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ABSTRACT To solve the problems of a poor manual garbage sorting environment, including heavy tasks
and low sorting efficiency, we propose the Lightweight Feature Fusion Single Shot Multibox Detector (L-
SSD) algorithm to realize intelligent trash classification and recognition. Since waste has a small volume
and the image resolution of garbage is always low, the algorithm that we propose is an enhanced single shot
multibox detector (SSD) with a lightweight and novel feature fusion module. This SSD can significantly
improve the performance of rubbish detection. In this feature fusion module, features from different layers
with different scales are connected in series. A new feature pyramid was generated by using downsampling
blocks, which will be fed to appointed multibox detectors to predict the final detection results. Due to the
extremely unbalanced ratio of positive samples to negative samples, which leads to a low accuracy of SSD,
Focal Loss using balanced cross-entropy is employed, which is provided by easy examples that corresponds
to difficult samples with a decline in the loss weight. Thus, the training is biased towards meaningful
samples. We have replaced the backbone network of VGG16 with ResNet-101 to achieve more accurate
detection. We analyzed the performance of a nonmaximum suppression (NMS) algorithm and discovered
that Soft-NMS was more suitable for learning better image representations. The strategy of Soft-NMS is
to suppress the undesirable detection box rather than remove it completely. The experimental results show
that the L-SSD exceeds a large number of state-of-the-art object detection algorithms in both accuracy and
speed.

INDEX TERMS Garbage identification, target detection, feature fusion, Focal Loss.

I. INTRODUCTION
With a rapidly expanding economy, the amount of municipal
solid waste has increased rapidly [1]. How to achieve the
harmless and resourceful disposal of garbage is a serious
problem to be urgently solved. Thus, it is obvious that recy-
cling is significant in modern society. Effective classifica-
tion of rubbish is the premise of classification processing.
By addressing current problems with manual sorting, such
as poor waste environment, heavy tasks and low sorting effi-
ciency, intelligent and automated debris sorting can reduce
labor costs, improve the reuse ratio of recyclable resources
and help to rapidly achieve the goal of ecological con-
struction [2]. This method can be fully utilized in practical
applications. We could apply it to the garbage identification
and classification of intelligent trash cans or the process of
garbage sorting in large garbage dumps to reduce the burden
of manual classification. This method also has a role in the
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process of self-recycling and utilization in manufacturing
facilities.

To solve these problems, this paper proposed the
Lightweight Feature Fusion Single Shot Multibox Detector
(L-SSD) for garbage detection. The L-SSD was improved
based on the Single Shot Multibox Detector (SSD) network
structure. The main contributions are presented as follows:

1. We redefine the framework of feature fusion and estab-
lish a new feature pyramid that has stronger semantics on all
types of scales. A simple and compact methodwas introduced
to combine feature maps from different levels. We rely on an
architecture that combines low resolution but semantically
strong features with high resolution but semantically weak
features via top-down pathways and a lateral connection.
The features were fully utilized by generating a new feature
pyramid.

2. We develop the Focal Loss function to replace the tra-
ditional loss function. One-stage methods are encountering a
tremendous class imbalance problem during training. These
detectors evaluate numerous candidate locations per image,
while only a few of them contain objects. Conversely, Focal
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Loss smoothly handles the class imbalance using a one-stage
detector, which enables us to efficiently train all samples
without allowing difficult-easy samples to substantially
affect loss. During the training time, the function can make
this model paymore attention to difficult samples by reducing
the weight of easily classified samples.

3. We improve the VGG16 [3] network by replacing sev-
eral kernels, introduce the idea of the Residual Neural Net-
work (ResNet) [4] algorithm to promote the accuracy of the
garbage classification algorithm, and then choose a better
network to help us complete the classification.

4. We analyze the impact of optimizing the nonmaximum
suppression (NMS) algorithm on L-SSD and discover that
this strategy is more suitable for obtaining better image repre-
sentations. In addition, a sensitivity analysis was carried out
on the parameters of Soft-NMS. The experiment determined
that the parameters were within the range of 0.4-0.7, which
significantly improved the performance of garbage detection.

The remainder of this paper is organized as follows: In
Section 2, related work in object detection was divided into
one-stage approaches and two-stage approaches. In Section 3,
we present the L-SSD framework. The experimental eval-
uation of the proposed algorithm, which was applied to
trash classification, and the comparison with other detectors
are shown in Section 4. The conclusions are discussed in
Section 5.

II. RELATED WORK
Object detection is a computer vision task that has attracted
the attention of many researchers. In 2012, Alexnet, which
is a type of convolutional neural network (CNN), was the
ImageNet Challenge winner. Alexnet is on the threshold of
a new era in image classification [5]. The architecture used
in this contest has a simple structure, whose configuration is
not deep but the performance is extremely high. The effective
performance of AlexNet in the ImageNet competition with
a high degree of difficulty has caused many researchers to
contribute to CNN structures in the solution of image clas-
sification problems. Deep learning has become particularly
popular similar to big data research, and excellent neural
network algorithms, such as VGG, Xception and ResNet,
have emerged.

Using different scales to identify objects was a fundamen-
tal challenge in computer vision. Figure 1(a) shows a feature
pyramid [6] that is structured with image pyramids forming
the basis of a standard solution. All features are independently
calculated on each image scale, which is inefficient. The
scale of the pyramid is constant, because the scale change
of an object is offset by moving its level in the pyramid. For
object recognition tasks, manual features have been consider-
ably superseded by ConvNets (deep convolutional networks)
[7]. As the modern deep ConvNets becomes active, object
detectors show dramatic improvements in accuracy. A deep
ConvNet calculates the feature level layer by layer. For the
subsampling layers, the feature level has an inherent multi-
scale and pyramid shape. This intranetwork feature hierar-
chy generates feature maps with different spatial resolutions

FIGURE 1. Different feature pyramid Models.

but introduces a large semantic gap due to different depths.
The low-level features of high-resolution maps will dam-
age the representation ability of object recognition [7].
Figure 1(b) shows that a single feature map only selects
one scale feature for prediction but introduces anchors with
different scales to detect multiscale objects. This feature has
been taken into account in recent detection systems to obtain
a faster detection speed, which is applied in some two-stage
detectors, such as the Faster R-CNN [8], Region-based Fully
Convolutional Network (R-FCN) [9], etc.

Target detection algorithms that are based on deep learning
are mainly divided into candidate area-based methods and
end-to-end regression methods.

A. TARGET DETECTION BASED ON CANDIDATE REGIONS
Region-based Convolutional Neural Networks (RCNNs)
[11], which were proposed by Girshick, initiated the use
of convolutional neural networks in target detection. The
R-CNN adopts a sliding window strategy extraction feature
and fully utilizes the characteristics of the exhaustive method
to traverse. Given an input image, 2000 category-independent
candidate regions are extracted from the image. A CNN is
then applied to extract a fixed-length feature vector for each
region. A SVM is used to classify targets in each region. The
Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition (SPP-NET) [12] algorithm was proposed
by He. The main idea of SPP-NET is to remove the crop/warp
operations on the original image and replace it with spatial
pyramid pooling (SPP) on the convolutional feature. The
OverFeat R-CNN [13] works out the features for all proposals
using a CNN, such as ConvNets [7], and classifies each region
via a Support Vector Machine (SVM) [14]. Due to the syn-
chronous object detection and localization, the R-CNN is an
end-to-end detectionmethod that is applied to object retrieval.
However, the R-CNN needs a substantial amount of time
to process each object proposal without sharing computing.
In addition, a large amount of hard disk space is needed to
store these features.

The Fast R-CNN [15] shares features among object pro-
posals to conquer the time-consuming issue of the R-CNN.
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FIGURE 2. Algorithm framework of faster R-CNN.

To obtain a faster detection speed, the region of interest (RoI)
pooling layer was designed. As a result, features are extracted
only once in the process of detection per image. In addition,
the SVM procedure is removed; thus, all features are tem-
porarily stored in memory without extra disk space. However,
both the R-CNN and the Faster R-CNN contain a common
flaw, that is, they extract recommendations outside the train-
ing phase and rely on external area suggestion methods.
Therefore, these networks are not fully end-to-end object
detection systems. To solve this problem, Ren proposed a
fully convolutional network named the Regional Proposal
Network (RPN) [16], which is connected to the last convo-
lutional layer of the Fast R-CNN to detect object boxes and
message scores.

This new combined network was named Faster R-CNN; its
structure is shown in Figure 2. The RPN is a fully convolu-
tional network (FCN), whose function generates high-quality
regional proposals, each with a confidence score. The RPN
predicts both an object boundary and object scores for every
location. To produce region proposals, the small network
slides over the feature graph from the top transformation
layer. By using different anchoring scales, the Faster R-CNN
performs more robustly in distorted images than the Fast
R-CNN. Owing to the shared convolution feature with the
CNN, this network can greatly reduce the computation time.

Typically, the VGG16 model and Fergus model (ZF) [17]
of the Fast R-CNN are pretrained in specific image datasets
with corresponding annotations, such as Microsoft COCO
Dataset [18] and Pascal VOC [19].

B. TARGET DETECTION BASED ON REGRESSION MODELS
Target detection based on regression is generally referred to
as a one-stage method. These methods detect targets mainly
by sampling regularly with dense frames of various positions,
sizes, and aspect ratios on an image. The network directly
processes the input image to generate the category probability
and location coordinate values of each object. In 2016, You
Only Look Once (YOLO) [20] was proposed by Joseph Red-
mon to improve the time consumption. The YOLO algorithm

removes the network layer that generates the candidate area
and distributes one image into S×S grids, where each grid
gives B bounding boxes. To affirm the position of one
object, YOLO uses NMS to select the highest score in a
bounding box, merge the overlapping regions, and output
the target bounding box and category. Compared with the
Faster R-CNN, the target positioning accuracy of YOLO is
extraordinarily low, and each grid can only predict one target.
In addition, when the size of the targets is small and the
arrangement is similar, this algorithm frequently encounters
missed detection. Redmon proposed the YOLOv3 [21] algo-
rithm to adjust the network structure, carried out object detec-
tion using multiscale features, and applied logistic regression
instead of soft-max regression to carry out object classifica-
tions, which improved themean average precision (mAP) and
small object detection.

Nothing is more important than balancing the relationship
between speed and accuracy. SSD enabled the advantages of
Faster R-CNN and YOLO to be combined. Taking account
of the detection accuracy, VGG16 is adopted as the trunk
network, and the final full connection layer was replaced
by a convolutional layer. In this model, the anchor box in
Faster R-CNN is used as an auxiliary method to abandon the
RPN. To improve the accuracy of small objects, themultilayer
feature map of SSD is used to predict the target categories and
directly show the boundary boxes. NMS is used to postpro-
cess the final detection results. Because SSD detects objects
directly from the plane ConvNet feature maps, it can achieve
complete real-time object detection, which is faster than most
of the other advanced target detectors. An alternative is to
reuse the pyramidal feature hierarchy that is computed by
a ConvNet as if it were a characterized image pyramid.
As illustrated in Figure 1(c), the pyramid of the conventional
SSD would reuse the multiscale feature maps from different
layers calculated in the forward transfer. To avoid using low-
level features, however, the SSD refuses to reuse previously
computed layers. At the top of the network, the network
builds the pyramid instead of adding several new layers.
Thus, the network misses the opportunity to reuse the higher-
resolutionmaps of the feature hierarchy, which was important
for detecting small objects.

To improve the accuracy of the SSD, the Deconvolutional
Single Shot Detector (DSSD) [22] uses deconvolution layers
to augment the SSD with an additional large-scale context.
However, an unduly complex model operates with a slow
speed. The RSSD (enhancement of SSD by concatenating
feature maps for object detection) [23] uses rainbow con-
catenation, which passes through both pooling and joining
to fully utilize the relationship between the feature pyramid
layers for enhancing the accuracy with a slight loss of speed.
Learning Deeply Supervised Object Detectors from Scratch
(DSOD) [24] investigates how to train an object detector
from scratch, and DenseNet [25] architecture was designed to
increase the efficiencies of parameters. Using feature fusion
algorithms in ConvNet, which utilize multiple layer features,
can improve the vision task performance. Before predicting
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FIGURE 3. Framework of traditional SSD.

FIGURE 4. Framework of L-SSD.

the results, HyperNet [26] and Parsenet [27] concatenate
features from multiple layers. Fully convolutional networks
(FCN) [28], U-Net (Convolutional Networks for Biomedical
Image Segmentation) [29], and Stacked Hourglass networks
[30] also use skip connections to associate low-level feature
maps with high-level feature maps to fully utilize synthetic
information. To enhance the performance, SharpeMask [31]
and Feature Pyramid Networks for Object Detection (FPNs)
[10] introduce a top-down structure to combine the different
levels of features (Figure 1(d)). Although they have made
considerable efforts to balance the accuracy and speed of
target detection, the effect was not obvious. There were still
some problems, such as missing small objects or confusing
the foreground and background.

III. METHODOLOGY
Although the accuracy of the SSD algorithm was greatly
improved compared with YOLO, there are still problems of
missing small targets and simultaneously detecting the same
object with different sizes of boxes. The framework of the
traditional SSD algorithm is shown in Figure 3.

To solve the previously mentioned problems of SSD,
this paper proposed the L-SSD algorithm. which adds a
lightweight but efficient feature fusion module to the con-
ventional SSD. Different from previous methods of adjusting
the training strategy to improve the performance, our strategy
takes the whole network and fully utilizes different layers in
the feature pyramid by changing its backbone network. First,
considering the relationship between layers in the feature
pyramid, the complete network structure of the L-SSD was
implemented for target detection. Changing the backbone
network VGG16 with ResNet-101 is an effective way to
improve the performance of feature extraction. Second, as
shown in Figure 4, a feature fusion module that is used
for object detection in the L-SSD was designed to realize

effective fusion of feature information between feature lay-
ers. The structure of the feature pyramids was replaced by
top-down pathways and lateral connections. Thus, the fused
feature map can contain richer details and semantic informa-
tion. In addition, a more balanced and lightweight Focal Loss
function was proposed to solve the problem of imbalance
between easy-hard samples and the tasks involved in the con-
ventional SSD algorithm. The function used a more balanced
cross-entropy to reduce the loss weight. The principle of this
function is that easy samples vary with negative samples,
so that the training is biased towards meaningful samples.
Eventually, to improve the shortcomings of the traditional
NMS algorithm, we developed the Soft-NMS algorithm to
attenuate the detection box scores with obvious overlap
instead of removing them completely.

A. FEATURE PYRAMID NETWORKS
The goal of this paper is to create a feature pyramid with
strong semantics for all scales on the pyramid shape of the
ConvNets’ feature hierarchy. To achieve this goal, we rely on
an architecture that combines low-resolution but semantically
strong features with high-resolution but semantically weak
features via top-down pathways and a lateral connection.
In the feature fusion and feature pyramid generation method
that we proposed in this paper, as shown in Figure 1(e),
features from different layers with different scales are con-
currently concatenated and subsequently generate a series of
pyramid features. The method consists of a feature pyramid
that has rich semantics on all levels. A single input image
will be quickly built according to its proportion to the feature
pyramid. Therefore, a significant solution for a ConvNet
object detector to improve the accuracy is to synthesize the
features with a slight structure.

As mentioned in Section 2, many algorithms attempt to
observe and fully utilize the pyramidal features. The most
prevalent method is shown in Figure 1(d). FPN [10] and
DSSD [22] employed this type of feature fusion to substan-
tially improve the performance, which was verified in their
papers. However, this design adds a process of mergingmulti-
ple features. The new features on the right side can only blend
the features from the left side that are higher than the same
levels. Addressing potential features and multifeature ele-
ments also consumes a considerably amount of time. These
tasks would be improved with a lightweight but efficient
feature fusion module that we propose. Our motivation is to
merge different levels of features at one time in an appropriate
way and generate a feature pyramid from the fused features.
The largest difference between Figure 1(d) and (e) is that
instead of horizontally connecting the feature semantics of
each layer, our algorithm aggregates them to the top of the left
pyramid and then horizontally connects them to the feature
pyramid on the right, which will solve the time-consuming
problem and integrate feature semantics of all scales to obtain
stronger semantic information.

The feature fusion module consists of top-down pathways
and the lateral connection [32]. In our approach, this kind
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FIGURE 5. Building block that illustrates the lateral connection and
top-down pathway, merged by the Concat method.

of path utilizes deconvolution to recognize higher levels of
features. Figure 5 shows the details of the feature fusion
module. We adopt the following strategies to concatenate the
features with different scales using a simple and efficient way.
Spatial feature maps are mapped twice using convolution
layers, and then sampled feature maps are processed by 1
∗ 1 convolution kernels to reduce the number of high-level
feature channels. To satisfy the output characteristic mapping
of the same channel numbers, we take 1 ∗ 1 convolution
operations to convolution operations that are generated from
bottom-up paths. Horizontal connections merge feature map-
pings that are generated from bottom-up paths with feature
mappings that are based on Concat operations. The process
of Concat can be expressed as follows (1):

Zconcat =
c∑
i=1

Xi ∗ Ki +
c∑
i=1

Yi ∗ Ki+c (1)

Xi represents the input of the bottom-up pathway, while Yi
is the input of the lateral connection. Here, ∗ denotes the
convolution operation. Concat is an increase in the number
of channels [33], while the information under each feature is
not increased.We set the number of channels of output feature
maps to 256 in our experiments, so all convolutional layers
have 256 channel outputs.

B. FOCAL LOSS
The dominant paradigm in modern object detection is based
on two-stage approaches. As pioneered in the Selective
Search work, the first stage generates a sparse set of candidate
proposals, which should contain all objects while filtering out
the majority of negative positions. The second stage divides
these proposals into foreground classes or backgrounds.
However, the SSD has renewed interest in one-stagemethods.
The speed of the detector has been reduced, and its accu-
racy is improved compared with two-stage methods. Accord-
ingly, one-stage methods are experiencing a tremendous
class imbalance problem during training. These detectors
evaluate numerous candidate locations per image, while
only a few of them contain objects. Conversely, Focal Loss

smoothly handles the class imbalance using a one-stage
detector and enables us to efficiently train all examples with-
out allowing difficult-easy samples to substantially affect
loss.

Focal Loss [34] is an amendment to standard cross-entropy
loss that can make the model focus more on difficult sam-
ples in training by reducing the weights of easily classified
samples. In the model, y represents the real label of the
sample, and p represents the predicted value of the sample
generated by the classifier.We introduce Focus Loss in binary
classification based on cross-entropy (CE) loss: (2)

CE(p, y) =

{
− log(p) if y = 1
− log(1− p) otherwise .

(2)

For convenience, we redefine pt: (3)

pt =

{
p if y = 1
1− p otherwise

(3)

Therefore, we can rewrite CE(p,y): (4)

CE(p, y) = CE (pt) = − log (pt) (4)

Focal loss adds two factors to the binary cross-entropy loss
function. There is a large gap between the number of positive
samples and the number of negative samples in one-stage
detector training. Thus, a common way is to add the weight of
α to adjust positive and negative samples. In practice, α may
be set to the inverse class frequency or treated as a hyper-
parameter set by cross-validation. If the frequencies of the
negative samples are large, then the weights of the negative
samples will be reduced. If the number of positive samples is
small, the weights of the positive samples will be relatively
increased. Therefore, the shared weights of the positive and
negative samples to the total loss can be controlled by setting
the value of α. In most cases, α takes a relatively small
value to reduce the weights of negative samples. We suggest
a restoring loss function to reduce the weights of simple
samples and focus training on difficult cases. Focal Loss was
ultimately defined as follows: (5)

FL (pt) = −α (1− pt)γ log (pt) (5)

Although α has an important role in balancing positive
and negative examples, it does not distinguish easy and hard
examples. To solve this problem, another factor named the
focusing parameter γ was proposed. This parameter can reg-
ulate the rate of weight reduction of simple samples. In this
experiment, we use the loss function form of formula (5).
In this way, we can not only adjust the weights of positive
and negative samples but also control the weights of difficult
and easy classification samples.

C. BACKBONE NETWORK STRUCTURE
SSD algorithm uses the traditional VGG16 network.
As shown in Figure 6, VGG16 contains 16 hidden layers,
including 13 convolutional layers and 3 fully connected
layers.
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FIGURE 6. Network architecture of VGG16.

FIGURE 7. Residual block structure of ResNet. X is the input, F(x) is the
residual map, ReLu is the activation function.

In this study, we made improvements based on the con-
ventional SSD target detection model. Aimed at the charac-
teristics of small garbage volume and low image resolution,
ResNet-101 with a deeper network depth and less compu-
tation was used to replace the original VGG16, and richer
features were extracted. ResNet-101 is a residual module
that enables us to train deeper networks. The structure of the
module mainly uses 3× 3 convolution, and its internal resid-
ual blocks adopt jumping connections, which alleviate the
problem of gradient disappearance by increasing the depth
in a deep neural network [35]. Figure 7 shows the residual
network model. For a given receptive field, it is better to
use a small convolutional kernel with accumulation than a
large convolutional kernel, because multiple nonlinear layers
can increase the network depth to ensure that more complex
patterns are learnedwith less cost and fewer parameters. After
optimization, we adopt this method to replace the 7 × 7
convolution kernel with three 3 × 3 convolution kernels and
the 5 × 5 convolution kernel with two 3 × 3 convolution
kernels. The main purpose of this approach is to improve
the depth of the network, and the neural network has better
performance with the same perceptual field.

D. SOFT-NMS
NMS is a fundamental problem in object detection. The
principle of NMS is to generate a detection box according to
the target detection score [36]. NMS selects the detection box
with the highest score and suppresses other detection boxes
that overlap with the selected detection box. This process

FIGURE 8. The meaning of IoU.

applies recursively to the remaining detection boxes. Accord-
ing to the design of this algorithm, if the target is located
within the preset overlap threshold range, the object may not
be detected. Therefore, the Soft-NMS [37] was proposed.
A continuous function attenuates the detection score of the
nonmaximal detection box instead of removing it completely.
Soft-NMS is a greedy algorithm that does not guarantee
the globally optimal solution for the scores of detection
boxes. However, the Soft-NMS algorithm is a more gen-
eral nonmaximal suppression algorithm, and the traditional
NMS algorithm can be regarded as a special case that uses a
discontinuous binary weight function. The traditional NMS
algorithm was defined as (6)

Si =

{
Si, IoU (M, bi) < Nt

0, IoU (M, bi) ≥ Nt
(6)

where Si is the score calculated by the classifier for each test
box, M is the candidate box with the highest prediction score,
bi is the candidate box that waits for processing, and Nt is
the NMS threshold. As shown in Figure 8, IoU is the ratio
of the intersection between the candidate detection box and
the real target to the union of the candidate detection box and
the real target. If the value of the IoU exceeds predetermined
threshold values, set its value to zero. Otherwise, it still retains
the original value.

The improved Soft-NMS algorithm attenuates the box
rather than removing the detection score of the part where
the IoU value of M and bi exceeds the Nt threshold. The
Soft-NMS algorithm was defined as follows: (7)

Si =

{
Si, IoU (M, bi) < N
Si (1− IoU (M, bi)) , IoU (M, bi) ≥ Nt

(7)

We analyze the impact of optimizing NMS on the SSD and
discover that this strategy is more suitable for learning better
image representations. In addition, sensitivity analysis was
carried out on the parameters of Soft-NMS, and experiments
determined that the parameters were within the range of
0.4-0.7, which were significantly higher than the average
accuracy of traditional NMS algorithm.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASETS
Since there are no public datasets in garbage classification
studies, the data used in this study were obtained by network
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FIGURE 9. Dataset division.

collection and camera shooting. Ensuring image quality and
clarity, network acquisition accounts for 20% of the total
dataset, and the remainder of the dataset is captured by the
Sony SLR camera. There are 9000 pictures in the dataset,
including cardboard, glass, paper, plastic and metal. Each
category accounts for one fifth of the total with 1800 images.
The size of the picture is 1891× 1263, and the format is JPG.
To ensure the reliability of category tags, all trash categories
have been identified manually in advance.

2) DIVISION OF DATASET
The dataset is differentiated into the training set, verification
set and test set. The training set refers to the data images
that are employed in the process of model training; It has a
significant role in the initial model fitting and parameter opti-
mization. In this paper, a 5-fold cross-validation method was
employed to test the accuracy of the optimization algorithm.
A total of 9000 waste pictures were taken as input images in
this model. We separate them into six equal parts on average
and then rotate among five of them as garbage detection
training datasets. The remaining part is a test dataset to test
the models. Through training and testing experiments, each
model will obtain the corresponding correct rate. The correct
rate results were calculated for the average value, which
were used to estimate the accuracy of the target detection
algorithm. As a result, the actual training set accounts for 4/5
of the total dataset. The verification set refers to checking
the state and convergence of their model after each epoch
is completed. This set does not participate in the process of
gradient descent but adjusts the super parameters, such as the
number of iterations and learning rate.

The verification set determines which group of hyperpa-
rameters has a brilliant performance and adopts them accord-
ing to the performance of the five groups in the models. In the
process of training, the verification set can also be used to
monitor whether the model has been fitted to judge the time
when training stops. As shown in Figure 9, one of the training
datasets is randomly selected as a verification set, and the
remaining four copies are used as a training set to record the
accuracy. Cycle in turn until each copy has a validation set,
which marks the end of cross-validation. After calculating
the average value of the five times precision, the highest
accuracy model will be chosen, and the superparameter of
the model will be determined in the final model. The test
set tests the model after completing the training to obtain
the optimal model. Testing is performed to determine the
accuracy of the model detection and classification and further
verify its generalization ability. Testing ensures the correct-
ness and validity of this model in practical application in the
future.

FIGURE 10. Detection examples with L-SSD.

3) EXPERIMENTAL ENVIRONMENT
We performed the experiments using an Intel Xeon Gold
5117@2.0 GHz processor with a 32 Gb RAM and a Nvidia
Tesla V100-PCIE-16Gb. All experiments were conducted
with TensorFlow 1.3, Python 3.5, and OpenCV 3.1.

B. EVALUATION METRIC
The mean average accuracy (mAP) is the most commonly
employed metric for evaluating the target detection accuracy.
mAP is defined as the average of the average precision (AP)
of all object categories, which is the area under the pre-
cision and recall rate (P-R) curves. Thus, we use mAP as
an authoritative metric to evaluate the performance of our
method.

C. RESULTS AND DISCUSSION
1) ABLATION STUDY ON GARBAGE DATASET
Figure 10 shows the detection results of the L-SSD on the
garbage dataset. We have displayed each of these categories.

We note that garbage has irregular folding characteristics,
such as cardboard, paper and metal. Sometimes, cans have
different degrees of extrusion phenomenon. This problem
adds to the difficulty of identification. Some wastes are sim-
ilar in appearance but have different materials, which also
affects the accuracy of identification. The difference in the
appearance between cardboard and paper is not obvious. Bot-
tles that are composed of glass or plastic hinder the detection.
In addition, the picture taken by the image in the case of
insufficient light will produce poor pixels, which will also
hinder processing the blurred image. However, the algorithm
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TABLE 1. Ablation study: effects of various improvement methods on
garbage dataset.

that we proposed can reasonably classify and detect the
materials. Our algorithm can accurately distinguish rubbish
from different materials, although these materials sometimes
appear similar in their outlines. In addition, the algorithm can
also avoid being disturbed by wrinkles and low pixels.

To reflect the effect of the series of actions that we added to
the traditional SSD, we ran models with different settings and
recorded their evaluations in Table 1, where the Feature Pyra-
mid indicates the Feature Fusion module that we proposed.
The mAP of the conventional SSD with VGG16 is 74.02%.
After changing the backbone structure, which is replaced
with ResNet-101, the mAP improved to 79.63%. We added
the pyramid model of FPN to VGG16 and ResNet-101, and
the mAP rose to 75.90% and 76.87%, respectively. After
using our lightweight Feature Pyramid, which can fully mine
context information, the mAP of VGG16 rose to 78.31%
and the ResNet-101 increased to 80.16%, because fused
feature layers contain rich details and semantic information.
By adding Focal Loss, the mAP increased to 77.64%, mainly
because our more balanced Focal Loss function can solve
the imbalance problems by reducing the weight of the easily
classified samples to achieve better convergence. In addition,
the NMS algorithm was substituted by Soft-NMS in the SSD
framework, and the mAP climbed to 76.54%. Thus, it can
be seen that the improved methods that we have proposed
are effective. As shown in Table 1, when we combined our
proposed improvements and adopted a better network frame-
work, the optimal performance of our L-SSD algorithm was
83.48%.

2) PERFORMANCE COMPARISON
To verify and evaluate the performance of our proposed
method, this part makes a quantitative and qualitative com-
parison between our method and some advanced target detec-
tion algorithms. As shown in Table 2, For Faster R-CNN
(VGG16) or Faster R-CNN (ResNet-101), the mAP values
are 72.34% and 76.48% respectively, and the FPS values are
7 and 9, respectively. As an improvement in Faster R-CNN,
the two-stage detection algorithm achieves excellent detec-
tion accuracy, but due to the region proposals, it is much
slower than one-stage detection algorithms. Although the
detection speed of YOLOv3 reaches 65 FPS, its mAP is

TABLE 2. Mean average precision and time results comparison between
different models.

9.7% lower than that of the traditional SSD. The conventional
SSD algorithm is one of the most popular target detection
algorithms with high accuracy and speed. For SSD, the mAP
and FPS are 74.02% and 46, respectively. Compared with
it, L-SSD has a 9.46% accuracy gain. However, due to the
complexity of the model structure, the feature fusion method
drops the speed to 40 frames per second. Compared with
SSD and Faster R-CNN, our L-SSD shows higher accuracy
and faster speed because the structure of our feature fusion
module is simpler, and a more balanced Focal Loss function
will not increase the additional detection time.

V. CONCLUSION
This paper is aimed at the urgent need for effective refuse
classification to address the problems of a poor manual litter
sorting environment, heavy tasks and low sorting efficiency.
Research on the use of deep learning for rubbish classification
is lacking. Thus, we proposed L-SSD to assist us in effec-
tually solving these problems. L-SSD is an enhanced SSD,
in which a lightweight but efficient feature fusion module is
applied to its framework. First, considering the relationship
between layers of the feature pyramid, a new feature fusion
module is adopted to change the traditional SSD network
structure, which can effectively integrate the feature layers
that are used for object detection in the SSD network struc-
ture. In the previous qualitative analysis, after adding the
feature pyramid module, the accuracy of garbage identifica-
tion was greatly improved. The effectiveness of this module
is also affirmed. This consequence was supported by two
reasons. The first reason is that all the features are fused once
in the topmost feature map in this feature pyramid module.
The feature maps of different scales can be fused to obtain
more rich features. The second reason is that we used only
one horizontal connection to reduce the amount of repetitive
computation, which shortens the detection time. Second, by
utilizing a more balanced Focal Loss function, the gradi-
ent contributions of easy and hard samples were effectively
balanced to the whole localization loss function, so that the
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imbalances of samples and multitasks in the conventional
SSD algorithm can be partially solved. Third, we explore
the impact of the VGG16 and ResNet-101 architecture on
the performance of the garbage classification algorithm and
choose a better network to help us complete the classification
tasks. In addition, we analyze the impact of optimizing NMS
on L-SSD and determine that Soft-NMS is more suitable
for learning better image representations. The results demon-
strate that our L-SSD model outperforms the classical SSD
framework, especially for small targets, while still main-
taining a comparable detection speed for other reasonable
detectors. In the future, for better performance, the use of
more powerful backbone networks, such as DenseNet [13],
to enhance our L-SSD is worthwhile. The addition of the
attention module to our algorithm is a meaningful innovation
of this research field.
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