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ABSTRACT This article proposed a novel conflict decision model for intelligent vehicles based on
game theory with analyzing the interaction behaviors between vehicles at urban unsignalized intersections.
The proposed model can help intelligent vehicles cross intersections safely and more efficiently. Firstly,
we developed an inference model for types of interactions among vehicles based on fuzzy logic. Then, the
driving data was collected at urban unsignalized intersections by subgrade sensors and a retrofit intelligent
vehicle and it was used in verifying the proposed inference model. After that, a conflict decision model
considering safety, efficiency and comfort for intelligent vehicles based on game theory, was proposed
to select the optimal driving strategies. Finally, a simulation and verification platform was built using
Matlab/Simulink & Prescan. And the validity and effectiveness of the model were proved by simulation
experiments. The results show the decision model can effectively help vehicles avoid conflicts and save
their time spent in crossing intersections by 15 percent.

INDEX TERMS Intelligent vehicle, urban unsignalized intersection, decision-making model, game theory,
conflict resolution.

I. INTRODUCTION
Intelligent vehicles have drawn increasing attentions in recent
years and many researchers have made great achievements
about them. Due to the complexity of traffic at urban envi-
ronments, it is of great significance to resolve conflicts
among traffic participants at urban unsignalized intersec-
tions. Nowadays, researchers have employed methods like
gap acceptance model, conflict table algorithm and vector
graph algorithm to solve the conflicts. However, these models
just explained the passing priorities of vehicles crossing the
intersections, ignoring the interactions between intelligent
vehicles and other traffic participants.

Scholars at home and abroad have put more focus on
the interactions between intelligent vehicles and human-
driving vehicles recently. Arda et al. [1] established a
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decision-makingmodel of intelligent vehicles based on Finite
State Machine (FSM) to predict the vehicle behaviors in
scenarios of intersection. Zyner et al. [2] proposed a system
with Recurrent Neural Network to infer drivers’ intentions at
the roundabout. Xiong et al. [3] and Song et al. [4] proposed a
prediction method of driving intentions of surrounding vehi-
cles based on HMM to realize the cooperative control among
vehicles at intersections. In these researches, the accuracy of
predicting drivers’ intentions is limited by the quality of the
collected data and the decision-making process of vehicles
has not been quantified.

With the good performance in solving complex problems,
game theory is widely used in conflict resolution among
vehicles. It can quantify vehicles’ decision-making process
to ensure that they could always select optimal actions at
each moment. Wang et al. [5] developed a prediction method
for lane-changing and car-following based on optimal con-
trol and dynamic game theory in the scenarios of highway.
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Bouderba and Moussa [6] applied a dilemma game in
unsignalized intersections and studied the impacts of the
adopted method on the traffic capacity. This model employed
game theory to study the microscopic traffic flow in inter-
sections. Sasinee et al. [7] established a decision-making
model in a unsignalized intersection in presence of selfish
and irrational vehicles. In this article, the opponent vehicle
is preset to be aggressive, ignoring the diversity of drivers.

In [8], [9], we have conducted researches on the decision-
making process of intelligent vehicles in complex urban envi-
ronments. To overcome the problems mentioned above, This
article proposed a decision-making model based on game
theory for intelligent vehicles to resolve conflicts, the con-
tributions are listed as:

(1) A decision-making model based on game theory for
intelligent vehicles at urban unsignalized intersections is pro-
posed with the considerations of driving safety, efficiency and
comfort.

(2) The validity and effectiveness of the model are verified
by Matlab/Simulink & Prescan. The results show the model
can provide help intelligent vehicles pass through intersec-
tions more efficiently.

The remainder of this article is organized as follows:
Section II describes the methodologies and the data acqui-
sition process in this article. Section III analyzes the inter-
action behaviors between vehicles at urban intersections and
proposes a decision-making model for intelligent vehicles
based on game theory. The simulation verification platform
to evaluate the effectiveness and reliability of the proposed
model is introduced in Section IV. In Section V, conclusions
and future works are presented.

II. METHODS AND DATA
A. METHODS
1) FUZZY LOGIC INFERENCE
Fuzzy logic inference is a classical method that can imitate
the inference modes of the human brain to deal with uncertain
systems by using fuzzy sets and fuzzy rules, which is widely
applied in logic control modeling, software engineering and
computer science researches. A fuzzy logic inference con-
troller consists of inputs, outputs, membership functions and
fuzzy control rules:

F = (I ,O,M ,R) (1)

where: I and O refer to the input variables and output vari-
ables of uncertain systems, respectively, M refers to the
membership functions, which can convert the inputs I into
the fuzzy variables which can be recognized by the system,
R refers to the fuzzy reference rules, which are mapping
relationships from inputs to outputs based on the experience
of experts.

2) GAME THEORY
Game theory is a mathematical method to study the competi-
tive phenomena and it considers the predictive behaviors and
actual behaviors of individuals in the game [10]–[12]. With

FIGURE 1. The elements of game theory.

the advantage of considering the information interactions
between players, it is suitable for the decision making of
intelligent vehicles at urban intersections. A game process
consists of players, actions, information, strategies, payoffs,
results, and equilibrium. And players, strategies and payoffs
are three basic elements (Fig. 1).

(1) Players: The decision makers in the game. Players
maximize their utility values by choosing optimal actions or
strategies.

(2) Actions: The decision variables of a player at a certain
moment in the game. Generally, ai represents a specific action
of the ith player, and Ai = {ai} represents a set of all actions
available for the ith player to choose.

(3) Information: The understandings of game-related
knowledge obtained by players in the game.

(4) Strategies: The action rules of players with given infor-
mation. Generally, si represents a specific strategy of the
ith player, and Si = {si} represents the set of all strategies
available for the ith player to choose.

(5) Payoffs: The utility values obtained by a player under
specific strategies, commonly known as the revenue function.

(6) Results: The indicators that can draw the interests of
game analysts, such as balanced strategy combinations, bal-
anced action combinations, balanced payoff combinations.

(7) Equilibrium: The optimal strategies of all players,
which is generally represented as: S∗ =

{
s∗1, s

∗

2, . . . , s
∗
i , . . . ,

s∗n
}
. where, s∗i is the optimal strategy of the ith player.

3) NASH EQUILIBRIUM
Generally, the solution of a static game with complete infor-
mation is called Nash equilibrium, which is a strategy set that
cannot achieve a better situation by changing the players’
actions in the game [10]–[12]. This means that there is no
strategy set superior to the Nash equilibrium. In a game G
with n players, s′i and s

′′
i refer to the two strategies can be

selected by a player, s−i refers to the strategies of other play-
ers. When (2) is satisfied, we call that strategy s′i is obviously
better than strategy s′′i . When (3) is satisfied, the strategy set
S∗ =

{
s∗1, s

∗

2, . . . , s
∗
i , . . . , s

∗
n
}
is called a Nash equilibrium

of G.

ui(s′i, s−i) > ui(s′′i , s−i) (2)

ui(s∗i , s
∗
−i) > ui(si, s∗−i), ∀si ∈ Si, ∀i (3)

VOLUME 8, 2020 189547



X. Chen et al.: Conflict Decision Model Based on Game Theory for Intelligent Vehicles at Urban Unsignalized Intersections

FIGURE 2. Data acquisition.

where, si refers to the strategy selected by ith player and s∗1
represents the optimal one, S∗

−i =
{
s∗1, . . . , s

∗

i−1, s
∗

i+1, . . . ,

s∗n
}
refers to the strategy set of other players, ui refers to the

payoff of ith player under given strategy set.

B. DATA
The data used in this article was collected by a subgrade
camera and a retrofit referee vehicle in the 2017-2018 World
Intelligent Driving Challenge (WIDC). The symmetric expo-
nential moving average method (sEMA) was adopted to
smooth the training data [13].

1) SUBGRADE DATA ACQUISITION
The subgrade data collecting process is as follows:

(1) Use map software to calibrate the reference points.
Select 5 (at least 5) reference points in the video interface
one after another. The red dots represent the reference points
markedmanually, and the blue ones are the image coordinates
of these reference points, which are transformed by their
geodetic coordinates. Once the red dots and blue dots coin-
cide, the coordinate calibration can be regarded as accurate.
The processing is shown in Fig. 2(a).

(2) Add the vehicle ID. The trajectories of intelli-
gent vehicles and human-driving vehicles are extracted,
including positions, velocities, accelerations, etc., to ana-
lyze the behaviors of vehicles. The partial trajectory data
of vehicles at the intersection are shown in Table 1,

including longitudinal and lateral coordinates, velocities,
accelerations.

2) VEHICLE DATA ACQUISITION
The vehicle data were collected by the FORD referee vehicle,
which was equipped with several kinds of sensors (Fig. 2(b)).
The binocular cameras and LIDAR can detect, track and
localize dynamic objects. The outputs of the fusion algorithm
are positions of vehicles.

III. THE DECISION-MAING MODEL BASED
ON GAME THEORY
A. RESEARCH ON INTERACTION BEHAVIORS
BETWEEN VEHICLES
Researching interaction behaviors between vehicles is helpful
for understanding dynamic traffic scenarios and can further
improve the legitimacy of decision-makingmodels for intelli-
gent vehicles. The interaction types between intelligent vehi-
cles (IV) and human-driving vehicles (HD) are determined by
the crossing intentions of IV and the driving types of HD.

1) CROSSING INTENTIONS
The crossing intentions are mainly determined by the pres-
sure P and the time difference Tc in conflicts. A fuzzy infer-
ence model for crossing intentions is established with P, Tc as
the inputs and crossing intentions of vehicles as the outputs.

a: PRESSURE
When vehicles approach the conflict point, the conflict pres-
sure P increases and the probability of crossing will increase
too. Assuming that the effective communication range at the
intersection is 150m, the pressure P is set as 0 when the
vehicles are on the boundary of this area. P is defined as:

P = 1−
Li(t)
150

(4)

where, Li(t) refers to distance of the ith vehicle to the conflict
point. The range of P is empirically set as {0.1, 0.3, 0.5, 0.7,
0.9} and the fuzzy set is represented as {very small (VS),
small (S), medium (M), large (L), large (VL)}.

b: TIME
The collision possibilities among vehicles should be consid-
ered when intelligent vehicles cross unsignalized urban inter-
sections. The time difference Tc between the two vehicles
passing through the conflict point is used to evaluate the risk
levels of collisions, which is defined as:

Tc =

∣∣∣∣L1(t)v1(t)
−
L2(t)
v2(t)

∣∣∣∣ (5)

where, L1(t) and L2(t) refer to the distances of IV and HD
to the conflict point, respectively, v1(t) and v2(t) refer to
the velocities of IV and HD, respectively. The range of time
difference Tc is empirically set as {0, 3, 5, 7, 10} and the fuzzy
set is {VL, L, M, S, VS} as defined above.
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TABLE 1. Partial trajectory data of vehicles at the intersection.

TABLE 2. Fuzzy logic rules of crossing intentions (IV).

TABLE 3. Fuzzy logic rules of driving types (HD).

Similarly, the crossing intentions of IV can be devided
into {very high(VH), high(H), medium(M), low(L), very
low(VL)}. Based on these analysis, the corresponding fuzzy
logic rules are empirically listed in Table 2. The largerP is and
the larger Tc is, the more possible IV tends to cross. On the
contrary, the smaller P is and the smaller Tc is, the less likely
IV crosses.

2) DRIVING TYPES
The willingness that vehicles accept or reject the crossing
requests from other vehicles varies with different driving
types. With the velocity and acceleration of HD as inputs,
a fuzzy inference model for driving types is established
based on experts’ experience. In this article, the driving types
are divided into 3 types {conservative(C), ordinary(O) and
impulsive(I)}, and the vehicle velocity’ and acceleration’
fuzzy sets are {VL, L, M, S, VS}, {L, M, S} respectively.
The fuzzy logic rules are shown in Table 3.

3) FUZZY INFERENCE PROCESS
Based on the crossing intentions of IV and the driving types
of HD, a fuzzy inference model for interaction types among

FIGURE 3. The work process of interaction model for vehicles.

TABLE 4. Fuzzy logic rules of cooperation levels.

vehicles is established to infer the cooperation levels between
the two vehicles, as shown in Fig. 3. Their cooperation levels
are discretized as {H, M, L}, corresponding to cooperative
relationship, unclear relationship and competitive relation-
ship, respectively. The fuzzy logic rules of interaction model
for vehicles are shown in Table 4.

The fuzzy logic surface of the interaction model is shown
in Fig. 4. Furtherly, the cooperation levels p between vehicles
are discretized as three specific values:

cooperation levels between vehicles =


1 0 < p ≤ 0.4
2 0.4 < p ≤ 0.7
3 0.7 < p ≤ 1

(6)

where: 3, 2 and 1 represent the cooperative relation-
ship, unclear relationship and competitive relationship,
respectively.
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FIGURE 4. Fuzzy logic surface of interaction model for vehicles.

By predicting the cooperation levels between vehicles,
their interaction behaviors under mixed traffic conditions
are analyzed and it provides a basis for decision-making
models of intelligent vehicles at urban unsignalized
intersections.

B. ANALYSIS OF CONFLICTS AT URBAN
UNSIGNALIZED INTERSECTIONS
Fig. 5(a) shows the conflicts between intelligent vehicles
and other vehicles at intersections, where CABCD refers to
the conflict area, HD and IV refer to the human-driving
vehicle and the intelligent vehicle, respectively. When IV
enters the conflict area, the decision-making model based
on game theory is established to avoid collisions in space
by controlling vehicles crossing the intersections at different
times. This article only focuses on the conflicts between
motor vehicles. The conflicts between vehicles and non-
motor vehicles or pedestrians will be discussed in future
work.

To explicitly discuss the decision-making model, some
assumptions are made as follows:

(1) Vehicles are all equippedwith V2V systems so that they
can obtain the driving characteristics of other vehicles, which
lays the foundation for the establishment of game theory
model.

(2) Players in the game make decisions simultaneously.
In order to efficiently analyze the conflicts between IV

and HD, EPET(Estimating Post Encroachment Time) [14]
is employed, which is a vital index to depict the collisions
between vehicles with any angle. It is defined as time differ-
ence between the former vehicle leaving the conflict area and
the latter one entering the area, as shown in Fig. 5(b).

EPET= f(x)=

{
|TIV1 − THD2|, THD1 ≤ TIV1 ≤ THD2
|TIV2 − THD1|, TIV1 ≤ THD1 ≤ TIV2

(7)

where, THD1 refers to the time when HD enters the conflict
area, THD2 refers to the timewhenHD leaves the conflict area,
TIV1 refers to the time when the IV enters the conflict area,
TIV2 refers to the time when IV leaves the conflict area.When
TIV1 > THD2,THD1 > TIV2 are satisfied, there is no conflict
among the two vehicles and they can cross the intersection
with original driving mode. On the contrary, the conflicts
among vehicles exist and they have to cross with cooperative
driving mode.

C. DECISION-MAKING MODEL BASED ON GAME THEORY
By analyzing the decision process of human drivers crossing
intersections with conflicts, the conflict problem is simplified
as a two-player game model. Four basic elements are as
follows [15]:

(1) The players set in the game is:

C = {C1,C2} (8)

where: Ci refers to the ith players, HD and IV are two players
in this model.

(2) The strategy set of all players is:

S = {S1, S2} (9)

where: Si, i = 1, 2 refers to driving strategy set of vehicle Ci,
which is consisted of a series of driving strategies at different
timesteps si, i = 1, 2, . . . , n.
(3) Ui refers to the expected utility value obtained by

vehicle Ci, which is not only related to its own strategy, but
also to the strategy of another vehicle. Therefore, the utility
value of vehicle Ci is represented as Ui(s1, s2). Where: si
refers to the strategy taken by vehicle Ci (i.e.si ∈ Si).
(4) A game with two vehicles can be represented as G =

C, S,U . If the strategy set S∗ =
{
s∗1, s

∗

2

}
is a Nash equilib-

rium, the following must be satisfied:

Ui(s∗i , s
∗
−i) ≥ Ui(si, s

∗
−i), ∀si ∈ Si, i = 1, 2 (10)

where, s∗i refers to the optimal strategy selected by vehicle
Ci, s∗−i refers to the strategy of another vehicle, Ui refers to
the utility value of vehicle Ci, Si refers to the strategy set of
vehicle Ci.

1) REVENUE FUNCTION SELECTION
The driving revenue is represented by the utility value U
in the proposed model, which is not only related to current
conditions of vehicles, but also to the potential conflict levels
between them. Therefore, the safety revenue, efficiency rev-
enue and comfort revenue are comprehensively combined to
define the driving revenue in this section.

a: SAFETY
The safety mainly refers to the factors that can increase the
severity of the conflicts between vehicles, which is repre-
sented by the time difference 1T between the two vehicles
arriving at the conflict point. The smaller the 1T is, the
smaller the driving revenue is. Otherwise, the larger the 1T
is, the larger the driving revenue is. Considering the influence
of driving types on the driving strategies, the safety revenue
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FIGURE 5. (a) Description of conflicts at intersections (b) The principle of EPET.

is set as follows:

Usafe = u (1T ) = exp (1T )

1T = |T1 − T2|=

∣∣∣∣∣∣

[(

v1 (t)
a1 (t)

)2

+2
(
L1 (t)
a1 (t)

)] 1
2

−
v1 (t)
a1 (t)


−


[(

v2 (t)
a2 (t)

)2

+ 2
(
L2 (t)
a2 (t)

)] 1
2

−
v2 (t)
a2 (t)


∣∣∣∣∣∣

i = 1, 2; t = 1, 2, . . . ,N
(11)

where: u(·) refers to normalization, vi(t), and ai(t) refer to the
velocity and acceleration of the ith vehicle, respectively, Li(t)
refers to the distance of the ith vehicle to the conflict point.

b: EFFICIENCY
The efficiency refers to that vehicles expect to cross intersec-
tions as quickly as possible to avoid the time delay caused by
decelerating or waiting. The efficiency revenue is set as:Uefficence = u(1vi)

1vi = vi(t + 1)− vi(t)
= ai(t) ·1t, t = 1, 2, . . . ,N

i = 1, 2 (12)

where, u(·) refers to normalization, 1vi refers to the velocity
change of ith vehicle during the time difference 1t .

c: COMFORT
The longitudinal acceleration change |1a| is mainly consid-
ered to calculate the comfort revenue, the comfort revenue is
set as:{

Ucomfort = u(1ai)
1ai=|ai(t+1)−ai(t)| , t=1, 2, . . .N

i = 1, 2 (13)

where: u(·) refers to normalization. 1ai refers to the acceler-
ation change of ith vehicle during the time difference 1t .
Therefore, the comprehensive driving revenue is consisted

of safety revenue Usafe, efficiency revenue Ueff and comfort
revenue Ucom, which is defined as:

U = αUsafe(1T )+ βUefficence(1vi)+ γUcomfort1vi(1ai)

(14)

where: α, β, γ refer to the weights of the safety revenue,
efficiency revenue and comfort revenue respectively, α +
β + γ = 1. Then the whole problem can be expressed as:
To solve the Nash equilibrium of the model (e.g. the optimal
driving strategies) to maximize the overall driving revenue
based on (14).

2) COOPERATIVE DECISION-MAKING
PROCESS OF VEHICLES
The cooperative decision-making process of HD and IV at
urban intersections filled with potential conflicts is shown
in Fig. 6. And the decision-making model outputs the
optimal driving strategies of the two vehicles, as shown
in (15): 

S1 =
{
a(1)1 , a

(1)
2 , · · · , a

(1)
n

}
S2 =

{
a(2)1 , a

(2)
2 , · · · , a

(2)
n

} (15)

A series of deceleration or acceleration actions are
included in the optimal strategies, which decide whether
the two vehicles yield or speed up to pass through the
intersection.

IV. EXPERIMENT AND COMPARISON
A simulation platform based on Prescan andMatlab/Simulink
has been built to evaluate the effectiveness and reliability of
the proposed model.

A. SIMULATION AND VERIFICATION PLATFORM
Prescan is a simulation environment for developing advanced
driver assistant systems (ADAS) and intelligent vehicle (IV)
systems. It is a platform that can be used to build 3D traffic
virtual scene, generate vehicles, pedestrians, traffic lights and
other control modules. Prescan comes up with a powerful
graphics preprocessor, a high-end 3D visualization viewer,
and a connection to standard MATLAB /Simulink. It is com-
posed of various main modules, some of these main modules
represent a specific world and multiple sensors are simulated
in the Sensor World.
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FIGURE 6. The cooperative decision-making process of IV and HD.

FIGURE 7. (b) Inferred cooperation levels in Group A (c) Inferred cooperation levels in Group B.

B. VERIFICATION OF INTERACTION BEHAVIORS
BETWEEN VEHICLES
In this section, driving data at real urban intersections
(Fig. 7(a)) are collected to verify the effectiveness and reli-
ability of the interaction model for vehicles. Two groups of
driving data with successful crossing (Group A) and unsuc-
cessful crossing (Group B) are respectively collected to infer
the cooperation levels between vehicles (Fig. 7(b-c)). The
results show that the cooperation levels between the vehicles

in Group A is higher to ensure they all can pass through the
intersection successfully and efficiently.

To further verify the accuracy of the interaction model,
120 groups of crossing data at intersections are collected by a
subgrade camera to infer the cooperation levels between HD
and IV (Fig. 8). It can be seen the model can correctly classify
most of the interaction behaviors with an accuracy of 91.6%.
The results show that intelligent vehicles have the abilities
to understand human behaviors, which provides theoretical
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TABLE 5. Utility values of different driving strategies.

FIGURE 8. Predicted results of interaction model for vehicles.

support for the collaboration between human-driving and
intelligent vehicles.

C. VERIFICATION OF DECISION-MAKING MODEL BASED
ON GAME THEORY
The above experimental results show that the collabora-
tion between human-driving and intelligent vehicles can
be achieved at complex traffic conditions. In this section,
a decision-makingmodel based on game theory for intelligent
vehicles is established to improve traffic efficiency at urban
unsignalized intersections.

1) SCENARIO SETTING
The traffic scenarios have been built by Prescan, showed as
Fig. 9. And the initial conditions of the two vehicles are X1 =
(L1, v1, a1) = (40, 12.5, 0), X2 = (L2, v2, a2) = (40, 12.5, 0)
respectively. The maximum velocity allowed at intersections
should meet vmax ≤ 15 m/s. Assuming that safety is the most
significant index in the crossing process, the weights α, β, γ
of the revenue function are select as 0.5, 0.3, 0.2, respectively
in this article.

2) THE RESULTS ANALYSIS IN CROSSING PROCESS
The crossing process can be represented as G = S1, S2;
U1,U2, where, U1 and U2 refer to HD and IV respectively,

FIGURE 9. Traffic scenario at urban intersections.

S1 and S2 refer to the strategies taken by them respectively.
To simplify the decision-making model, the longitudinal
acceleration a is divided into 6 certain values (e.g. a =
±1.5,±1.0,±0.5}m/s2) according to driving types (conser-
vative, ordinary, impulsive). During the crossing process at
the intersection, the two vehicles always select the driving
strategies that can maximize their utility values. Assuming
that the driving types of HD and IV are conservative- conser-
vative, the utility values of HD and IV in 4 various driving
strategy sets are shown in Table 5. The utility values of
optimal driving strategies at each timestep are marked as
bold data. During t = 1∼6s, the optimal strategies for HD
and IV are deceleration-acceleration. When t = 6s, they all
decelerate to ensure safety as IV reaches the conflict point
earlier. After t = 8s, IV has passed through the conflict point,
indicating that the conflicts among them have been resolved
and their optimal driving strategies turn into acceleration-
acceleration, as shown in Fig. 10(a).

Similarly, the optimal driving strategies of the two vehi-
cles under other driving types are shown in Fig. 10(b-f).
Tcross refers to the crossing time of vehicles, which defined
as the moment when the last vehicle leaves the conflict
point. The results show that IV can adjust its own driv-
ing strategies based on the behaviors of HD and the cross-
ing time Tcross varies when they have different driving
types.
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FIGURE 10. The optimal driving strategies of the two vehicles under different driving types.

FIGURE 11. (b) The model based on conflict table.

3) THE RESULTS ANALYSIS WITH COMPARED MODEL
To further verify the efficiency of the proposed model, the
decision-making model based on the conflict table [16]

TABLE 6. The results of the two decision-making models.

is compared with it. The results show the position and
velocity changes of the two vehicles to the conflict point
(Fig. 11(a-b)). Tpass refers to the moment that the first vehicle
arrives at the conflict point and Tcross is same defined as
above. The results show that IV can adjust its own velocities
to accelerate through the conflict point instead of waiting for
HD passing firstly in the proposed model. Compared with
the model based on conflict table, it can decrease Tpass by
20 percent and Tcross by 15 percent (Table 6), respectively,
which can obviously improve the traffic efficiency at urban
unsignalized intersections.

V. CONCLUSION AND FUTURE WORKS
In order to help intelligent vehicles cross urban unsignalized
intersections more safely and efficiently, this article proposed
a decision-makingmodel based on game theory for intelligent
vehicles, which considers the complexity of traffic and inter-
action behaviors between vehicles at urban intersections. The
main conclusions are listed as follows:

(1) The interaction behaviors between vehicles in scenarios
of intersection-crossing are studied and it provides theoretical
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basis for the decision-making of intelligent vehicles at urban
unsignalized intersections. The decision-makingmodel based
on game theory and the optimal driving strategies under the
Nash equilibrium are developed with the consideration of
driving safety, efficiency and comfort.

(2) By conducting a series of simulation experiments,
the reliability and effectiveness of the decision-makingmodel
are verified. The results show the model can significantly
reduce the crossing time of vehicles at intersections.

The decision-making process of intelligent vehicles is
influenced by many other factors. The impacts from pedes-
trians, non-motor vehicles, road structure types and traffic
flow density will be studied and discussed in future
work.
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