presents
the fitting of a new ellipse to the contours of the inefficient
segmentation performed by the proposed algorithm; (c) the
result of filling the ellipse; (d) illustrates ground truth used as
an evaluative metric.

Table 11 makes a comparison between the segmentations
present in Figure 9 with and without the post-processing
technique.

According to Table 11, it can be observed that the use of
post-processing improved the segmentation in terms of accu-
racy, dice, and Jaccard metrics compared to the respective
ground truth, but a worsening in precision. This is because
a uniform ellipse is generated in the contours, which ends up
discarding some valid contour points obtained by the failed
segmentation.

For a general comparison, Table 12 presents the result of
segmentation obtained by the altered network, according to
processes described in Section V-D.

According to the results shown in Table 12, it is
clear that post-processing improved the performance of the
segmentation.

F. ALGORITHM IMPLEMENTATION FOR HC CALCULATION
The challenge requires the developing of an algorithm to find
five values for each ellipse generated by the segmentation:

1) center x: comprises the value of the distance inmillime-
ters from the initial pixel on the x axis of the image to
the pixel of the center of the ellipse;

FIGURE 10. Illustration of the necessary measures.

2) center y: comprises the value of the distance in millime-
ters from the initial pixel of the image’s y axis to the
pixel of the center of the ellipse;

3) semi axes a: Once the center of the ellipse is found,
the semi-axis measure the largest value of the radius
from the distance from the center of the ellipse to its
farthest point;

4) semi axes b: comprises the smallest value of the radius,
from the distance from the center of the ellipse to its
nearest point;

5) angle: comprises the value of the angle in radians
between the center vector y and the semi-axis vector b.

Figure 10 illustrates how such values are determined in a
image:

VI. COMPARATIVE ANALYSIS
In this section, we performed a comparative analysis of the
results achieved by the new methodology developed to tune
the FCN. Initially, we present Figure 11, which illustrates the
increase in the accuracy considering each step covered in the
Section V-D.

According to Figure 11, one can observe an evolution in
the network performance after each modification proposed
in its architecture. The increase in the set of synthetic images
generated by data augmentation and the increase in network
depth made a significant contribution to its performance.

We also compared our results with three other approaches
that created solutions for segmentation and measurement of
fetal skulls in two-dimensional ultrasound images. Table 13
shows a comparison of our method with other results reported
in the literature.

It is possible to observe the promising results obtained by
our proposal when compared to the state-of-the-art methods.
The proposed system outperforms the others regarding the
dice metric. In terms of mean difference, our results are below
the work from Heuvel et al. [18]. However, they remain
superior in terms of the dice performing 97.92% against
97.0%.

In terms of mean absolute difference, our work presented
superior results. Sobhaninia et al. [19] reported a mean Abs
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FIGURE 11. Evolution of the accuracy value according to the changes imposed on the network architecture.

TABLE 13. Comparative with State-of-Art methods.

TABLE 14. Comparative results among V-Net and VNet-c.

Difference of 2.12±1.87 mm, which is larger compared to
our result.

Finally, we submitted CSV file containing all five fetal
head measurements (as described in Section V-F) for auto-
matic evaluation with the challenge metrics. Table 14 shows
the values obtained by the original V-Net and VNet-c. The
acronyms are: M.A.D. - Mean Abs difference, M.Di. - Mean
Dice, and M.D.- Mean Difference

Table 14 depicted that the use of the proposed method-
ology, and the changes in the network architecture, were
responsible for the performance gain.

VII. CONCLUSION
The use of ultrasound is essential for the measurement of
fetal biometry during the gestation process. However, man-
ual assessment of measurements is subjective and largely
depends on the experience of the evaluator. In this sense, it is
necessary to use computational techniques to obtain better
results.

Given the problem, this paper presented the adaptation of a
Deep Learning-based computational method for the segmen-
tation of fetal skulls in two-dimensional ultrasound images,
called Fully Convolutional Neural Network - Combination
(VNet-c). A methodology was proposed for the adaptation
of a completely convolutional neural network to increase its
performance capability.

It was used as base the V-Net network, which was
designed for the segmentation of 3D images. Many architec-
ture changes were made to increase its performance and mit-
igate the overfitting, such as modifying batch normalization,
changing activation functions, using of the dropout technique,
and using a recent loss function instead of dice loss. Due to
the small number of dataset images, changes were also made
using data augmentation, increasing the number of batches.
Also, the network depth was increased to the limit sup-
ported by the graphics card. Subsequently, with some of the
resulting inaccurate segmentation an algorithm was created
to perform post-processing and improve the quality of the
segmentation.

We highlight that in the new VNet-c, two unprecedented
stages were developed, a pre-processing to fill the ellipses,
and a post-processing usign the technique to the output
images.

The results obtained by the proposed methodology showed
that it is possible to adapt the architecture of the Completely
Convolutional Neural Network V-Net, which was designed
for the segmentation of 3D images, to be used for 2D images.
Our method obtained better results than other state-of-art
methods, reaching up to 97.92% of correct segmentation.

The measurement values resulting from the segmentation
stage can be used in the future as an auxiliary tool for medical
specialists. Besides, further investigation can be developed
with a more powerful computer.
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