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ABSTRACT In this article, we present a novel user identificationmechanism for smart spaces called Echo-ID
(referred to as E-ID). Our solution relies on inaudible sound signals for capturing the user’s behavioral
tapping/typing characteristics while s/he types the PIN on a PIN-PAD, and uses them to identify the
corresponding user from a set ofN enrolled inhabitants. E-ID proposes an all-inclusive pipeline that generates
and transmits appropriate sound signals, and extracts a user-specific imprint from the recorded signals (E-
Sign). For accurate identification of the corresponding user given an E-Sign sample, E-ID makes use of
deep-learning (i.e., CNN for feature extraction) and SVM classifier (for making the identification decision).
We implemented a proof of the concept of E-ID by leveraging the commodity speaker and microphone.
Our evaluations revealed that E-ID can identify the users with an average accuracy of 93% to 78% from an
enrolled group of 2-5 subjects, respectively.

INDEX TERMS Smart-spaces, user identification, sound-signals.

I. INTRODUCTION
The recent evolution of pervasive computing technologies
have brought to fruition the concept of smart spaces which
aim at seamless provisioning of customized services to their
inhabitants. For example, a shared smart office may identify
a particular occupant and automatically turn on his com-
puter (and other devices) and adjust the temperature and
light settings of his cubicle as per his preferences. Similarly,
it may also restrict the entry to a designated place (e.g.,
record or server rooms) only to a few individuals, and may
in addition keep a record of the authorized person(s) who
accessed that particular area. Likewise, a smart homemay not
allow the vulnerable inhabitants (e.g., children and elderly
people) to operate risky appliances (e.g., oven). It may also
restrict the content viewed on the TV or the Internet for some
individuals (e.g., children). For all of the aforementioned
operations of smart environments, it is essential to establish
the identity of person(s) currently using the space. RFID
swipe cards (i.e., possession-factor relying upon something
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user has) are widely used in smart spaces for authenticat-
ing the inhabitants. However, the requirement of carrying a
physical card is onerous for the users. In contrast, PIN-PADs
(i.e., knowledge-factor relying upon something user knows)
- which are ubiquitously used for authentication in smart-
spaces, do not require the user to carry a dedicated element
(e.g., swipe card). However, it is not possible to determine the
identity of the corresponding subject who has entered the cor-
rect PIN (since the same PIN is generally used by all autho-
rized individuals). Physical biometrics (i.e., inherence-factor
relying upon something user is) such as fingerprints, face-
images, and iris are increasingly being adopted for human
identification in smart spaces. However, they are shown to be
vulnerable to subversion. For example, fingerprints may be
collected from a surface which the victim may have touched
and used to circumvent the fingerprint based authentica-
tion [1]. Likewise, facial-recognition may also be spoofed by
using the victim’s facial photograph (which is easy to find on
Internet) or a 3-D printed head [2], [3]. Similarly, iris based
authentication may also be breached by using the victim’s
photograph superimposed with the contact lens [1], [4], [5].
Camera-based gait recognition for human identification has

194508 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0001-5420-5499
https://orcid.org/0000-0002-1835-3475
https://orcid.org/0000-0001-9001-1931
https://orcid.org/0000-0003-0070-182X
https://orcid.org/0000-0001-6143-6850
https://orcid.org/0000-0003-2443-7234


S. W. A. Shah et al.: Echo-ID: Smart User Identification Leveraging Inaudible Sound Signals

associated privacy concerns [6]. Other mechanisms either
require specialized floor-embedded sensors [7], or wearables
(e.g., smartwatch) for identifying the occupants [8]. Both
of these approaches are considered onerous by the users.
A few works such as [9], [10] have utilized the pervasive
WiFi signals to non-intrusively capture the user’s gait pattern
(i.e., behavioral biometrics) for human identification in smart
spaces. However, these works require the user to walk along a
straight pre-defined path to perform the identification, which
may not be feasible for constrained smart spaces (i.e., where
such paths are not available). Likewise, authors in [11] also
leveragedWiFi signals to capture the user’s cardiopulmonary
activity and demonstrated its appropriateness for human iden-
tification in small smart spaces. Although this approach does
not demand any explicit activity from the user (unlike [9],
[10] which necessitates to walk), it requires the user to stand
(or sit) still in front of a commodityWiFi device for a duration
of at least 20 seconds to perform the identification, which
presents usability challenges.

In this article, we present a novel non-intrusive human
identification system called Echo-ID (referred to as E-ID
hereon) for small smart spaces that does not demand any
explicit effort from the user. E-ID endeavours to re-purpose
in -situ PIN-PADs for human identification in smart spaces.
PIN-PADs are pervasive in smart-environments and are gen-
erally used to restrict entry to a shared smart space (e.g., office
or home), and allow access only to the authorized users who
know the PIN (usually a 4 - 8 digit code). To identify an
individual from an authorized list (i.e., enrolled-set), we aim
to utilize the user’s tapping/typing behaviour (i.e., the way
user moves his fingers and hand) while entering the PIN on a
PIN-PAD deployed in smart space. There is a strong evidence
that different users have unique habitual tapping (or, typing)
pattern while entering the PIN which has been used for user
authentication on smartphones [12]. However, smartphones
are integrated with a plethora of sensors (e.g., accelerometer,
gyroscope, and touch sensors, etc) which makes it possible
to capture the user’s unique tapping/typing behaviour while
entering the PIN. In contrast, the PIN-PADs are generally
not equipped with the aforementioned sensors which thus
renders the above methods to be not relevant. In view of
this, we propose to use sound signals to capture the way user
types/taps and moves his fingers and hand while entering the
PIN. The PIN-PADs are generally equipped with a speaker
by default to facilitate the PIN entry process (e.g., to let user
know whether the entered PIN is correct or not), which can
be used to transmit a sound signal while user is entering the
PIN.

To make E-ID completely invisible to the user, we make
use of the inaudible frequencies as an audible sound would
be annoying. The commodity speakers (e.g., on PIN-PADs,
mobile phones, laptops, etc) can support a sampling fre-
quency in excess of 48KHz, and hence are capable of gen-
erating and transmitting inaudible sound frequencies (i.e.,
18KHz-22KHz). When the user types the PIN, the inaudible
sound frequencies transmitted in parallel through the speaker

get reflected from the user’s moving fingers and hand, which
in turn leave a unique user-specific imprint in the sound-echos
recorded by a commodity microphone (which is easy to
interface with the existing PIN-PADs). We refer to such an
imprint as Echo-Signature (referred to as E-Sign hereafter)
and use it to identify the corresponding user from a set of N
enrolled inhabitants. To the best of our knowledge, E-ID is
the first work that utilizes the inaudible echos from the user’s
hand while entering the PIN to establish his identity.

Figure 1 depicts the typical usage scenario of the E-ID.
We assume that a shared smart space has N authorized users
(e.g., employees in a smart office) who know the PIN (e.g.,
1234) to access the space. To identify the corresponding
user from a correct PIN entry (i.e., 1234), E-ID triggers the
PIN-PAD to simultaneously transmit and record the inaudible
sound while user types (or taps) the PIN and extract the
E-Sign from the recorded sound. E-ID utilizes the extracted
E-Sign to identify the corresponding user by comparing it
with the E-Sign samples of authorized users for whom the
enrollment samples are collected a priori. Once the corre-
sponding user is identified, the smart space may enable a
number of customized services for the identified user (e.g.,
automatically turn-on the user’s computer and adjust temper-
ature and light settings as per the likings of the identified
subject). Note that, the E-ID is completely transparent to the
user (i.e., user only needs to type/tap the PIN as usual) and
does not demand any particular action unlike the prior works
of this nature [9]–[11].

The problem of identifying a subject from a large set of
enrolled users using an E-Sign sample is arguably complex.
To make the problem tractable, we consider a simple scenario
of small smart spaces, i.e., where the number of inhabi-
tants is limited to a maximum of 5-6 users. Although the
evaluated group-sizes may apparently seem small, they are
the representations of an average OECD household (average
occupants of 3) and micro-enterprises (with 5-6 occupants)
[13], [14]. Evenwith a smaller group-size, there are numerous
challenges involved in realizing a system such as E-ID. The
first technical challenge is to generate an appropriate signal
that can be used to record the echos that may be reflected
from the user’s moving fingers and hand while entering the
PIN. To this end, we generate and transmit an inaudible chirp
signal with an appropriate silence period so as to record the
required echos (Section II-A). The second technical chal-
lenge is to track the echos that may be changing due to the
user’s moving fingers and hand while entering the PIN. These
changing echos represent the user’s habitual tapping/typing
pattern, which generate the E-Sign of the user. To achieve this,
we devise a threshold-based mechanism to align the transmit-
ted and recorded signals and compute the cross-correlation
between them (Section II-B). We form an E-Sign by lever-
aging these correlation values and transforming them into a
matrix by doing an appropriate computation (Section II-C).
The third technical challenge is to identify the corresponding
individual from an enrolled-set by leveraging the E-Sign
samples. For this purpose, we make use of deep-learning.
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FIGURE 1. Echo-ID usage scenario.

Specifically, we utilize the Convolutional Neural Net-
work (CNN) for extracting the discriminating features from
the E-Sign samples. We then feed these features to a
multi-class SVM classifier which identifies the correspond-
ing subject given an E-Sign sample (Section II-D). Since con-
ventional PIN-PADs are generally not equipped with micro-
phone(s), we implemented a proof-of-concept of E-ID by
leveraging the commodity speaker (i.e., built-in speaker of a
laptop) and microphone (i.e., interfaced to laptop via a USB
cable), while the users type the PIN on a smartphone placed
in the vicinity of the microphones (See Section III-A for
the details of set-up). Our extensive evaluations reveal that,
E-ID can identify the users with an average accuracy ranging
from 93.7% to 78.2% for a group-size of 2-5 individuals,
respectively.

The main contributions of this article are as follows:

• We propose an user identification (E-ID) for small smart
spaces that leverages the inaudible sound signals for
capturing the user’s behavioral tapping/typing behaviour
while entering the PIN on a conventional PIN-PAD.

• We propose an all-inclusive pipeline that generates
and transmits appropriate sound signals, and segregates
echo-signatures representing the user’s habitual tap-
ping/typing behaviour.

• We present a deep-learning model that can leverage the
echo-signatures to identify the corresponding subject
from an enrolled-set of users.

• We implement a proof-of-concept of E-ID by leveraging
the commodity speaker and off-the-shelf microphone,
and demonstrate thatE-ID is capable of identifying users
with an accuracy of 93% to 78% for group-sizes of 2-5
subjects, respectively.

The rest of the paper is organized as follows. Section II
presents the details of E-ID. Section III describes the evalu-
ation methodology along with the results. Section IV details

the related work, and finally the concluding remarks appear
in Section V.

II. ECHO-ID IDENTIFICATION WORK FLOW
In this section, we present the details of the proposed Echo-ID
system. Note that, we will only discuss the details related to
the generation of E-Sign and proposed deep-learning model
for identify the corresponding user, as the verification of
PIN(s) is a standard. Since the same PIN is generally used for
accessing a restricted space, we do not present a mechanism
for detecting the unseen (i.e., not enrolled) users. This will
be accomplished through the usage of PIN (i.e., only the
authorized subjects will know the PIN). Figure 2 shows the
different steps involved in E-ID.Wewill discuss each of these
steps in detail in the subsequent sections.

A. SOUND SIGNAL GENERATION
Since E-ID is based upon tracking the echos that change due
to the movements of user’s fingers and hand while entering
the PIN, the first step is the generation of an appropriate sound
signal that can serve our purpose. Given that we want E-ID
to be completely transparent to the user, the sound signal
that we transmit from the speaker should be in inaudible
frequency (i.e., beyond 18KHz). Although the audible sound
signals are conveniently transmitted by the commodity speak-
ers, they can be annoying for the users in the anticipated
usage scenario. The commodity speakers and microphones
support a sampling frequency of up to 48KHz. Therefore,
theoretically (in accordance with Nyquist theorem [15]) they
can transmit and record signals of up to 24KHz which falls
within the inaudible range. With this possibility, we use a
commodity speaker to generate a chirp signal of frequency
18 − 22KHz of duration 1ms (48 samples at Fs = 48KHz,
i.e., 1ms x Fs). To record the echos that reflect from the user’s
moving fingers and hand, we add a silence period of 4.3ms
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FIGURE 2. Echo-ID work-flow for identification.

FIGURE 3. Generated signal with silence period.

(≈208 samples at Fs = 48KHz, i.e., 4.3ms x Fs). Note that,
we have empirically tested different values for the duration
of the chirp and silence signals, and selected the values
that can best capture the required echos. Consequently E-ID
transmits a signal of duration 5.3ms (i.e., 256 samples) from
the speaker. Figure 3 shows the signal that we transmit to
record the E-Sign of the user. This signal is transmitted for
a total time duration of 3 seconds (i.e., which corresponds
to the typical time required for PIN entry) at an approxi-
mate frame rate of 188 (i.e., 1/5.3ms), so as to record the
echos due to the fingers and hand movement during the
entire PIN entry. Figure 4 shows a chunk of the transmit-
ted signal, while Figure 5 shows the spectrogram which
depicts that the frequencies of this signal lie in the inaudible
range.

FIGURE 4. A chunk of transmitted signal.

FIGURE 5. Spectrogram of the transmitted signal.

FIGURE 6. Recorded signal.

FIGURE 7. Corresponding spectrogram.

B. PRE-PROCESSING OF THE RECORDED SOUND
In order to generate the E-Sign, E-ID involves a number of
pre-processing steps which are discussed below.

1) FILTERING THE LOW-FREQUENCY NOISE
Figure 6 shows the sound signal recorded using a commodity
microphone. The corresponding spectrogram of this record-
ing is depicted in Figure 7. It is evident from the spectro-
gram that the recorded signal captures the signal of interest
-i.e., high energy is visible in the 18 − 22KHz band. How-
ever, the recording also demonstrates the strong presence of
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FIGURE 8. Filtered signal.

FIGURE 9. Corresponding spectrogram.

low-frequencies that may correspond to other audible signals
in the surroundings (e.g., people talking). Such noise compo-
nents are conspicuous in the spectrogram. In order to generate
the E-Sign of a user from the transmitted signal, E-ID uses
a band-pass filter with stop-band frequencies of 17.5KHz
and 22.5KHz, so as to alleviate the impact of unwanted
frequencies that fall outside the desired range. Figure 8 shows
a chunk of filtered recording, while Figure 9 shows the corre-
sponding spectrogram. It is evident from the spectrogram that
the low-frequency signals are successfully eliminated, while
the filtered signal prominently contains the frequencies of our
interest. This also depicts that the E-ID may not be impacted
by audible sounds such as music or conversations. Since
the commodity speaker and microphone are not perfectly
synchronized, there is always a delay before the microphone
starts recording the transmitted chirp signal. This is conspic-
uous in a filtered recording as shown in Figure 8. In order to
generate an E-Sign from the recording, it is important to elim-
inate this delay and align the recorded signal with the trans-
mitted signal - i.e., each chunk of 256 samples of the recorded
signal must contain the chirp signal arriving at the micro-
phone from the direct-path at the start followed by a section
that records echos (i.e., silence portion). Next, we develop a
strategy to align these signals, which helps in generation of
the E-Sign.

2) ALIGNMENT OF TRANSMITTED AND RECORDED SIGNALS
To eliminate the aforementioned delay in the recorded sig-
nal, we identify the prominent local peaks in the signal.
Figure 10 shows the peak values plotted against the number
of peaks detected from the recording shown in Figure 8.

FIGURE 10. Detected peaks.

FIGURE 11. Recorded signal with delay removed.

FIGURE 12. Aligned transmitted and recorded signal-superimposed.

For eliminating the delay in the recording, we identify the
first peak that crosses a threshold value. We analytically set
this threshold to half the mean peak value which helps in
successful elimination of the aforementioned delay. Once the
first peak that corresponds to the first prominent direct-path
sound signal received by the microphone is identified, we set
the start of the recording to the sample number located at
length(chirp)/2 samples behind the identified peak. Our rea-
soning is that, the identified peak corresponds to the centre
of the chirp signal that arrives at the microphone through the
direct-path, and hence the actual start of this signal will be
located halfway behind. Figure 11 shows the resultant signal
after the elimination of delay from the recorded signal shown
in Figure 8. It is evident that the delay in the recorded signal
is successfully removed. In addition to removing the delay,
we also normalize the recorded signal to [−1 1], since the
transmitted high-frequency signals attenuate quickly, and the
signal received by the microphone has much lower amplitude
than the transmitted chirp as can be visualized in Figure 8.
This also helps in identifying the echos that change due to
the user’s moving fingers and hand. The resultant recording
after the elimination of delay is aligned with the transmitted
signal - i.e., the first 256 samples of the resultant recording
(and all other succeeding chunks of 256 samples) correspond
to the transmitted chirp signal received from the direct-path
along with the echos that reflect from the user’s moving
fingers and hand during the silence period. Figure 12 shows
the first 256 samples of the recorded signal along with the
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FIGURE 13. Two consecutive pulses of recorded sound - with no
movement.

FIGURE 14. Two pulses of recorded sound - with movement visible.

transmitted signal (i.e., chirp + silence). It is evident that,
these two signals are aligned approximately. In addition, the
echos are also conspicuous in the recording during the silence
period of the transmitted signal. We utilize these echos to
generate the E-Sign to identify the corresponding individual
from the enrolled-set.

3) COMPUTING CROSS-CORRELATION
Once the signals are aligned in accordance with the method
detailed in the previous sub-section, the next step is to identify
the reflections (or echos) that occur due to finger and hand
motion of the user. In a scenario when there is no finger or
hand movement, the static reflections (i.e., due to the static
objects in the vicinity) will appear same in the consecutive
recorded pulses (i.e., each of 256 samples). This is because
when there is no movement all the echos in consecutive
pulses will take same time to reach the microphone after the
reflections. For example, Figure 13 shows two superimposed
recorded pulses which are almost identical, showing that
therewas nomovement (of fingers or hand) when these pulses
were transmitted by the speaker and recorded by the micro-
phone. In contrast, Figure 14 show two other recorded pulses
where the variations that may correspond to the user’s fingers
and hand movement are visible (see the zoomed-in section).
This is because when user moves his finger(s) and hand to
enter the PIN, the echos that get reflected from the fingers and
hand arrive at the microphone at a different time than the pre-
vious pulse. We are interested in extracting these variations
only, i.e., changes that correspond to the user’s moving fin-
gers and hand while entering the PIN. To track these changes,

FIGURE 15. Correlation matrix of a sample recording.

we compute cross-correlation between the transmitted chirp
signal and all consecutive pulses of the recorded signal (i.e.,
chunk of 256 samples).When there is nomovement, the com-
puted correlation values of the consecutive recorded pulses
will be identical, while in case of movement these values
will change. This will help in identifying the locations in
every pulse that correspond to the user’s fingers and hand
movement. Since we have already aligned the recorded sound
with the transmitted signal (see sub-section II-B), we only
retain the correlation values from lag zero onward. We also
normalize the computed correlation values to [−1 1] so that
changes corresponding to the movements become visible as
compared to other sections of the pulse.

C. GENERATION OF ECHO-SIGNATURE
We utilize the computed correlation values to generate the
Echo-Signature (i.e., E-Sign) of the user, and feed this to
deep-learning model (see Section II-D for details of the
model) to identify the corresponding user from the enrolled-
set. This section entails the steps involved in generation of
E-Sign.

1) TRANSFORMING CORRELATION VALUES TO MATRIX
To make an E-Sign, we first transform the computed correla-
tion values into amatrix. For this purpose, we form amatrix of
order 256×564, where 256 corresponds to correlation values
of each pulse of the recorded signal, while 564 represent the
total frames that were transmitted (i.e., Frame Rate (188) x
Time (3 sec)= 564). We append the correlation values of the
consecutive recorded pulses (i.e., 256 samples) in successive
columns of this matrix. Note that, since we eliminate a certain
portion of the recorded signal (i.e., delay - see sub-section
II-B), we may not end up having exact 564 chunks (of 256
samples) of the recorded signal. Hence, the last few values
(or columns) in the matrix are set to zero to maintain a
consistent matrix size. Figure 15 shows the correlation matrix
of a sample recording while the user enters the PIN.

2) E-SIGN GENERATION
To make an E-Sign of the user, we compare the columns
of the correlation matrix so as to detect only the prominent
changes that correspond to the user’s moving fingers and
hand. To achieve this, we transform the correlationmatrix to a
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FIGURE 16. Generated E-Sign.

FIGURE 17. Subject # 1 - Sample 1.

newmatrix whose ith column is computed as CM (1 : 256, i+
3) − (CM (1 : 256, i), where CM represents the correlation
matrix. The column threshold (i.e., 3) is set empirically (by
changing it randomly between 1 and 100) for detecting the
changes occurring due to user’s fingers and hand. A similar
method is also used in [16] and [17] to track the finger
movements and use them for detecting 2 − D gestures and
snooping the unlock patterns of mobile devices, respectively.
Figure 16 shows the newly generated matrix by comparing
the columns of the correlation matrix shown in Figure 15 in
accordance with the aforementioned method. We refer to this
newmatrix as E-Sign of the user and utilize this to identify the
corresponding user from an enrolled-set. However, in order to
successfully use the E-Sign for user identification, it should
be consistent for the same user across his multiple attempts of
entering the same PIN. Likewise, it must demonstrate distinc-
tiveness from the E-Sign samples of the other individuals for
the same PIN. To demonstrate this, we show four E-Sign sam-
ples belonging to two different subjects in Figures 17 -20 (i.e.,
2 of each subject). It is conspicuous that E-Sign samples of the
same subject are similar in multiple instances of entering the
same PIN (e.g., see Figs 17 & 18 for subject #1, and Figs 19
& 20 for subject #2), while they are different for different sub-
jects even if they enter the same PIN (e.g., see Figs 17 & 19
to visualize the difference in E-Signs of subject # 1 & 2). This
lends credence to our idea of using E-Sign for identifying
the corresponding individual from an enrolled-set of subjects.
To achieve this, we feed the E-Sign samples to our designed
deep-learning model that can learn the appropriate features
from the E-Sign samples and is capable of identifying the
corresponding user given an E-Sign sample. In particular,
we use a Convolutional Neural Network (CNN) for feature
extraction. The reason behind using CNN is that, it helps in
automatic extraction of the discriminating features from the
E-Sign and has also shown success in prior works on human
identification like [18], [19]. The deep-learning also results
in superior identification performance than the conventional
machine learning which often requires the manual extraction

FIGURE 18. Subject # 1 - Sample 2.

FIGURE 19. Subject # 2 - Sample 1.

FIGURE 20. Subject # 2 - Sample 2.

of the features [18]. Next, we describe the structure of the
deep-learning model that we employed as a part of E-ID, and
also present the key parameters that we used for performing
the user identification.

D. DEEP-LEARNING MODEL FOR USER IDENTIFICATION
The aim of the model is to learn the representation of user’s
typing behaviour while entering the PIN on the PIN-PAD. Let
a single E-Sign sample be represented as Ei ∈ Rk , where k
represents dimensions of E-Sign (i.e., 256×564). We feed the
E-Sign to a CNN structure that helps in learning the spatial-
features. Once the features are learnt, we feed them to a
secondary SVM classifier which helps in discriminating the
subjects. Figure 21 shows the employed deep-learningmodel.
In this section, we present the details of the CNN structure.

1) CNN AS FEATURE-EXTRACTOR
The CNN structure employed in our implementation for
extracting the features is shown in Figure 21. The model is
stacked as follows: input layer, first convolutional layer (C1),
first Rectified Linear Unit (ReLU) layer, first pooling (max)
layer (P1), second convolutional layer (C2), second ReLU
layer, second pooling (max) layer (P2), fully-connected layer
and output layer. Table 1 shows the details of the parame-
ters used in the CNN. The dimensions of the E-Sign com-
puted in accordance with the method described in previous
sub-section is [256, 564, 1]. We first pass these E-Sign
samples through a set of convolution filters which scan the
entire E-Sign sample and learn different local features. In C1,
we empirically choose a total of 20 filters with a size of [3,3]
and stride [1,1], resulting in an output of dimensions [254,
562, 20]. The output of C1 is then passed through a ReLU)
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FIGURE 21. Deep-learning model employed in E-ID.

which performs a thresholding operation by maintaining only
the positive values. Afterwards, we feed the output of ReLU
to a maximum pooling layer (i.e., P1) which performs the
down-sampling and helps in prevention of over-fitting of the
model [18]. We set the window-size and stride to [2, 2] in the
P1, which results in an output of order [127, 281, 20]. In C2,
we choose a total of 25 filters of same size and stride as in C1
(i.e., [3, 3] and stride [1,1]). We use the padding in C2 in such
a way that the size of the output remains the same as that of
the input (i.e, padding = 1). We then feed the output of C2
to P2, for which the window-size is empirically set to [3,3]
with a stride of [2, 2], resulting in an output of dimensions
[63, 140, 25].

The output of P2 represents the local features learned from
different receptive fields of the input E-Sign sample. To make
an identification decision using the learnt features, we unfold
these features to flatten vectors (i.e., of order [1, 220500]).
This vector is then fed to a fully-connected layer whose size
is empirically set to 2048. As the name suggests, all the
neurons in the fully-connected layer are connected to those
in the previous layer and we treat its output as the feature-
vector(s). As these features can be seen as time-series, the
LSTM structure seems an appropriate choice since this helps
in determining the temporal-relevance in the sequential data.
LSTM networks have also shown promise in similar classi-
fication tasks [18]. However, our analysis has revealed that
feeding the features learnt by the CNN to a secondary LSTM
network results in a degraded performance of the E-ID. Our
analysis also revealed that by feeding the CNN features to a
Support Vector Machine (SVM) results in good performance.
Therefore, in our implementation, we treat CNN as a feature-
extractor, and then employ a secondary SVM classifier which
helps in identifying the corresponding individual given an
E-Sign sample (i.e., learnt features).

III. EVALUATION SETUP AND EXPERIMENTAL
METHODOLOGY
In this section, we discuss the evaluation setup, experimental
methodology, and evaluation results of the E-ID.

A. EVALUATION SETUP
Figure 22 shows the evaluation setup of E-ID. Since the
stand-alone PIN-PADs are not equipped with the micro-
phones, we implemented the concept of E-ID by leveraging
a commodity speaker and a microphone. As can be seen in
Figure 22, we used a laptop (Hp Folio 9480m) to generate and
transmit the inaudible sound frequencies through its built-in
speaker (see section II-A for details of signal generation). For
recording these frequencies and their echos, we interfaced an
external microphone with this laptop. Although, the built-in
microphone of the laptop can also be used to record the
inaudible sound, our analysis revealed that these recordings
were too noisy as compared with the external microphone
(which may be due to the differences in build quality).
In addition, the external microphone also allows to place the
key-pad (i.e., upon which user enters the PIN) in its close
vicinity, which would be a representation of the anticipated
usage-scenario of the E-ID (i.e., on a typical PIN-PADmicro-
phone would be close to the key-pad). For entering the PIN,
we placed a mobile phone (upon which user enter the PIN
on the usual key-pad) in close proximity (about 10cm) of the
microphone so as to record the user’s E-Sign while entering
the PIN. Note that, the difference between the virtual but-
tons on a mobile phone and physical buttons on a PIN-PAD
may impact the generated E-Sign. However, if the physical
button are used instead of virtual buttons, the enrollment
process will cater for this difference, i.e., the enrollment pro-
cedure will capture the E-Sign accordingly. Hence, we antic-
ipate that E-ID is likely to work for any type of PIN-PADs
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TABLE 1. Parameters of CNN structure employed in E-ID.

FIGURE 22. Evaluation setup of E-ID.

(i.e., with virtual or physical buttons). The laptop that emits
the inaudible sound was placed at an approximate distance of
0.4m from the microphone and key-pad (i.e., on the mobile
phone). This whole setup is thus a close representation of the
real-world setting in which E-ID may be used (i.e., a PIN-
PAD device that can record the inaudible sound frequencies
in parallel while a user enters the PIN).

B. EXPERIMENTAL METHODOLOGY
For evaluating the performance of E-ID in identifying the
individual from an enrolled-set, we recruited a total of 5 sub-
jects (4M+1F). All of these subjects were PhD students aged
25-35 years. Although the number of enrolled subjects may
appear less, it is representative of a typical small smart space
which on an average has less than 5 inhabitants. For example,
in OECD countries a typical micro-enterprise has around 5-6
occupants, while an average home has 2.4 inhabitants on
average [13], [14]. For generating the user’s E-Sign, we asked
each user to type the same PIN (i.e., 7913, randomly selected)
on the key-pad (of the mobile phone as shown in Figure 22),
and collected around 50 (±5) data samples from each user
leading to a total of 250 samples (i.e., 50 × 5 = 250).
The length of the PIN may impact the E-Sign. However, this
will also be catered by the enrollment process and will not
affect the working of E-ID. While the user enters the PIN,
the laptop transmits the inaudible chirp signals, which are
simultaneously recorded by the microphone. The transmitted
signals are reflected from the user’s moving fingers and hand
(due to entering the PIN), which appear as a unique pattern in
the recorded signals. We process the recording in accordance
with the method detailed in subsections II-A -II.C to generate
the E-Signs and use these to identify the corresponding user
from the enrolled set by leveraging the deep-learning model
described in sub-section II-D. Out of 50 E-Sign samples/user,

we used 35 samples for training the deep-learning model,
while the rest are used for testing the performance of the
E-ID. We also varied the number of training samples from
15 − 35 to analyze the impact of the number of training
samples upon the accuracy of the E-ID (see Section III-D
for details). Note that, during the data collection process, the
subjects were allowed to converse with the co-author (who
was facilitating the experimentation). This depicts that our
experimental scenario is close to real-world setting where
the user is likely to talk with others (e.g., an accompanying
friend) while entering the PIN.

C. PERFORMANCE EVALUATION
We use the following metrics for evaluating the performance
of E-ID: i) Accuracy - which shows the percentage of cor-
rectly identified E-Sign samples across a set of enrolled
users. ii) Confusion Matrix - which shows the performance
of E-ID across all the test E-Sign samples in a matrix form.
iii) Receiver Operating Characteristics (ROC) - which plot
the TPR (True Positive Rate) vs FPR (False Positive Rate) at
various thresholds.

D. EVALUATION RESULTS
For evaluating the performance of E-ID, we analyzed
every possible combination of N subjects (i.e.,

(5
N

)
), where

N represents the size of the evaluated group. For every
combination of N subjects, we train a separate model
with 35 training E-Sign samples, and test its performance on
remaining 15 samples (see Section III- B for details related
to collection of E-Sign samples). However, it is noteworthy
that we do not do any fine tuning of parameters or layers for
different group sizes – i.e., we keep our model generalized,
and test it with every possible combination of N users. The
evaluation of every possible combination helps us to ascertain
the average accuracy of E-ID for different group sizes.

Table 2 shows the accuracy of E-ID for every possible
combination of N subjects, while Figure 23 shows the per-
centage accuracy of the E-ID across the group-sizes of 2-5
individuals. Note that, the accuracy figures in Table 2 are
arranged in descending order and have no bearing with the
combinations. It is conspicuous from the Figure 23 that, the
accuracy drops as the size of enrolled set increases. A similar
trend is also observed in prior research [9]–[11] that utilize the
WiFi signals to capture the user’s gait characteristics or car-
diopulmonary activity to perform the identification in small
smart spaces. This may be due to the fact that the inclusion
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FIGURE 23. E-ID Performance.

of more individuals in an enrolled set increases the chances
of having similar E-Sign samples in the group, resulting in
a decrease in the accuracy. Similarly, we notice that some of
the combinations have relatively lower accuracy. This may be
due to noisy E-Sign -i.e., due to the movement of some other
body parts while entering the PIN which and impact the echo
reflection. This is also observed in prior identification works
such as [9]–[11] where accuracy for a particular group-size
fluctuate. We believe that techniques such as ICA or PCA
may help in segregating the echos of different body parts and
may be an interesting direction for future research works.
However, it is noteworthy that the accuracy of E-ID remains
above 78% for groups of any size of up to 5 subjects. This is
comparable with the prior user identificationmechanisms [9],
[10] that require user to walk explicitly on a long predefined
path to perform the identification. In contrast, the E-ID is
completely transparent to the user (i.e., user only enters the
PIN as usual), and does not demand any explicit activity
(e.g., walk) as in prior works [9], [10]. E-ID outperforms
[11] that uses the imprints of user’s cardiopulmonary activity
manifested in the WiFi signals for human identification in
smart spaces by approximately 5-15% for group-sizes of
2-5 individuals, respectively. In addition, unlike E-ID, [11]
requires the user to sit (or stand) still in front of a commodity
WiFi device for a duration of at-least 20 seconds, which may
be onerous for the user. This suggests that E-ID offers signif-
icant benefits over the other state-of-the-art mechanisms.

Figures 24 -31 show the confusion matrices and ROCs of
one combination (randomly selected) of group-sizes of 2-5
subjects, respectively. The confusion matrices also depict that
as the number of enrolled subjects increases, some of the
E-Sign samples belonging to different users are incorrectly
classified (or mis-classified) by the E-ID, resulting in a drop
in the overall accuracy. Note that in ROCs, the classi repre-
sents the ith enrolled subject. The curves in ROCs are more
spread-out as the group-size is increased. For example, it is
conspicuous from Figure 31 that, for 4 subject (i.e., class1-
class4) the corresponding ROC curves cluster around the
top-left corner, which confirms that E-ID can discriminate the
E-Sign samples of these subject with high accuracy. However,
for the fifth user (i.e., class5), the corresponding ROC curve
is more spread-out at varying threshold values, which shows

FIGURE 24. Confusion Matrix - 2 Users.

FIGURE 25. ROC - 2 Users.

that E-Sign samples of this subject are confused with others.
This is also evident from the corresponding confusion matrix
(see Fig 30), where it can be observed that 8 evaluated E-Sign
samples of other subjects are mistakenly classified as those of
subject 5. This may be due to the resemblance in the E-Sign
samples of this individual with others. Prior research has
also shown the evidence of similarity amongst the behavioral
biometrics (e.g., gait pattern) data of some individuals [20].
Nevertheless, even with all of these possibilities, the average
accuracy of E-ID is above 78% for all group-sizes. E-ID is
thus the first-step towards realizing an inaudible sound based
human identification system for small smart spaces (i.e., with
2-5 inhabitant) that does not demand any participation from
the user (unlike prior works [9]–[11]).

Table 3 shows the evaluation results of E-ID for every
possible combination of N subjects obtained by feeding
the CNN features to the Softmax classifier. These results
show that, for all the group-sizes, SVM outperforms the
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TABLE 2. Performance of E-ID across different combination of N enrolled subjects.

FIGURE 26. Confusion Matrix - 3 Users.

FIGURE 27. ROC - 3 Users.

softmax classifier by approximately 2-7%. This confirms
the effectiveness of our approach (i.e., feeding CNN fea-
tures to SVM) in identifying the corresponding subject
from an enrolled-set given an E-Sign sample. We also
implemented a LSTM based model which treats the CNN
features as a time-series and feed these time-series to a
secondary LSTM structure to learn the temporal-relevance
in the learnt features. Our analysis revealed that this
approach fails to achieve an acceptable performance for any
group-size.

FIGURE 28. 4 Users.

FIGURE 29. ROC-4 Users.

1) IMPACT OF NUMBER OF TRAINING SAMPLES
Recall from Section 2.3 that, we train our deep-learning
model with 35 (out of 50) E-Sign samples/user (results pre-
sented above are with 35 training samples). In this sub-
section, we analyze the performance of E-ID by varying the
training samples from 15 to 35 with an increment of 5 in
each iteration. Figure 32 shows the performance of E-ID with
different number of training samples (and with group-size
of 5 subjects). It is conspicuous that the accuracy initially
increases as the number of training samples are increased
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TABLE 3. Performance of E-ID with CNN only.

FIGURE 30. 5 Users.

FIGURE 31. ROC-5 Users.

from 15 to 25 (e.g., 74%with 15 samples vs 78%with 25 sam-
ples). However, beyond that, the accuracy stays almost stable
(i.e., around 78%). As discussed in Section I, E-ID requires
one-time enrollment of the user. The accuracy of over 75%
with less training samples (i.e., 20 - 25 samples) will mean
a swifter enrollment process which will aid in real-world
applicability of the E-ID. Note that, since the deep-learning
is highly dependent on the size of training data, we anticipate
that training with more E-Sign samples may result in even
better performance. However, this may not be practically

FIGURE 32. E-ID performance with varying number of training samples.

FIGURE 33. Impact of Learning Rate (CNN).

convenient for the users to provide a large number of training
samples (e.g., 100 ormore) as a part of the enrollment. In view
of this, we have only tested the E-ID with less number of
training samples (i.e., 15 - 35) to demonstrate its practical
applicability.

2) IMPACT OF LEARNING RATE
To achieve good performance, learning rate is an important
hyperparameter to tune. It controls the speed at which the
deep-learningmodel learns to approximate the corresponding
subjects given the training E-Sign samples. We optimize the
learning rate for CNN and select the one that achieve the
best performance. Figure 33 shows the E-ID performance
(with group-size of 5) at varying learning rates of CNN
structure (i.e., 1e−1, 1e−2, 1e−3, and 1e−4). It is evident that
the accuracy improves by reducing the learning rate (i.e., 78%
at 1e−4 vs 0% at 1e−2). However, our analysis revealed that
by decreasing the learning rate below 1e−3, the CNN fails
to learn any discriminating features from the E-Sign samples
that may help in identifying the corresponding individual (see
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Fig 33). Therefore, we select the learning rate to be 1e−4 as
it results in best performance for different group-sizes of the
enrolled subjects.

IV. RELATED WORK
The closest work to ours is [21] that leverages the sound (both
audible and inaudible) reflected from the person’s ear canal
for authenticating the user. Since different individuals have
a different ear canal shape, the sound reflected from such a
cavity shows a discriminating frequency response that may
be used for establishing the identity of the user. However,
this mechanism demands an earpiece with a microphone for
sending the probe sound signal in the ear canal and recording
the echos reflected from the ear cavity. This requirement
may be arduous for the users which may hinder the adop-
tion of this approach in our anticipated usage scenario (i.e.,
smart spaces). In contrast, E-ID does not demand any special
hardware (e.g., earpiece) for performing human identifica-
tion in smart spaces. Likewise, authors in [22] presented a
mechanism where a user’s identity is confirmed by utilizing
his breathing sound. However, this work requires the user
to place the microphone very close to the nose and also
require one to undertake a deliberate action (i.e., deep breath
or sniff). Contrary, E-ID neither demands a user to under-
take any particular action (e.g., breath gesture) nor requires
any explicit interaction with the hardware (e.g., placing a
microphone close to noise). Similarly, the authors in [23]
proposed a sound-based user authentication mechanism for
online services that may be extended to perform identification
in smart spaces. This mechanism records the ambient sound
on two co-existing devices of the user (e.g., user’s laptop
and mobile phone), and if both the devices record a similar
sound then they are deemed to be in proximity and results in
successful authentication of the user. This approach may be
modified to perform human identification in smart environ-
ments (e.g., user’s mobile phone and PIN-PAD records the
ambient sound). However, this mechanism requires user to
generate some sound (e.g., clearing throat) when no ambient
sound is present which may be annoying for the other people
in the vicinity [24]. Additionally, this approach may not
work if the user’s mobile phone is lost, stolen, or discharged.
Furthermore, a person in unlawful possession of the victim’s
mobile-phone can potentially access the smart-environment
under the victim’s identity. In contrast, E-ID is not dependant
upon any secondary device like mobile phone. Authors in [6]
have utilized a camera for capturing the user’s gait-pattern
and used them for identification. However, unlike E-ID, this
approach has the privacy issues. Similarly, a few works have
used the sensors (e.g., accelerometer, gyroscope, etc) embed-
ded in the smartphone [25], [26] or in the smartwatch [8]
to capture the user-specific data (e.g., gait-pattern or arm-
motion) for identifying the user. However, the requirement
to carry a particular device for human identification may be
deemed to be onerous by the users. E-ID, on the other hand
does not require a user to carry such devices (i.e, smart-
watch or phone) for its operation. Reference [27] shows the

possibility of using user’s voice to establish his identity. How-
ever, this approached may be spoofed by furtively recording
the victim’s voice and launching the playback attack. E-ID
utilizes the user’s behavioral characteristics while entering
the PIN, which are hard to capture (or imitate) by a potential
adversary. A few works have leveraged the ubiquitous WiFi
signals available in smart spaces to establish the identities of
the inhabitants. For example, [9], [10] used the WiFi signals
to capture the user’s gait-pattern and subsequently use the cor-
responding WiFi perturbations to establish the identity of the
user. Both of these approaches have demonstrated a similar
accuracy as that of E-ID for a maximum group-size of 5-6
subjects. However, unlike E-ID, these works require a user
to walk on a predefined path, which may be burdensome for
the user and not always possible. In addition, the small smart
spaces are unlikely to have a long straight path (e.g., 2.4m
required in [9]) for the successful operation of these mecha-
nisms. Similarly, the authors in [11] showed that it is possible
to utilize the user’s cardiopulmonary activity manifested as
perturbations in pervasive WiFi signals to perform the human
identification in small smart spaces. However, unlike E-ID,
this work requires user to stand in-front of a WiFi device
for a minimum duration of 20 seconds. E-ID outperforms
this work by around 10% for a group-size of 5 individuals
without necessitating any participation from the user (e.g.,
stand in-front of a commodity WiFi device). Furthermore,
all of the aforementioned mechanisms that utilize WiFi (i.e.,
[9]–[11]) requires a controlled environment - i.e., only the
authenticating person should be present in the vicinity of
the WiFi transceivers, which may not always be possible
in a real-world scenario. Unlike these approaches, E-ID can
operate in a real-world setting.

While there are numerous other mechanisms like finger-
print, face-recognition, and iris scans that are already used
for identifying the individuals, they suffer from a number
of well-known vulnerabilities. For example, fingerprints can
easily be collected from a surface that a victim may have
touched and used to circumvent the fingerprint based authen-
tication [28]. Likewise, face-recognition may be spoofed by
using the victim’s photograph (which is easy to find over
social media) or 3-D printed head [2], [3]. Similarly, iris
based mechanisms are also prone to subversion by using
a victim’s photograph (even captured from a long distance
of up to 5m) superimposed with a contact lens [5]. Unlike
these approaches, spoofing E-ID is difficult as it utilize
the user’s behavioral characteristics while entering the PIN,
which in general are not easy to imitate. This shows that
E-ID offers significant benefits over the other state-of-the-art
mechanisms.

V. CONCLUSION
This article undertook an investigation into the use of inaudi-
ble sound signals for capturing the user’s behavioral bio-
metrics (i.e., habitual characteristics) while s/he taps (or
types) the PIN. We analysed the possibility of using these
characteristics for identifying the corresponding user from
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an enrolled-set. To this end, we present E-ID, a novel
non-intrusive identification system that leverages the com-
modity speaker and microphone for capturing the user’s
behavioral tapping/typing patterns in an inaudible range.
We present a comprehensive processing pipeline - i.e., from
transmission of signal to generation of user-specific imprints
in the recorded echos. We also craft a deep-learning based
identification strategy that helps in accurate identification of
subjects from an enrolled-set of N subjects. Our evaluations
revealed that, E-ID can identify an individual with an average
accuracy 93% to 78% for a group-size of 2-5 individuals,
respectively. In future, we plan to extend E-ID for bigger
enrolled-sets (e.g., 10 or more subjects). We also plan to
implement E-ID on small form factor devices with embedded
speaker and microphone. This will represent a more realistic
usage scenario and will help to analyse the impact on dif-
ferent practicalities such as processing time and accuracy in
real-world situations. In addition, another interesting future
research direction could be to use E-Signs as a second-factor
of authentication in situations where every user has a separate
PIN. This would need comparing the E-Sign of a user with
his/her enrollment samples instead of comparing it with the
samples of all enrolled-set. We also plan to conduct these
investigations in future.
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