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ABSTRACT Let R = Fq + uFq + vFq + uvFq, with u2 = u, v2 = v, uv = vu, where q = pm for
a positive integer m and an odd prime p. We study the algebraic structure of FqR-cyclic codes of block
length (r, s). These codes can be viewed as R[x]-submodules of Fq[x]/〈xr − 1〉 × R[x]/〈xs − 1〉. For this
family of codes we discuss the generator polynomials and minimal generating sets. We study the algebraic
structure of separable codes. Further, we discuss the duality of this family of codes and determine their
generator polynomials. We obtain several optimal and near-optimal codes from this study. As applications,
we discuss a construction of quantum error-correcting codes (QECCs) from FqR-cyclic codes and construct
some good QECCs.

INDEX TERMS FqR-cyclic codes, generator polynomials, minimal generating sets, QECCs.

I. INTRODUCTION
One of the important class of linear codes is that of cyclic
codes. These codes have a significant role in the algebraic
coding theory. Since the early 1990’s, following the work of
Hammons et al. [30], linear codes have been studied over
finite rings. The authors in [30] have shown that some classes
of binary non-linear codes can be obtained through so-called
Gray images of linear codes over the ring Z4. Cyclic codes
are among the many classes of codes that are studied the
most. During the last thirty years, researchers have studied
the algebraic properties of cyclic codes and one of their
generalization, constacyclic codes over finite rings.

RifÃ and Pujol [39] introduced the codes over mixed
alphabets for the first time in 1997. After that, in 1998,
Brouwer et al. [16] considered the mixed alphabets Z2 and
Z3 and obtained bounds for the maximum possible size of
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error-correcting codes over mixed alphabets. Since then, sev-
eral scholars have focused extensively on mixed alphabets.
In 2009, Borges et al. [14] continued to explore codes over
mixed alphabets, and they studied Z2Z4-additive codes. The
coordinate set was divided into two parts to study these
codes, the first corresponding to the coordinates over Z2 and
the second to the coordinates over Z4. These codes were
defined as subgroups of the group Zα2 × Zβ4 . Further, they
determined the standard forms of the generator matrices and
parity-check matrices of Z2Z4-additive codes and obtained
fundamental parameters for these codes. In 2013, the work
of Borges et al. [14] was extended by Aydogdu and Siap [9],
and they introduced the algebraic structure of Z2Z2s -additive
codes. A few years later, Aydogdu et al. [5] generalized
the discussion of Z2Z4-additive codes to Z2Z2[u]-additive
codes. In this generalization, the authors studied some basic
properties of Z2Z2[u]-additive codes. They determined the
standard forms of generator matrices and parity-check matri-
ces for this family of codes. They also obtained a result which
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TABLE 1. Some optimal and near-optimal codes constructed from cyclic codes Cs over R.

establishes a relationship between the weight enumerator of
Z2Z2[u]-additive codes. In 2014, Abualrub et al. [1]
addressed Z2Z4-additive cyclic codes and described their
generator polynomials and minimal generating sets. Further,
they constructed several optimal and MDS codes from their
study. In 2017, Aydogdu et al. [6] studied Z2Z2[u]-cyclic
and constacylic codes. They examined the generators and
minimal generating sets of this family of codes. Further, they
determined the generators of their duals as well.

Using the theory of mixed alphabets, Borges et al. [13]
introduced double cyclic codes over Z2 and determined
their generator polynomials and spanning sets. The relation-
ship between generator polynomials of double cyclic codes
over Z2 and their duals was established. They also con-
structed many optimal binary codes from their study. Analo-
gously, Gao et al. [24] discussed double cyclic codes over Z4
and studied their generator polynomials as well as minimal
generating sets. They also studied the generator polynomials
of duals of double cyclic codes over Z4 and obtained some
optimal codes from their study. Mostafanasab [38] extended
the structure of double cyclic codes over Z2 to triple cyclic
codes over Z2 and determined their generator polynomials
along with their duals. After that, Wu et al. [45] studied
triple cyclic codes over Z4 and obtained some new optimal
linear codes over Z4 form their study. In this line, recently,
Dinh et al. [23] discussed cyclic codes over mixed alphabets
and studied their applications in constructing new quantum
codes and LCD codes. Some other studies related to cyclic
codes over mixed alphabets can be seen in [7], [8], [15], [46].

In 2015, Ashraf andMohammad [2] discussed cyclic codes
over Fp + vFp and constructed several new quantum codes
from their discussion. In 2016, Ashraf and Mohammad [3]
extended this work and studied the construction of quantum
codes from cyclic codes over R = Fq + uFq + vFq + uvFq.
Motivated by the study of cyclic codes over mixed alpha-
bets, we look at the structure of FqR-cyclic codes and their
application in constructing quantum error-correcting codes
(QECCs, in short).

Compared to traditional computers, quantum computers
are more effective in solving complex issues. The apposite-
ness of QECCs is one of the reasons for its performance.
Research on QECCs has grown enormously since the discov-
ery that there are QECCs that protect quantum information
as traditional error-correcting codes protect classical infor-
mation. Such codes provide an essential way of preventing
decoherence. Sequentially placed, Shor [43] discovered the
maiden QECC. After that, in 1998, Calderbank et al. [17]
studied a construction of QECCs from classical linear
codes and the complete proof of their existence. Using
Calderbank et al. [17] concept, several QECCs have been
constructed from cyclic codes and their generalizations over
finite rings and finite fields [2]–[4], [11], [22].

As an application, we provide several optimal and
near-optimal codes in Tables 1 and 2. Further, several new
QECCs from FqR-cyclic codes are also obtained. This paper
is structured as follows: In Section 2, we present basic def-
initions and define FqR-cyclic codes of block length (r, s).
In Section 3, we discuss the structure of linear codes over R
and an extended Gray map from Frq × Rs to Fr+4sq is defined.
In Section 4, we study the structure of FqR-cyclic codes.
Further, their generator polynomials and the structure of sep-
arable codes are also discussed. Moreover, we discuss the
minimal generating sets of this family of codes. In Section 5,
we study the duality of FqR-cyclic codes and determine their
generator polynomials. In Section 6, we look at the appli-
cation to QECCs of our study on cyclic codes over mixed
alphabets. We provide some new QECCs from FqR-cyclic
codes in Examples 40 and 41 and several new QECCs are
given in Table 3. In Section 7, we conclude this paper.

II. PRELIMINARIES
Let Fq be a finite field, where q = pm for a positive integer
m and an odd prime p. Then Frq forms a vector space of
dimension r over Fq under the usual operation. Suppose Cr is
a non-empty subset of Frq. If Cr forms a subspace of Frq, then
Cr is said to be a linear code of length r over Fq. The elements
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TABLE 2. Some optimal and near-optimal codes constructed from FqR-cyclic codes.

TABLE 3. New quantum codes from cyclic codes Cs over R.

of Cr are called codewords. If a = (a0, a1, . . . , ar−1) ∈ Cr ,
then the number of non-zero components of a is called the
Hamming weight of a, denoted by wH (a). We define the
Hamming distance between two codewords a, a′ ∈ C as
dH (a, a′) = wH (a − a′). The minimum Hamming distance
of C is defined as dH (C) = min{dH (a, a′) | a 6= a′; ∀ a, a′ ∈
C}. The Euclidean inner product of a = (a0, a1, . . . , ar−1)
and a′ = (a′0, a

′

1, . . . , a
′

r−1) in F
r
q is defined as usual a · a

′
=

a0a′0+a1a
′

1+· · ·+ar−1a
′

r−1. Further, the dual ofCr is defined
as C⊥r = {a

′
∈ Frq | a · a′ = 0, ∀ a ∈ Cr }.

A linear code Cr of length r over Fq is said to be a
cyclic code if for any a = (a0, a1, . . . , ar−1) ∈ Cr , its
cyclic shift τ (a) := (ar−1, a0, . . . , ar−2) ∈ Cr . We can
associate each codeword a = (a0, a1, . . . , ar−1) ∈ Cr with
a polynomial a(x) = a0 + a1x + · · · + an−1xr−1 ∈

Fq[x]
〈xr−1〉 .

From this polynomial identification, we get that the code Cr
is a cyclic code if and only if its corresponding polynomial
identification forms an ideal of the ring Fq[x]

〈xr−1〉 . Note that,
Fq[x]
〈xr−1〉 is a principal ideal ring, so there is a monic polynomial

f (x) ∈ Fq[x]
〈xr−1〉 of smallest degree in Cr such that Cr = 〈f (x)〉

with f (x) | (xr − 1). If the polynomial f (x) has degree n− k ,
then the set {f (x), xf (x), · · · , xk−1f (x)} forms a basis of Cr
with dimension k .

The concept of cyclic codes and their properties can also be
extended over finite commutative rings. Suppose R is a finite
commutative ring, then a linear code Cs of length s over R is
an R-submodule of Rs. Now we extend this study of cyclic
codes from single alphabets to mixed alphabets.

Throughout this paper, we denote R = Fq + uFq + vFq +
uvFq with u2 = u, v2 = v, uv = vu, where q is power of an
odd prime number. We define

Rr,s =
Fq[x]
〈xr − 1〉

×
R[x]
〈xs − 1〉

and

FqR = {(d1, d2) | d1 ∈ Fq, d2 ∈ R}.

Under the usual addition and multiplication, the set FqR
forms a ring. Consider an element e = a+ub+vc+uvd ∈ R,
we define η : R −→ Fq such that η(e) = a. We can see
that η is a ring homomorphism. For any e ∈ R, the R-scalar
multiplication on FqR is defined as follows

· : R× FqR −→ FqR such that e · (d1, d2) = (η(e)d1, d2).

This multiplication can be extended componentwise to
Frq × Rs as · : R× (Frq × Rs) −→ Frq × Rs such that

e · c = (η(e)a0, η(e)a1, . . . , η(e)ar−1, eb0, eb1, . . . , ebs−1),

for any e ∈ R and c = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) ∈
Frq × Rs. We see that Frq × Rs forms an R-module from this
multiplication.

Now we provide the definition of linear codes and cyclic
codes over mixed alphabets.
Definition 1: A non-empty subset C of Frq × Rs is said

to be a FqR-linear code of block length (r, s) if C is an
R-submodule of Frq × Rs.
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Definition 2: Let C be a FqR-linear code of block length
(r, s). Then C is said to be a FqR-cyclic code, if for any
c = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) ∈ C, its cyclic
shift ρ(c) := (ar−1, a0, a1, . . . , ar−2, bs−1, b0, b1, . . . ,
bs−2) ∈ C.

Wecan identify any element c′ = (a′0, a
′

1, . . . , a
′

r−1, b
′

0, b
′

1,

. . . , b′s−1) ∈ Frq × Rs with an element of c′(x) ∈ Rr,s, where

c′(x) = (a′0 + a
′

1x + · · · + a
′

r−1x
r−1,

b′0 + b
′

1x + · · · + b
′

s−1x
s−1).

For ease of the notation, we denote c′(x) = (a′(x), b′(x)).
With this identification, we get a one-to-one correspondence
between the elements of Frq × Rs and Rr,s. We define a mul-
tiplication of any element t(x) = t0+ t1x + · · · + tδ−1xδ−1 ∈
R[x] with the element c′(x) = (a′(x), b′(x)) ∈ Rr,s as follows.

t(x) ? (a′(x), b′(x)) = (η(t(x))a′(x), t(x)b′(x)),

where η(t(x)) = η(t0)+ η(t1)x + · · · + η(tδ−1)xδ−1. We can
see that Rr,s forms an R[x]-module under the usual addition
and multiplication ?.
Suppose c′(x) = (a′0 + a

′

1x + · · · + a
′

r−1x
r−1, b′0 + b

′

1x +
· · · + b′s−1x

s−1) ∈ Rr,s, then

x ? c′(x) = (a′r−1 + a
′

0x + · · · + a
′

r−2x
r−1, b′s−1 + b

′

0x

+ · · · + b′s−2x
s−1),

corresponds to the element (a′r−1, a
′

0, . . . , a
′

r−2, b
′

s−1, b
′

0,

. . . , b′s−2) ∈ Frq × Rs, which is a cyclic shift of c′ =
(a′0, a

′

1, . . . , a
′

r−1, b
′

0, b
′

1, . . . , b
′

s−1) the corresponding ele-
ment of c′(x). The next result is obtained from this argument.
Theorem 3: A linear code C is a FqR-cyclic code of block

length (r, s) if and only if C is an R[x]-submodule of Rr,s.

III. LINEAR CODES OVER R AND GRAY MAP ON FqR
In this section, we present the orthogonal idempotent decom-
position of the ring R and then the structure of linear codes
from this decomposition is discussed. A Gray map on R is
defined and some properties of this map are discussed. Fur-
ther, we extend this map on FqR.
Let A1,A2,A3,A4 be codes. Then we denote

A1 ⊕ A2 ⊕ A3 ⊕ A4 = {
4∑
i=1

ai | ai ∈ Ai, i = 1, 2, 3, 4}.

Consider any element e = a + ub + vc + uvd ∈ R. This
element can be uniquely expressed as e = ξ1â+ ξ2b̂+ ξ3ĉ+
ξ4d̂ , where a, â, b, b̂, c, ĉ, d, d̂ ∈ Fq such that â = a, b̂ =
a+ b, ĉ = a+ c, d̂ = a+ b+ c+ d and

ξ1 = 1− u− v+ uv, ξ2 = u− uv, ξ3 = v− uv,

ξ4 = uv.

It can be easily seen that ξ2i = ξi, ξiξj = 0 for i,
j = 1, 2, 3, 4; i 6= j and

∑4
i=1 ξi = 1. Hence, we get

R = ξ1R⊕ ξ2R⊕ ξ3R⊕ ξ4R and we can see that any element
e ∈ R can be written uniquely as e = ξ1e1+ξ2e2+ξe3+ξe4,
where e1, e2, e3, e4 ∈ Fq.

Let M1 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . Now a Gray map on R such

that ψ1 : R→ F4
q is defined as

ψ1(e) = (e1, e2, e3, e4)M1.

For convenience, we denote (e1, e2, e3, e4)M1 by eM1, where
e = ξ1e1 + ξ2e2 + ξe3 + ξe4. This map can be extended
componentwise from Rs to F4s

q as follows.

ψ1 : Rs −→ F4s
q

given by

(e′0, e
′

1, . . . , e
′

s−1) 7−→ (e′0M1, e′1M1, . . . , e′s−1M1) = eM1,

where e = (e′0, e
′

1, . . . , e
′

s−1) ∈ R
s and e′i = ξ1ei,1+ ξ2 ei,2+

ξ3ei,3+ ξ4 ei,4 for i = 0, 1, . . . , s− 1. The Lee weight of any
element e′i = ξ1ei,1 + ξ2 ei,2 + ξ3ei,3 + ξ4 ei,4 ∈ R is defined
as wL(e′i) = wH (ψ1(e′i)) = wH (e′iM1), where wH denotes
the Hamming weight over Fq. Further, we define the Lee
distance between any two elements e = (e′0, e

′

1, . . . , e
′

s−1)
and e′ = (e′′0, e

′′

1, . . . , e
′′

s−1) ∈ R
s as dL(e, e′) = wL(e− e′) =

wH (ψ1(e− e′)).
Suppose we have a linear code Cs of length s over R. Then

we define

Cs,1 = {e1 ∈ Fsq | ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 ∈ Cs
for some e2, e3, e4 ∈ Fsq},

Cs,2 = {e2 ∈ Fsq | ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 ∈ Cs
for some e1, e3, e4 ∈ Fsq},

Cs,3 = {e3 ∈ Fsq | ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 ∈ Cs
for some e1, e2, e4 ∈ Fsq},

Cs,4 = {e4 ∈ Fsq | ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 ∈ Cs
for some e1, e2, e3 ∈ Fsq}.

Therefore, Cs,i are linear codes of length s over Fq, for
i = 1, 2, 3, 4. Further, we get that Cs can be uniquely written
as Cs = ξ1 Cs,1 ⊕ ξ2 Cs,2 ⊕ ξ3 Cs,3 ⊕ ξ4 Cs,4.
Some properties of the Gray map ψ1 are discussed in the

next result.
Proposition 4: Let ψ1 be the Gray map defined above.
1) Then ψ1 is a Fq-linear map which preserves distance

from Rs (Lee distance) to F4s
q (Hamming distance).

2) If Cs is a [s, qk1 , dL] linear code over R, then ψ1(Cs) is
a [4s, k1, dH ] linear code over Fq, where dL = dH .
Proof: (1.) Suppose e = (e′0, e

′

1, . . . , e
′

s−1) and e′ =
(e′′0, e

′′

1, . . . , e
′′

s−1) ∈ Rs, where e′i = ξ1ei,1 + ξ2 ei,2 +
ξ3ei,3 + ξ4 ei,4 and e′′i = ξ1e′′i,1 + ξ2 e

′′

i,2 + ξ3e
′′

i,3 + ξ4 e
′′

i,4
for i = 0, 1, . . . , s− 1. Then we have

ψ1(e+ e′) = ((e′0 + e
′′

0)M1, (e′1 + e
′′

1)M1, . . . ,

(e′s−1 + e
′′

s−1)M1)

= (e′0M1, e′1M1, . . . , e′s−1M1)

+ (e′′0M1, e′′1M1, . . . , e′′s−1M1)

= ψ1(e)+ ψ1(e′),
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and for any δ ∈ Fq, e = (e′0, e
′

1, . . . , e
′

s−1) ∈ R
s, we get

ψ1(δe) = (δe′0M1, δe′1M1, . . . , δe′s−1M1) = δψ1(e).

Thus, ψ1 is a Fq-linear map. Further, we have dL(e, e′) =
wL(e − e′) = wH (ψ1(e − e′)) = wH (ψ1(e) − ψ1(e′)) =
dH (ψ1(e), ψ1(e′)). Hence, ψ1 is a Fq-linear map which pre-
serves distance.

(2.) Since ψ1 is a distance preserving Fq-linear and bijec-
tive map, then we can conclude that ψ1(Cs) is a [4s, k1, dH ]
linear code over Fq. �
Next we extend this Gray map on FqR and discuss some of

its properties.
Any element (m, e) ∈ FqR can be written as (m, e) =

(m, ξ1e1+ ξ2e2+ ξ3e3+ ξ4e4). Define a Gray map from FqR
to F5

q as

91 : FqR→ F5
q

given by

91(m, e) = (m, ψ1(e)) = (m, eM1).

As above, this Gray map can also be extended on Frq × Rs as
follows.

91 : Frq × R
s
−→ Fr+4sq

given by

(m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1) 7−→ (m0,m1, . . . ,

mr−1, e′0M1, e′1M1, . . . , e′s−1M1),

where (m0,m1, . . . ,mr−1) ∈ Frq, (e′0, e
′

1, . . . , e
′

s−1) ∈ R
s, and

e′i = ξ1 ei,1+ξ2ei,2+ξ3 ei,3+ξ4ei,4 ∈ R for i = 0, 1, . . . , s−1.
Similar to [46], we define the Lee weight of any element

(m, e) ∈ Frq × Rs as wL(m, e) = wH (m) + wL(e), where
wH denotes the Hamming weight over Fq and wL denotes the
Lee weight. Further, we define the Lee distance between any
two elements t1, t2 of Frq × Rs as dL(t1, t2) = wL(t1 − t2) =
wH (91(t1 − t2)) = dH (91(t1), 91(t2)).
Proposition 5: Let 91 be the Gray map defined above.
1) Then 91 is a Fq-linear map which preserves distance

from Frq × Rs (Lee distance) to Fr+4sq (Hamming dis-
tance).

2) If C is a FqR-linear code of block length (r, s) with
|C| = qk , then 91(C) is a [r + 4s, k, dH ] linear code
over Fq, where dL = dH .
Proof: (1.) Let t1 = (m, e), t2 = (m′, e′) ∈ Frq × Rs,

where

m = (m0,m1, . . . ,mr−1), m′ = (m′0,m
′

1, . . . ,m
′

r−1) ∈ Frq,
e = (e′0, e

′

1, . . . , e
′

s−1), e′ = (e′′0, e
′′

1, . . . , e
′′

s−1) ∈ R
s.

Then we have

91(t1 + t2) = (m+m′, (e′0 + e
′′

0)M1, (e′1 + e
′′

1)M1, . . . ,

(e′s−1 + e
′′

s−1)M1)
= (m, e′0M1, e′1M1, . . . , e′s−1M1)
+ (m′, e′′0M1, e′′1M1, . . . , e′′s−1M1)

= 91(t1)+91(t2),

and 91(r1t1) = (r1m, r1 e′0M1, r1 e′1M1, . . . , r1 e′s−1M1) =
r191(t1), where r1 ∈ Fq. Thus, 91 is a Fq-linear map.
As 91 is a Fq-linear map, we get dL(t1, t2) = wL(t1 −

t2) = wH (91(t1− t2)) = dH (91(t1), 91(t2)). Hence, 91 is a
Fq-linear map which preserves distance.
(2.) Since 91 is a distance preserving Fq-linear and bijec-

tive map, then we can infer that 91(C) is a [r + 4s, k, dH ]
linear code over Fq. �

IV. THE STRUCTURE OF FqR-CYCLIC CODES
This section is dedicated to the discussion of the algebraic
structure of FqR-cyclic codes of block length (r, s). We deter-
mine their generator polynomials as well as minimal gener-
ating sets.
Before determining the generators of FqR-cyclic codes,

we first present the structure of cyclic codes over R discussed
by Ashraf et al. [3] as follows.
Lemma 6 [3, Lemma 3.3]: Let Cs = ξ1Cs,1 ⊕ ξ2Cs,2 ⊕

ξ3Cs,3 ⊕ ξ4Cs,4 be a linear code of length s over R. Then Cs
is a cyclic code if and only if Cs,i are cyclic codes of length s
over Fq, for i = 1, 2, 3, 4.
The generators of a cyclic code Cs are given in the next

result.
Theorem 7 [3, Lemma 3.5]: Let Cs = ξ1Cs,1 ⊕ ξ2Cs,2 ⊕

ξ3Cs,3⊕ ξ4Cs,4 be a cyclic code of length s over R and Cs,i =
〈gi(x)〉 for i = 1, 2, 3, 4. Then Cs = 〈g(x)〉 and g(x) | (xs−1),
where g(x) = ξ1g1(x) + ξ2g2(x) + ξ3g3(x) + ξ4g4(x) with
gi(x) | (xs − 1). Moreover, |Cs| = q4s−

∑4
i=1 deg(gi(x)).

Now by using the results studied in above discussion,
we present the algebraic structure and generator polynomials
of FqR-cyclic codes.
As we have

∑4
i=1 ξi = 1, then for any t1 = (m, e) ∈ Frq ×

Rs, we get t1 = (
∑4

i=1 ξim, e) ∈ Frq× Rs, wherem ∈ Frq and
e = ξ1e1 + ξ2e2 + ξ3e3 + ξ4e4 ∈ Rs. We define

C1 = {(m, e1) ∈ Frq × Fsq | m ∈ Frq, e1 ∈ Cs,1},
C2 = {(m, e2) ∈ Frq × Fsq | m ∈ Frq, e2 ∈ Cs,2},
C3 = {(m, e3) ∈ Frq × Fsq | m ∈ Frq, e3 ∈ Cs,3},
C4 = {(m, e4) ∈ Frq × Fsq | m ∈ Frq, e4 ∈ Cs,4}.

Therefore, Ci are linear codes of block length (r, s) over Fq,
for i = 1, 2, 3, 4. Hence, any FqR-linear code C of block
length (r, s) can be uniquely written as C = ξ1C1 ⊕ ξ2C2 ⊕

ξ3C3 ⊕ ξ4C4.
The next result is obtained from the above discussion.
Theorem 8: Let C = ξ1C1⊕ξ2C2⊕ξ3C3⊕ξ4C4 be a FqR-

linear code of block length (r, s). Then C is a FqR-cyclic code
if and only if Ci are cyclic codes of block length (r, s) over Fq,
for i = 1, 2, 3, 4.

Proof: Let t1 = (m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1) ∈
C , where e′i = ξ1 ei,1 + ξ2ei,2 + ξ3 ei,3 + ξ4ei,4 ∈ R for
i = 0, 1, . . . , s− 1. Then

(m0,m1, . . . ,mr−1, e0,1, e1,1, . . . , es−1,1) ∈ C1,

(m0,m1, . . . ,mr−1, e0,2, e1,2, . . . , es−1,2) ∈ C2,

(m0,m1, . . . ,mr−1, e0,3, e1,3, . . . , es−1,3) ∈ C3,

(m0,m1, . . . ,mr−1, e0,4, e1,4, . . . , es−1,4) ∈ C4.
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Now suppose C is a FqR-cyclic code of block length (r, s),
then by definition we get ρ(t1) = (mr−1,m0,m1, . . . ,mr−2,
e′s−1, e

′

0, e
′

1, . . . , e
′

s−2) ∈ C .
Therefore,

(mr−1,m0, . . . ,mr−2, es−1,1, e0,1, . . . , es−2,1) ∈ C1,

(mr−1,m0, . . . ,mr−2, es−1,2, e0,2, . . . , es−2,2) ∈ C2,

(mr−1,m0, . . . ,mr−2, es−1,3, e0,3, . . . , es−2,3) ∈ C3,

(mr−1,m0, . . . ,mr−2, es−1,4, e0,4, . . . , es−2,4) ∈ C4.

Hence, we get Ci are cyclic codes of block length (r, s) over
Fq, for i = 1, 2, 3, 4.

Conversely, by following the similar steps as above we get
the result. �

In the next result, the generator polynomials of FqR-cyclic
codes are determined. Using such polynomials, we will study
the minimum generating sets as well as the size of this family
of codes. Now onward, we consider that the block length of
FqR-cyclic codes is (r, s).
Theorem 9: Suppose C is a FqR-cyclic code of block

length (r, s). Then

C = 〈(f (x), 0), (`(x), g(x))〉,

where f (x), `(x) ∈ Fq[x]/〈xr − 1〉, f (x) | (xr − 1), g(x) =
ξ1g1(x) + ξ2g2(x) + ξ3g3(x) + ξ4g4(x), g(x) | (xs − 1) and
gi(x) ∈ Fq[x] with gi(x) | (xs − 1), for i = 1, 2, 3, 4.

Proof:Note that both C and R[x]
〈xs−1〉 are R[x]-submodules

of Rr,s. Consider a map 2 as follows

2 : C −→
R[x]
〈xs − 1〉

given as

2(p(x), q(x)) = q(x).

We can see that 2 is an R[x]-module homomorphism and
2(C) forms an ideal of the ring R[x]

〈xs−1〉 . Then by Theorem 7,
we get 2(C) = 〈g(x)〉. Also Ker(2) = {(p(x), 0) ∈ Rr,s |
(p(x), q(x)) ∈ C}. Define a set I as

I = {p(x) ∈ Fq[x]/〈xr − 1〉 | (p(x), 0) ∈ Ker(2)}.

In the ring Fq[x]/〈xr − 1〉, I is simply an ideal, and thus
I = 〈f (x)〉 with f (x) | (xr − 1). Now, for any element
(p(x), 0) ∈ Ker(2), we get p(x) = 〈f (x)〉, which implies
p(x) = λ(x)f (x) for some λ(x) ∈ Fq[x]/〈xr − 1〉. Thus,
(p(x), 0) = λ(x)? (f (x), 0). So we get Ker(2) is a submodule
of C , and generated by (f (x), 0). Now, by the first isomor-
phism theorem, we get

C
Ker(2)

∼= 〈g(x)〉.

Suppose (`(x), g(x)) ∈ C , then

2(`(x), g(x)) = g(x).

Thus, (f (x), 0) and (`(x), g(x)) generate any FqR-cyclic code
as an R[x]-submodule of Rr,s. In other words, we can say that
C = 〈(f (x), 0), (`(x), g(x))〉, where `(x) ∈ Fq[x]/〈xr −1〉.�

Lemma 10: Suppose C = 〈(f (x), 0), (`(x), g(x))〉 is a
FqR-cyclic code of block length (r, s). Then deg(`(x)) can be
reduced so that deg `(x) < deg(f (x)).

Proof: Let deg(`(x)) ≥ deg(f (x)) and suppose
deg(`(x))− deg(f (x)) = i. Now consider

C ′ = 〈(f (x), 0), (`(x)− x if (x), g(x))〉.

Note that

(`(x)− x if (x), g(x)) = (`(x), g(x))− x i ? (f (x), 0),

this implies C ′ ⊆ C .
On the other hand, we have

(`(x), g(x)) = (`(x)− x if (x), g(x))+ x i ? (f (x), 0),

this implies C ⊆ C ′. So we have C = C ′. Thus, the degree
of `(x) can be reduced. Hence, the result follows. �
Hereafter, by Lemma 10, for any code C = 〈(f (x), 0),

(`(x), g(x))〉, we will assume without loss of generality that
deg(`(x)) < deg(f (x)).

In Theorem 9, we haveC = 〈(f (x), 0), (`(x), g(x))〉, where
f (x), `(x) ∈ Fq[x], g(x) = ξ1g1(x) + ξ2g2(x) + ξ3g3(x) +
ξ4g4(x) with gi(x)hi(x) = xs − 1, for some hi(x) ∈ Fq[x],
i = 1, 2, 3, 4. From these conditions, the next useful result is
obtained.
Lemma 11: Suppose C = 〈(f (x), 0), (`(x), g(x))〉 is a

FqR-cyclic code of block length (r, s). Then f (x)|h1(x)`(x).
Proof: From Theorem 7, we get

(ξ1h1(x)+ ξ2h2(x)+ ξ3h3(x)+ ξ4h4(x)) ? (`(x), ξ1g1(x)

+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))

= (h1(x)`(x), 0).

Then (h1(x)`(x), 0) ∈ Ker(2), this implies f (x)|h1(x)`(x).�
The next corollary is obtained from Lemma 11.
Corollary 12: Suppose C = 〈(f (x), 0), (`(x), g(x))〉

is a FqR-cyclic code of block length (r, s). Then
f (x)|h1(x) gcd(f (x), `(x)).

The generator polynomials of FqR-cyclic codes have been
obtained in our above discussion. Now we study separable
codes and determine their generator polynomials.

Suppose C is a FqR-cyclic code of block length (r, s),
consider Cr and Cs are the projections of C on first r coor-
dinates and last s coordinates, respectively. Then clearly Cr
is a linear code of length r over Fq and Cs is a linear codes
of length s over R. If C is the direct product of Cr and Cs,
i.e., C = Cr × Cs, then C is called a separable code.
Using the result obtained in Theorem 9, we now discuss

the algebraic structure of separable codes.
Lemma 13: Suppose C = 〈(f (x), 0), (`(x), g(x))〉 is a

FqR-cyclic code of block length (r, s). Then

Cr = 〈gcd(f (x), `(x))〉, Cs = 〈g(x)〉.

Proof: Consider p1(x) ∈ Cr , then for some polynomial
p2(x) ∈ R[x]/〈xs − 1〉 we have (p1(x), p2(x)) ∈ C . It follows
that there exist two polynomials λ1(x), λ2(x) ∈ R[x] such that

(p1(x), p2(x)) = λ1(x) ? (f (x), 0)+ λ2(x) ? (`(x), g(x)).
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This implies p1(x) = η(λ1(x))f (x) + η(λ2(x))`(x), and
therefore, gcd(f (x), `(x)) | p1(x). Hence, p1(x) ∈

〈gcd(f (x), `(x))〉, this implies Cr ⊆ 〈gcd(f (x), `(x))〉.
On the other hand, for some polynomials λ′1(x), λ

′

2(x) ∈
Fq[x], we get

gcd(f (x), `(x)) = λ′1(x)f (x)+ λ
′

2(x)`(x).

Then

(gcd(f (x), `(x)), λ′2(x)g(x))

= λ′1(x) ? (f (x), 0)+ λ
′

2(x) ? (`(x), g(x)) ⊆ C,

this implies 〈gcd(f (x), `(x))〉 ⊆ Cr . Therefore, we get
Cr = 〈gcd(f (x), `(x))〉. Other part can be proved in a similar
manner. �
Lemma 14: Suppose C = 〈(f (x), 0), (`(x), g(x))〉 is a

FqR-cyclic code of block length (r, s). Then f (x) | `(x) if and
only if `(x) = 0.

Proof: If `(x) = 0, then its obvious that f (x) | `(x).
Conversely, let us consider that f (x) | `(x), then `(x) =

λ1(x)f (x) for some polynomial λ1(x) ∈ Fq[x]. Suppose

C ′ = 〈(f (x), 0), (0, g(x))〉.

On the one hand, we get

(0, g(x)) = (`(x), g(x))− λ1(x) ? (f (x), 0) ∈ C,

this implies, C ′ ⊆ C . On the other hand,

(`(x), g(x)) = λ1(x) ? (f (x), 0)+ (0, g(x)) ∈ C ′,

this implies, C ⊆ C ′. Thus, we get C = C ′. Therefore,
we conclude that `(x) = 0. �

We obtain the following result from Lemmas 13 and 14 for
a FqR-cyclic code to be a separable code.
Theorem 15: Suppose C = 〈(f (x), 0), (`(x), g(x))〉 is a

FqR-cyclic code of block length (r, s). Then the following
affirmations are equivalent:

1) C is a separable code;
2) f (x) | `(x);
3) Cr = 〈f (x)〉, Cs = 〈g(x)〉;
4) C = 〈(f (x), 0), (0, g(x))〉.

Proof: From Lemmas 13 and 14, the proof follows
immediately. �
From above discussion about separable codes, We get the

result below.
Theorem 16: Let C be a FqR-linear code of block length

(r, s). Then C is a separable FqR-cyclic code if and only if
Cr and Cs are cyclic codes of length r and s over Fq and R,
respectively.

Proof: Suppose C is a separable FqR-cyclic code
and (m0,m1, . . . ,mr−1, e′0, e

′

1, . . . , e
′

s−1) ∈ C , where
(m0,m1, . . . ,mr−1) ∈ Cr , (e′0, e

′

1, . . . , e
′

s−1) ∈ Cs. As C is
a FqR-cyclic code, then we have

(mr−1,m0,m1, . . . ,mr−2, e′s−1, e
′

0, e
′

1, . . . , e
′

s−2) ∈ C,

which implies (mr−1,m0,m1, . . . ,mr−2) ∈ Cr and
(e′s−1, e

′

0, e
′

1, . . . , e
′

s−2) ∈ Cs. Therefore,Cr andCs are cyclic
codes of length r and s over Fq and R, respectively.
On the other hand, suppose Cr and Cs are cyclic

codes of length r and s over Fq and R, respectively. Let
(m′0,m

′

1, . . . ,m
′

r−1) ∈ Cr , (e′′0, e
′′

1, . . . , e
′′

s−1) ∈ Cs, then
(m′r−1,m

′

0, . . . ,m
′

r−2) ∈ Cr , (e′′s−1, e
′′

0, . . . , e
′′

s−2) ∈ Cs.
Therefore,

(m′r−1,m
′

0, . . . ,m
′

r−2, e
′′

s−1, e
′′

0, . . . , e
′′

s−2) ∈ Cr × Cs = C .

Thus, C is a separable FqR-cyclic code. �
In our above discussion, we have studied the algebraic

structure of FqR-cyclic codes. We have determined their
generator polynomials and studied the structure of separable
codes also. Now, by using the result obtained in Theorem 9,
we study minimal generating sets of FqR-cyclic codes.

From the ring homomorphism η, defined in Section 2,
we have η(ξ1) = 1, η(ξ2) = η(ξ3) = η(ξ4) = 0. We will
use these facts in the proof of the following result.
Theorem 17: Let C = 〈(f (x), 0), (`(x), g(x))〉 be a FqR-

cyclic code, where f (x)k(x) = xr − 1, g(x) = ξ1g1(x) +
ξ2g2(x) + ξ3g3(x) + ξ4g4(x) with gi(x)hi(x) = xs − 1 for
some hi(x) ∈ Fq[x], i = 1, 2, 3, 4.
Let

S1 =
deg(k(x))−1⋃

i=0

{x i ? (f (x), 0)},

S2 =
deg(h1(x))−1⋃

i=0

{x i ? (`(x), ξ1g1(x))},

S3 =
deg(h2(x))−1⋃

i=0

{x i ? (0, ξ2g2(x))},

S4 =
deg(h3(x))−1⋃

i=0

{x i ? (0, ξ3g3(x))},

S5 =
deg(h4(x))−1⋃

i=0

{x i ? (0, ξ4g4(x))}.

Then S =
⋃5

i=1 Si forms a minimal generating set of C.
Furthermore, C has qk codewords, where k = deg(k(x)) +∑4

i=1 deg(hi(x)).
Proof: Let c′′(x) ∈ C . Then for some polynomials

m1(x),m2(x) ∈ R[x] we have

c′′(x) = m1(x) ? (f (x), 0)+ m2(x) ? (`(x), ξ1g1(x)

+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x)).

Let m1(x) = t0 + t1x + · · · + tαxα , where ti = ξ1 ai + ξ2bi +
ξ3 ci + ξ4di, i = 0, 1, · · · , α. Then we have

m1(x) = ξ1(a0 + a1x + · · · + aαxα)+ ξ2(b0 + b1x + · · ·

+ bαxα)+ ξ3(c0 + c1x + · · · + cαxα)

+ ξ4(d0 + d1x + · · · + dαxα)

= ξ1a(x)+ ξ2b(x)+ ξ3c(x)+ ξ4d(x).
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Now,

m1(x) ? (f (x), 0)

= (ξ1a(x)+ ξ2b(x)+ ξ3c(x)+ ξ4d(x)) ? (f (x), 0)

= a(x) ? (η(ξ1)f (x), 0)

= a(x) ? (f (x), 0).

If deg(a(x)) < deg(k(x)), then a(x) ? (f (x), 0) ∈

Span(S1). Otherwise, by division algorithm, we have a(x) =
k(x)q0(x)+ r0(x) for some polynomials q0(x), r0(x) ∈ Fq[x]
with r0(x) = 0 or deg(r0(x)) < deg(k(x)). Therefore,

a(x) ? (f (x), 0) = (k(x)q0(x)+ r0(x)) ? (f (x), 0)

= k(x)q0(x) ? (f (x), 0)+ r0(x) ? (f (x), 0)

= 0+ r0(x) ? (f (x), 0).

Thus, we get r0(x) ? (f (x), 0) ∈ Span(S1). Hence, we have
a(x) ? (f (x), 0) ∈ Span(S1). Now we only need to prove that

m2(x) ? (`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))

∈ Span(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5).

Let m2(x) = t ′0 + t
′

1x + · · · + t
′
βx
β , where t ′i = ξ1a

′
i + ξ2b

′
i +

ξ3c′i + ξ4d
′
i , i = 0, 1, · · · , β. Then we have

m2(x) = ξ1(a′0 + a
′

1x + · · · + a
′
βx
β )+ ξ2(b′0 + b

′

1x + · · ·

+ b′βx
β )+ ξ3(c′0 + c

′

1x + · · · + c
′
βx
β )

+ ξ4(d ′0 + d
′

1x + · · · + d
′
βx
β )

= ξ1a′(x)+ ξ2b′(x)+ ξ3c′(x)+ ξ4d ′(x).

Now,

m2(x) ? (`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))

= (ξ1a′(x)+ ξ2b′(x)+ ξ3c′(x)+ ξ4d ′(x))

? (`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))

= a′(x) ? (`(x), ξ1g1(x))+ b′(x) ? (0, ξ2g2(x))

+ c′(x) ? (0, ξ3g3(x))+ d ′(x) ? (0, ξ4g4(x)).

If deg(b′(x)) < deg(h2(x)), then b′(x) ? (0, ξ2g2(x)) ∈
Span(S3). Otherwise, by division algorithm, we have b′(x) =
h2(x)q1(x)+ r1(x) for some polynomials q1(x), r1(x) ∈ R[x]
with r1(x) = 0 or deg(r1(x)) < deg(h2(x)). Therefore,

b′(x) ? (0, ξ2g2(x)) = v(h2(x)q1(x)+ r1(x)) ? (0, ξ2g2(x))

= h2(x)q1(x) ? (0, ξ2g2(x))

+ r1(x) ? (0, ξ2g2(x))

= 0+ r1(x) ? (0, ξ2g2(x)).

Thus, we get r1(x)?(0, ξ2 g2(x)) ∈ Span(S3). Hence, we have
b′(x) ? (0, ξ2g2(x)) ∈ Span(S3). Similarly, we can get c′(x) ?
(0, ξ3g3(x)) ∈ Span(S4) and d ′(x) ? (0, ξ4g4(x)) ∈ Span(S5).
Now, consider a′(x) ? (`(x), ξ1g1(x)). If deg(a′(x)) <

deg(h1(x)), then a′(x) ? (`(x), ξ1g1(x)) ∈ Span(S2). Other-
wise, by division algorithm, we have a′(x) = h1(x)q2(x) +
r2(x) for some polynomials q2(x), r2(x) ∈ R[x] with r2(x) =
0 or deg(r2(x)) < deg(h1(x)). Therefore,

a′(x) ? (`(x), ξ1g1(x))

= (h1(x)q2(x)+ r2(x)) ? (`(x), ξ1g1(x))

= h1(x)q2(x) ? (`(x), ξ1g1(x))+ r2(x) ? (`(x), ξ1g1(x))

= q2(x) ? (h1(x)`(x), 0)+ r2(x) ? (`(x), ξ1g1(x)).

Clearly, we get r2(x)) ? (`(x), ξ1g1(x)) ∈ Span(S2).
From Lemma 11, we have f (x) | h1(x)`(x) which implies
q2(x) ? (h1(x)`(x), 0) ∈ Span(S1). Thus, we get a′(x) ?
(`(x), ξ1g1(x)) ∈ Span(S1 ∪ S2). Hence, we infer that c′′(x) ∈
Span(S1 ∪ S2 ∪ S3 ∪ S4 ∪ S5). Clearly, the elements in
Span(S1∪S2∪S3∪S4∪S5) are R-linearly independent. Thus,
we conclude that S =

⋃5
i=1 Si forms a minimal generating

set of C as an R-submodule and C has qk codewords, where
k = deg(k(x))+

∑4
i=1 deg(hi(x)). �

To illustrate our results discussed above, we now present
an example.
Example 18: Let q = 5, r = 3 and s = 3. Suppose C =
〈(f (x), 0), (`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))〉 is a
F5R-cyclic code of block length (3, 3), where

f (x) = 1+ x + x2,

g1(x) = g2(x) = x + 4,

g3(x) = g4(x) = 1+ x + x2,

`(x) = 1.

Furthermore, we can determine the polynomials hi(x) for i =
1, 2, 3, 4 as follows.

g1(x)h1(x) = g2(x)h2(x) = x3 − 1

H⇒ h1(x) = h2(x) = 1+ x + x2,

g3(x)h3(x) = g4(x)h4(x) = x3 − 1

H⇒ h3(x) = h4(x) = x + 4.

By Theorem 17, C has the following generator matrix G.

G =



1 1 1 0 0 0
1 0 0 ξ1 4ξ1 0
0 1 0 0 ξ1 4ξ1
0 0 0 ξ2 4ξ2 0
0 0 0 0 ξ2 4ξ2
0 0 0 ξ3 ξ3 ξ3
0 0 0 ξ4 ξ4 ξ4


,

Moreover, |C| = 57. �

V. DUALITY OF FqR-CYCLIC CODES
This section is dedicated to the discussion of structural prop-
erties of dual of FqR-cyclic codes. We determine the relation-
ship between the generators of FqR-cyclic codes and their
duals. Recall, throughout the paper, we suppose the block
length of FqR-cyclic codes is (r, s).

Let c = (a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) and c′ =
(a′0, a

′

1, . . . , a
′

r−1, b
′

0, b
′

1, . . . , b
′

s−1) ∈ Frq × Rs. Then the
inner product is defined as follows.

c · c′ = ξ1
r−1∑
i=0

aia′i +
s−1∑
j=0

bjb′j ∈ R.
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Definition 19: If C is a FqR-linear code, then its dual code
C⊥ is defined as

C⊥ = {c′ ∈ Frq × R
s
| c · c′ = 0,∀ c ∈ C}.

C is called self-dual if C⊥ = C and self-orthogonal if
C ⊆ C⊥.
In the next result, we present a relationship between

FqR-cyclic codes and their duals.
Lemma 20: If C is any FqR-cyclic code of block length

(r, s), then C⊥ is also a FqR-cyclic code of same block length.
Proof: Let C be a FqR-cyclic code and c =

(a0, a1, . . . , ar−1, b0, b1, . . . , bs−1) ∈ C⊥. We need to show
that ρ(c) = (ar−1, a0, . . . , ar−2, bs−1, b0, . . . , bs−2) ∈ C⊥.
Since c ∈ C⊥, for any c′ = (a′0, a

′

1, . . . , a
′

r−1, b
′

0, b
′

1, . . . ,

b′s−1) ∈ C , we get c · c′ = 0. Now, let m = lcm(r, s) and
ρm−1(c′) = (a′1, a

′

2, . . . , a
′

r−1, a
′

0, b
′

1, b
′

2, . . . , b
′

s−1, b
′

0) =
d. Then ρm(c′) = c′. Since the code C is a FqR-cyclic code,
then d ∈ C . Therefore,

0 = c · d = ξ1(a0a′1 + a1a
′

2 + · · · + ar−1a
′

0)

+ (b0b′1 + b1b
′

2 + · · · + bs−1b
′

0)

= ξ1(ar−1a′0 + a0a
′

1 + · · · + ar−2a
′

r−1)

+ (bs−1b′0 + b0b
′

1 + · · · + bs−2b
′

s−1)

= ρ(c) · c′.

Thus, we have ρ(c) ∈ C⊥. Hence, C⊥ is also a FqR-cyclic
code of same block length. �
In the above result, we have seen that the dual of a FqR-

cyclic code C is also a FqR-cyclic code, then we denote

C⊥ = 〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ ξ2ĝ2(x)
+ ξ3ĝ3(x)+ ξ4ĝ4(x))〉

where ĝi(x)ĥi(x) = xs − 1 in R[x] for i = 1, 2, 3, 4,
f̂ (x), ̂̀(x) ∈ Fq[x]/(xr − 1) with f̂ (x) | (xr − 1), deg(̂̀(x)) <
deg(̂f (x)) and f̂ (x) | ĥ1(x)̂̀(x).

Throughout the paper, we consider m = lcm(r, s), and
the reciprocal of a polynomial p(x) is denoted by p∗(x) =
xdeg(p(x))p(x−1).
Definition 21: Let t1(x) = (m(x), e(x)) and t2(x) =

(m′(x), e′(x)) be two elements of Rr,s. Define a map

• : Rr,s × Rr,s→ R[x]/(xm − 1)

such that

•(t1(x), t2(x))

= ξ1m(x)m′∗(x)xm−deg(m
′(x))−1 x

m
− 1

xr − 1

+ e(x)e′∗(x)xm−deg(e
′(x))−1 x

m
− 1

xs − 1
(mod (xm − 1)).

The map • is a bilinear map between R[x]-modules.
For more details about the Definition 21 one can see
[13, Definition 3]. Now onward, for convenience, we denote
•(t1(x), t2(x)) by t1(x) • t2(x).
Proposition 22: Let t1 and t2 ∈ Frq×Rs be two vectors and

let t1(x) = (m(x), e(x)) and t2(x) = (m′(x), e′(x)) be their

associated polynomials. Then, t1 is orthogonal to t2 and all
its shifts if and only if

t1(x) • t2(x) = 0.

Proof: Let t1 = (m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1)
and t2 = (m′0,m

′

1, . . . ,m
′

r−1, e
′′

0, e
′′

1, . . . , e
′′

s−1). Assume that
t(i)2 = (m′0−i,m

′

1−i, . . . ,m
′

r−1−i, e
′′

0−i, e
′′

1−i, . . . , e
′′

s−1−i) is the
ith cyclic shift of t2, where i = 0, 1, 2, . . . ,m − 1. Then
t1 · t

(i)
2 = 0 if and only if

ξ1

r−1∑
α=0

mαm′α−i +
s−1∑
β=0

e′βe
′′
β−i = 0.

Let Bi = ξ1
∑r−1
α=0mαm

′
α−i +

∑s−1
β=0 e

′
βe
′′
β−i. Then we get

t1(x) • t2(x) = ξ1

(
xm − 1
xr − 1

) r−1∑
a=0

r−1∑
α=0

mαm′α−ax
m−1−a

+

(
xm − 1
xs − 1

) s−1∑
b=0

s−1∑
β=0

e′βe
′′
β−bx

m−1−b

=

m−1∑
i=0

Bixm−1−i (mod (xm − 1)).

Hence, t1(x) • t2(x) = 0 if and only if Bi = 0, for i =
0, 1, . . . ,m− 1. �
We get the next results from the above discussion, that

will be used in determining the generator polynomials of dual
codes.
Lemma 23: Let t1(x) = (m(x), e(x)), t2(x) =

(m′(x), e′(x)) ∈ Rr,s such that t1(x) • t2(x) = 0. If e(x) = 0
or e′(x) = 0, then m(x)m′∗(x) ≡ 0 (mod (xr − 1)) over Fq.
Respectively, if m(x) = 0 or m′(x) = 0, then e(x)e′∗(x) ≡ 0
(mod (xs − 1)) over R.

Proof: Let e(x) = 0 or e′(x) = 0. Then

t1(x) • t2(x) = ξ1

(
xm − 1
xr − 1

)
m(x)m′∗(x)xm−deg(m

′(x))−1

≡ 0 (mod (xm − 1)).

This implies that there is a polynomialµ(x) ∈ Fq[x] such that

ξ1

(
xm − 1
xr − 1

)
m(x)m′∗(x)xm−deg(m

′(x))−1
= ξ1µ(x)(xm − 1).

Consider µ′(x) = µ(x)xdeg(m
′(x))+1. Then we get

m(x)m′∗(x)xm = µ′(x)(xr − 1). Thus, m(x)m′∗(x) ≡ 0
(mod (xr − 1)). Using similar argument we can prove other
case. �
Proposition 24: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x))〉 be a FqR-cyclic code. Then

|Cr | = qr−deg(gcd(f (x),`(x))), |Cs| = q4s−
∑4

i=1 deg(gi(x)),

|(Cr )⊥| = qdeg(gcd(f (x),`(x)), |(Cs)⊥| = q
∑4

i=1 deg(gi(x)),

|(C⊥)r | = qdeg(f (x)),

|(C⊥)s| = q
∑4

i=1 deg(gi(x))+deg(f (x))−deg(gcd(f (x),`(x))),
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|ξ1 Cs| = qs−deg(g1(x)), |ξ2 Cs| = qs−deg(g2(x)),

|ξ3 Cs| = qs−deg(g3(x)), |ξ4 Cs| = qs−deg(g4(x)),

|ξ1(Cs)⊥| = qdeg(g1(x)), |ξ2(Cs)⊥| = qdeg(g2(x)),

|ξ3(Cs)⊥| = qdeg(g3(x)), |ξ4(Cs)⊥| = qdeg(g4(x)),

|ξ1(C⊥)s| = qdeg(g1(x))+deg(f (x))−deg(gcd(f (x),`(x)),

|ξ2(C⊥)s| = qdeg(g2(x)),

|ξ3(C⊥)s| = qdeg(g3(x)), |ξ4(C⊥)s| = qdeg(g4(x)).

Proof: From Lemma 13, we get Cr = 〈gcd(f (x), `(x))〉
is a cyclic code of length r over Fq and Cs = 〈ξ1g1(x) +
ξ2g2(x) + ξ3g3(x) + ξ4g4(x)〉 is a cyclic code of length
s over R. Therefore, |Cr | = qr−gcd(f (x),`(x)) and |Cs| =
q4s−

∑4
i=1 deg(gi(x)). By the theory of cyclic codes and their

duals, we can get the values of |(Cr )⊥|, |(C⊥)r |, |(Cs)⊥| and
|(C⊥)s|.
From minimal generating sets determined in Theorem 17,

we have ξiCs = 〈ξigi(x)〉, for i = 1, 2, 3, 4. Hence, we get
|ξiCs| = qs−deg(gi(x)). Therefore, we can get the values of
|ξi(Cs)⊥|, |ξi(C⊥)s|, for i = 1, 2, 3, 4. �

From the above proposition, we get the following result,
which calculates the degree of each generator polynomial of
dual code.
Theorem 25: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

deg(̂f (x)) = r − deg(gcd(f (x), `(x))),

deg(ĝ1(x)) = s− deg(g1(x))− deg(f (x))

+ deg(gcd(f (x), `(x))),

deg(ĝ2(x)) = s− deg(g2(x)),

deg(ĝ3(x)) = s− deg(g3(x)),

deg(ĝ4(x)) = s− deg(g4(x)).

Proof: It can be seen that (Cr )⊥ is a cyclic code gener-
ated by f̂ (x). So, |(Cr )⊥| = qr−deg(̂f (x)). From Proposition 24,
we get |(Cr )⊥| = pdeg(gcd(f (x),`(x))). Hence, deg(̂f (x)) =
r − deg(gcd(f (x), `(x)).

We can see that ξ1(C⊥)s is a cyclic code generated by
ξ1ĝ1(x). So, |ξ1(C⊥)s| = qs−deg(ĝ1(x)). By Proposition 24,
we get |ξ1(C⊥)s| = qdeg(g1(x))+deg(f (x))−deg(gcd(f (x),`(x))).
Hence, deg(ĝ1(x)) = s − deg(g1(x)) − deg(f (x)) +
deg(gcd(f (x), `(x)).

We can see that ξ2(C⊥)s is a cyclic code generated by
ξ2ĝ2(x). So, |ξ2(C⊥)s| = qs−deg(ĝ2(x)). From Proposition 24,
we get |ξ2(C⊥)s| = qdeg(g2(x)). Hence, deg(ĝ2(x)) = s −
deg(g2(x)). Similarly, we can prove other parts. �
Now we discuss the generator polynomials of C⊥ and

establish the relationship between the generator polynomials
of C and C⊥.
Proposition 26: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

f̂ (x) =
(

xr − 1
gcd(f (x), `(x))

)∗
∈ Fq[x].

Proof: Since (̂f (x), 0) ∈ C⊥, then we get

(f (x), 0) • (̂f (x), 0) = 0,

(`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)

+ ξ4g4(x)) • (̂f (x), 0)) = 0

Thus, from Lemma 23,

f (x )̂f ∗(x) ≡ 0 (mod (xr − 1)),

`(x )̂f ∗(x) ≡ 0 (mod (xr − 1)),

over Fq. Therefore, gcd(f (x), `(x))̂f ∗(x) ≡ 0 (mod (xr −
1)), and hence for some λ(x) ∈ Fq[x] we have
gcd(f (x), `(x))̂f ∗(x) = λ(x)(xr − 1). Furthermore,
as gcd(f (x), `(x)) | (xr − 1) and f̂ ∗(x) | (xr − 1), then by
Theorem 25, we get deg(̂f (x)) = r − deg(gcd(f (x), `(x))).
So, λ(x) = c1, for any c1 ∈ Fq. Then we could suppose
λ(x) = 1. Hence, we get

f̂ ∗(x) =
xr − 1

gcd(f (x), `(x))
∈ Fq[x],

this implies

f̂ (x) =
(

xr − 1
gcd(f (x), `(x))

)∗
∈ Fq[x].

�
Proposition 27: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

ĝ1(x) =
(xs − 1) gcd(f (x), `(x))∗

f ∗(x)g∗1(x)
∈ R[x].

Proof:We have

ξ1
f (x)

gcd(f (x), `(x))
? (`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)

+ ξ4g4(x))−
`(x)

gcd(f (x), `(x))
? (f (x), 0)

= (0, ξ1
f (x)

gcd(f (x), `(x))
g1(x)) ∈ C .

Further, ξ1 ? (̂̀(x), ξ1ĝ1(x)+ ξ2ĝ2(x)+ ξ3ĝ3(x)+ ξ4ĝ4(x)) =
(̂̀(x), ξ1ĝ1(x)) ∈ C⊥. Therefore,

(̂̀(x), ξ1ĝ1(x)) • (0, ξ1 f (x)
gcd(f (x), `(x))

g1(x)
)
= 0.

Thus, from Lemma 23,

ξ1ĝ1(x)
(

f (x)
gcd(f (x), `(x))

g1(x)
)∗
≡ 0 (mod (xs − 1)).

Hence,

ξ1ĝ1(x)
(

f (x)
gcd(f (x), `(x))

g1(x)
)∗
= ξ1λ1(x)(xs − 1)

for some λ1(x) in R[x]. This is equivalent to

ĝ1(x)
(

f (x)
gcd(f (x), `(x))

g1(x)
)∗
= λ1(x)(xs − 1) ∈ R[x].
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Since ĝ1(x) | (xs − 1), then from Corollary 12,(
f (x)

gcd(f (x),`(x))g1(x)
)∗
| (xs − 1). Further, by Theorem 25,

we get deg(ĝ1(x)) = s − deg(g1(x)) − deg(f (x)) +
deg(gcd(f (x), `(x)). So, λ1(x) = c2, for any c2 ∈ R. Then
we could suppose λ1(x) = 1. So, we have

ĝ1(x) =
(xs − 1) gcd(f (x), `(x))∗

f ∗(x)g∗1(x)
∈ R[x].

�
Proposition 28: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

ĝ2(x) =
(
xs − 1
g2(x)

)∗
∈ R[x].

Proof:We have

ξ2 ? (̂̀(x), ξ1ĝ1(x)+ ξ2ĝ2(x)+ ξ3ĝ3(x)+ ξ4ĝ4(x))
= (0, ξ2ĝ2(x)) ∈ C⊥.

Then

(`(x), ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)

+ ξ4g4(x)) • (0, ξ2ĝ2(x)) = 0.

Thus, by Lemma 23, we get

ξ2g2(x)ĝ2∗(x) ≡ 0 (mod (xs − 1)).

Hence, ξ2g2(x)ĝ2∗(x) = ξ2λ2(x)(xs − 1), for some λ2(x) ∈
R[x]. This is equivalent to g2(x)ĝ2∗(x) = λ2(x)(xs − 1) ∈
R[x]. Since g2(x) | (xs − 1) and ĝ2∗(x) | (xs − 1), further by
Theorem 25, we have deg(ĝ2(x)) = s−deg(g2(x)).Therefore,
λ2(x) = c3, for any c3 ∈ R. Then we could suppose
λ2(x) = 1. So, we have

ĝ2∗(x) =
xs − 1
g2(x)

∈ R[x],

this implies

ĝ2(x) =
(
xs − 1
g2(x)

)∗
∈ R[x].

�
Proposition 29: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

ĝ3(x) =
(
xs − 1
g3(x)

)∗
, ĝ4(x) =

(
xs − 1
g4(x)

)∗
∈ R[x].

In the following, we determine a relation between the
polynomials `(x) and ̂̀(x).
Proposition 30: Let C = 〈(f (x), 0), (`(x), ξ1g1(x) +

ξ2g2(x)+ξ3g3(x)+ξ4g4(x))〉 be aFqR-cyclic code, and C⊥ =
〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then

̂̀(x) = (xr − 1)
f ∗(x)

µ(x) ∈ Fq[x].

where

µ(x) = −xm−deg(g1(x))+deg(`(x))
(

`∗(x)
gcd(f (x), `(x))∗

)−1
×

(
mod

(
f ∗(x)

gcd(f (x), `(x))∗

))
.

Proof:As (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x)) ∈
C⊥, then

(̂̀(x), ξ1ĝ1(x)+ ξ2ĝ2(x)+ ξ3ĝ3(x)+ ξ4ĝ4(x)) • (f (x), 0) = 0.

Thus, from Lemma 23, we have

̂̀(x)f ∗(x) ≡ 0 (mod (xr − 1)).

Hence,

̂̀(x) = xr − 1
f ∗(x)

µ(x) for some µ(x) ∈ Fq[x].

Since ξ1 ? (̂̀(x), ξ1ĝ1(x)+ ξ2ĝ2(x)+ ξ3ĝ3(x)+ ξ4ĝ4(x)) =
(̂̀(x), ξ1ĝ1(x)) ∈ C⊥ and ξ1 ? (`(x), ξ1g1(x) + ξ2g2(x) +
ξ3g3(x)+ ξ4g4(x)) = (`(x), ξ1g1(x)) ∈ C , then

(̂̀(x), ξ1ĝ1(x)) • (`(x), ξ1g1(x))
= ξ1

xr − 1
f ∗(x)

µ(x)`∗(x)xm−deg(`(x))−1
xm − 1
xr − 1

+ ξ1
(xs − 1) gcd(f (x), `(x))∗

f ∗(x)g∗1(x)
g∗1(x)x

m−deg(g1(x)−1 x
m
− 1

xs − 1

= ξ1
(xm − 1) gcd(f (x), `(x))∗

f ∗(x)

×

(
µ(x)

`∗(x)
gcd(f (x), `(x))∗

xm−deg(`(x))−1+xm−deg(g1(x))−1
)

= 0 mod (xm − 1).

Then, either(
µ(x)

`∗(x)
gcd(f (x), `(x))∗

xm−deg(`(x))−1 + xm−deg(g1(x))−1
)

≡ 0 (mod (xm − 1))), (1)

or(
µ(x)

`∗(x)
gcd(f (x), `(x))∗

xm−deg(`(x))−1 + xm−deg(g1(x))−1
)

≡ 0
(

mod
(

f ∗(x)
gcd(f (x), `(x))∗

))
. (2)

Since ( f ∗(x)
gcd(f (x),`(x))∗ ) | (xm − 1), clearly (1) implies (2).

Therefore,

µ(x)
`∗(x)

gcd(f (x), `(x))∗
xm = −xm−deg(g1(x))+deg(`(x))

×

(
mod

(
f ∗(x)

gcd(f (x), `(x))∗

))
.

VOLUME 8, 2020 190059



H. Q. Dinh et al.: Study of FqR-Cyclic Codes and Their Applications

Further, we also know xm ≡ 1 (mod ( f ∗(x)
gcd(f (x),`(x))∗ )).

Since gcd
(

f (x)
gcd(f (x),`(x)) ,

`(x)
gcd(f (x),`(x))

)
= 1, then there exists(

`∗(x)
gcd(f (x),`(x))∗

)−1
(mod ( f ∗(x)

gcd(f (x),`(x))∗ )). Thus,

µ(x) = −xm−deg(g1(x))+deg(`(x))
(

`∗(x)
gcd(f (x), `(x))∗

)−1
×

(
mod

(
f ∗(x)

gcd(f (x), `(x))∗

))
.

�
In the next theorem, we summarize our above discussion.
Theorem 31: Let C = 〈(f (x), 0), (`(x), ξ1g1(x)+ξ2g2(x)+

ξ3g3(x) + ξ4g4(x))〉 be a FqR-cyclic code, and C⊥ =

〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x)+ξ2ĝ2(x)+ξ3ĝ3(x)+ξ4ĝ4(x))〉. Then
1) f̂ (x) =

(
xr−1

gcd(f (x),`(x))

)∗
∈ Fq[x],

2) ĝ1(x) =
(xs−1) gcd(f (x),`(x))∗

f ∗(x)g∗1(x)
∈ R[x],

3) ĝ2(x) =
(
xs−1
g2(x)

)∗
, ĝ3(x) =

(
xs−1
g3(x)

)∗
, ĝ4(x) =(

xs−1
g4(x)

)∗
∈ R[x],

4) ̂̀(x) = (xr−1)
f ∗(x) µ(x) ∈ Fq[x], where µ(x) as given in

Proposition 30.
Example 32: Let C=〈(f (x), 0), (`(x), ξ1g1(x)+ξ2g2(x)+

ξ3g3(x) + ξ4g4(x))〉 be a F5R-cyclic code with the gen-
erator polynomials given in Example 18. Then C⊥ =

〈(̂f (x), 0), (̂̀(x), ξ1ĝ1(x) + ξ2ĝ2(x) + ξ3ĝ3(x) + ξ4ĝ4(x))〉.
Hence, by Theorem 31, we have f̂ (x) = 4x3+ 1 and ĝ1(x) =
4, ĝ2(x) = x2+x+1, ĝ3(x) = ĝ4(x) = 4x+1, ̂̀(x) = 4x2+1.
Moreover, C⊥ has the following generator matrix H .

H =



1 0 4 4ξ1 0 0
4 1 0 0 4ξ1 0
0 4 1 0 0 4ξ1
0 0 0 ξ2 ξ2 ξ2
0 0 0 ξ3 4ξ3 0
0 0 0 0 ξ3 4ξ3
0 0 0 ξ4 4ξ4 0
0 0 0 0 ξ4 4ξ4


.

Further, |C⊥| = 58. �
Next we present some optimal and near-optimal codes as

Gray images of cyclic codes over R and FqR. In Table 1,
we construct some optimal and near-optimal codes as ψ1-
Gray images of cyclic codes Cs over R. In Table 2, we con-
struct some optimal and near-optimal codes as 91-Gray
images of FqR-cyclic codes. We denote [.]∗ to indicate the
optimal codes, and [.]∗∗ to indicate the near-optimal codes
(codes with minimum distance one less than the codes given
in [26]). The generator polynomial coefficients are written
down in descending order, e.g. 11226 is corresponds to the
polynomial x4 + x3 + 2x2 + 2x + 6.

VI. QECCs FROM FqR-CYCLIC CODES
In the above sections, we have studied FqR-cyclic codes and
separable codes. Now we discuss the application of FqR-
cyclic codes in constructing quantum codes.

Shor [43] and Steane [42] first studied the QECCs indi-
vidually. Calderbank et al. [17] subsequently studied the con-
struction of this family of codes from classical codes, demon-
strated their existence and methods of correction. In the last
few years, a number of QECCs were discussed over finite
fields using the theory of Calderbank et al. [17] (See [2], [3],
[25], [27], [28], [32]–[37], [40], [41]).

To show a construction of QECCs from this study, we now
define a Gray map on FqR. This map is just similar to the map
defined in Section 3, but for our purpose here we consider
a different matrix of order 4 than the previously considered
matrixM1.

Let us consider, M2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ∈ GL4(Fq).

Since Fq is a field of odd characteristic, then by direct com-
putation we can see thatM2MT

2 = I4, whereMT
2 denotes the

transpose of matrix M2 and I4 denotes the identity matrix of
order 4. A Gray map on R is defined as follows.

ψ2 : R −→ F4
q given by ψ2(e) = (e1, e2, e3, e4)M2.

Wedenote (e1, e2, e3, e4)M2 by eM2, where e = ξ1e1+ξ2e2+
ξe3 + ξe4. As earlier, we can extend this map as follows.

92 : Frq × R
s
−→ Fr+4sq

given by

(m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1)

7−→ (m0,m1, . . . ,mr−1, ψ2(e′0), ψ2(e′1), . . . , ψ2(e′s−1))

(m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1)

7−→ (m0,m1, . . . ,mr−1, e′0M2, e′1M2, . . . , e′s−1M2),

where (m0,m1, . . . ,mr−1) ∈ Frq, (e′0, e
′

1, . . . , e
′

s−1) ∈ R
s and

e′i = ξ1 ei,1+ξ2ei,2+ξ3 ei,3+ξ4ei,4 ∈ R for i = 0, 1, . . . , s−1.
Similar to the Proposition 5, we can see that 92 is a Fq-

linear map and for a FqR-linear code C of block length (r, s)
with |C| = qk ,92(C) is a [r+4s, k, dH ] linear code over Fq.
Proposition 33: Let C be a FqR-linear code. Then

92(C⊥) = 92(C)⊥. Further, if C is self-dual then 92(C)
is also self-dual.

Proof: Let t1 = (m0,m1, . . . ,mr−1, e′0, e
′

1, . . . , e
′

s−1) ∈
C and t2 = (m′0,m

′

1, . . . ,m
′

r−1, e
′′

0, e
′′

1, . . . , e
′′

s−1) ∈ C⊥,
where e′i = ξ1ei,1 + ξ2 ei,2 + ξ3ei,3 + ξ4 ei,4 and e′′i =
ξ1e′′i,1 + ξ2 e

′′

i,2 + ξ3e
′′

i,3 + ξ4 e
′′

i,4 for i = 0, 1, . . . , s − 1.
Then by the definition of inner product, we have

t1 · t2 = ξ1
r−1∑
j=0

mjm′j +
s−1∑
i=0

e′ie
′′
i = 0,

which implies

ξ1

r−1∑
j=0

mjm′j +
s−1∑
i=0

(ξ1ei,1 + ξ2 ei,2 + ξ3ei,3 + ξ4 ei,4)

× (ξ1e′′i,1 + ξ2 e
′′

i,2 + ξ3e
′′

i,3 + ξ4 e
′′

i,4) = 0,
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ξ1

r−1∑
j=0

mjm′j +
s−1∑
i=0

(ξ1ei,1e′′i,1 + ξ2 ei,2e
′′

i,2

+ ξ3ei,3e′′i,3 + ξ4 ei,4e
′′

i,4) = 0.

Now comparing the coefficients of ξ1, ξ2, ξ3 and ξ4 from both
sides, we get

r−1∑
j=0

mjm′j +
s−1∑
i=0

ei,1e′′i,1 = 0,

s−1∑
i=0

ei,2e′′i,2 = 0,

s−1∑
i=0

ei,3e′′i,3 = 0,

and
s−1∑
i=0

ei,4e′′i,4 = 0.

Further, we have

92(t1) ·92(t2) =
r−1∑
j=0

mjm′j +
s−1∑
i=0

e′jM2MT
2 e
′′T
j ,

=

r−1∑
j=0

mjm′j +
s−1∑
i=0

(ei,1e′′i,1 + ei,2e
′′

i,2

+ ei,3e′′i,3 + ei,4e
′′

i,4).

Then from the above equations, we get
∑r−1

j=0 mjm
′
j +∑s−1

i=0 (ei,1e
′′

i,1+ ei,2e
′′

i,2+ ei,3e
′′

i,3+ ei,4e
′′

i,4) = 0, i.e., 92(t1) ·
92(t2) = 0, which implies 92(t2) ∈ 92(C)⊥ for 92(t1) ∈
92(C). Therefore,92(C⊥) ⊆ 92(C)⊥. Since92 is bijective,
so |92(C⊥)| = |(92(C))⊥|. Hence, 92(C⊥) = (92(C))⊥.
Now suppose that C is self-dual, i.e., C = C⊥,

then 92(C) = 92(C⊥) = (92(C))⊥. Thus, 92(C) is
self-dual. �
Theorem 34 (CSS Construction [17]): Let C1 = [n, k1, d1]

and C2 = [n, k2, d2] be two linear codes over Fq with
C⊥2 ⊆ C1. Then there exists a QECCwith parameters [[n, k1+
k2 − n, d]]q, where d = min{d1, d2}. Moreover, if C⊥1 ⊆ C1,
then a QECC having parameters [[n, 2k1 − n, d1]]q can be
constructed.
Next we present following result for dual-containing cyclic

codes over Fq.
Theorem 35 [17, Theorem 13]: Let Cr = 〈f (x)〉 be a

cyclic code of length r over Fq. Then C⊥r ⊆ Cr if and only if

xr − 1 ≡ 0 (mod f (x)f ∗(x)).

Now extending Lemma 35 over R, we get the next result.
Theorem 36 [3, Theorem 4.2]: Let Cs = 〈ξ1g(x) +

ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x)〉 be a cyclic code of length s over
R. Then C⊥s ⊆ Cs if and only if

xs − 1 ≡ 0 (mod gi(x)g∗i (x)), for i = 1, 2, 3, 4.

In the next result, we see the dual containing property on
separable FqR-cyclic codes.
Theorem 37: Let C = Cr × Cs be a separable FqR-cyclic

code. Then C⊥ ⊆ C if and only if C⊥r ⊆ Cr and C⊥s ⊆ Cs.
Proof: If C⊥ ⊆ C = Cr ×Cs and C⊥ = C⊥r ×C

⊥
s , then

C⊥r × C
⊥
s ⊆ Cr × Cs. Therefore, C⊥r ⊆ Cr and C⊥s ⊆ Cs.

Converse part is straightforward. �
By Lemmas 35, 36 and Theorem 37, the next result is

obtained.
Theorem 38: Let C = Cr × Cs be a separable FqR-cyclic

code, where Cr = 〈f (x)〉 and Cs = 〈ξ1g1(x) + ξ2g2(x) +
ξ3g3(x)+ ξ4g4(x)〉. Then C⊥ ⊆ C if and only if the following
conditions holds

1) xr − 1 ≡ 0 (mod f (x)f ∗(x)),
2) xs − 1 ≡ 0 (mod gi(x)g∗i (x)), for i = 1, 2, 3, 4.
The main result of constructing QECCs from this analysis

is now presented.
Theorem 39: Let C = Cr × Cs be a separable FqR-cyclic

code of block length (r, s). If C⊥r ⊆ Cr , C⊥s,i ⊆ Cs,i for i =
1, 2, 3, 4, then there exists a QECC with parameters [[r +
4s, 2k−(r+4s), dH ]]q, where dH and k denote the Hamming
distance and dimension of the code 92(C), respectively.

Proof: Let C⊥r ⊆ Cr and C⊥s,i ⊆ Cs,i, i = 1, 2, 3, 4.
Then by Theorem 37, we have C⊥ ⊆ C . By Proposition 33,
we have 92(C⊥) = 92(C)⊥, then we can easily see that
92(C)⊥ ⊆ 92(C). Therefore, by Theorem 34, there exists
a QECC with parameters [[r + 4s, 2k − (r + 4s), dH ]]q. �

Now we present two detailed examples of constructing
QECCs from mixed alphabets.
Example 40: Consider r = 8, s = 20 and q = 5. Denote

R = F5+uF5+vF5+uvF5 with u2 = u, v2 = v and uv = vu.

x8 − 1 = (x + 4)(x + 3)(x + 2)(x + 1)

× (x2 + 3)(x2 + 2) ∈ F5[x].

Let f (x) = (x + 2)(x2 + 2). Then Cr = 〈f (x)〉 is a cyclic
code over F5 with parameters [8, 5, 3]. Note that f ∗(x) =
(x + 3)(x2 + 3). Thus, x8 − 1 ≡ 0 (mod f (x)f ∗(x)), and
by Lemma 35, we get C⊥r ⊆ Cr .

x20 − 1 = (x + 4)5(x + 3)5(x + 2)5(x + 1)5 ∈ F5[x].

Let g1(x) = (x+4)2, g2(x) = (x+3) and gi(x) = (x+2); i =
3, 4. Then Cs = 〈ξ1g1(x) + ξ2g2(x) + ξ3g3(x) + ξ4g4(x)〉 is
a cyclic codes of length 20 over R, where Cs,j = 〈gj(x)〉 are
cyclic codes of length 20 over F5, for j = 1, 2, 3, 4. Then
92(C) is a linear code over F5 with parameters [88, 80, 3].
Note that g∗1(x) = (x + 4)2, g∗2(x) = x + 2 and g∗i (x) =

x + 3; i = 3, 4. Thus, x20 − 1 ≡ 0 (mod gj(x)g∗j (x)); j =
1, 2, 3, 4, and by Lemma 36, we get C⊥s ⊆ Cs. Hence,
by Theorem 39, there exists a QECC with parameters
[[88, 72, 3]]5, which is better than the constructed QECC
[[88, 48, 2]]5 given in [3]. �
Example 41: Consider r = 24, s = 30 and q = 5. Denote

R = F5 + uF5 + vF5 + uvF5, where u2 = u, v2 = v and
uv = vu.

x24 − 1 = (x + 4)(x + 3)(x + 2)(x + 1)(x2 + 3)(x2 + 2)
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× (x2 + x + 2)(x2 + x + 1)(x2 + 2x + 4)

× (x2 + 2x + 3)(x2 + 4x + 1)(x2 + 4x + 2)

× (x2 + 3x + 4)(x2 + 3x + 3) ∈ F5[x].

Let f (x) = (x+2)(x2+3x+3). Then Cr = 〈f (x)〉 is a cyclic
code over F5 with parameters [24, 21, 3]. Note that f ∗(x) =
(x+ 3)(x2+ x+ 2). Thus, x24− 1 ≡ 0 (mod f (x)f ∗(x)), and
by Lemma 35, we get C⊥r ⊆ Cr .

x30 − 1 = (x + 1)5(x + 4)5(x2 + x + 1)5

× (x2 + 4x + 1)5 ∈ F5[x].

Let gi(x) = x2 + x + 1, g2(x) = x + 4 and g3(x) = (x + 1)2,
where i = 1, 4. Then

Cs = 〈ξ1g1(x)+ ξ2g2(x)+ ξ3g3(x)+ ξ4g4(x)〉

is a cyclic codes of length 30 over R, where Cs,j = 〈gj(x)〉
are cyclic codes of length 30 over F5, for j = 1, 2, 3, 4. Then
92(C) is a linear code over F5 with parameters [144, 134, 3].

Note that,

g∗i (x) = x2 + x + 1; i = 1, 4,

g∗2(x) = x + 4, and g∗3(x) = (x + 1)2.

Thus, x30 − 1 ≡ 0 (mod gj(x)g∗j (x)); j = 1, 2, 3, 4, and by
Lemma 36, we get C⊥s ⊆ Cs. Hence, from Theorem 39,
there exists a QECC with parameters [[144, 124, 3]]5, which
is better than the constructed QECC [[144, 120, 3]]5 given
in [4]. �

In Table 3, we construct some QECCs which have better
parameters then the previously known QECCs. The generator
polynomial coefficients arewritten down in descending order,
e.g. 1025 is corresponds to the polynomial x3 + 2x + 5.

VII. CONCLUSION
In this paper, we consider the ring R = Fq + uFq + vFq +
uvFq with u2 = u, v2 = v, uv = vu, where q = pm for an
odd prime p and positive integer m. We study the FqR-cyclic
codes of block length (r, s). We first present the orthogonal
idempotent decomposition of the ring R and then discuss
linear codes over R. A Gray map over Frq × Rs is defined,
and some of the properties of this map are examined. The
algebraic structure and the generator polynomials of FqR-
cyclic codes and separable codes are discussed. After that,
the minimal generating sets and the size of this family of
codes are determined. Further, we study the duality of FqR-
cyclic codes, and we show that dual of a FqR-cyclic code is
also a FqR-cyclic codes. The generators of dual codes are also
described. Several optimal and near-optimal codes from this
discussion are constructed in Tables 1 and 2. As an applica-
tion of our study, we first define a Gray map on FqR, and then
we discuss the dual containing property of separable codes.
We present a construction of QECCs from separable FqR-
cyclic codes. Finally, in Examples 40 and 41, we provide a
detailed explanation of constructing QECCs from FqR-cyclic
codes. Some new QECCs are given in Table 3. In the
future, we will work on the construction of QECCs from

non-separable codes. It is also interesting to study LCD codes
and DNA codes over mixed alphabets.
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