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ABSTRACT Plant disease, especially crop plants, is a major threat to global food security since many
diseases directly affect the quality of the fruits, grains, and so on, leading to a decrease in agricultural
productivity. Farmers have to observe and determine whether a leaf was infected by naked eyes. This process
is unreliable, inconsistent, and error prone. Several works on deep learning techniques for detecting leaf
diseases had been proposed. Most of them built their models based on limited resolution images using
convolutional neural networks (CNNs). In this research, we aim at detecting early disease on plant leaves
with small disease blobs, which can only be detected with higher resolution images, by an artificial neural
network (ANN) approach. After a pre-processing step using a contrast enhancement method, all the infested
blobs are segmented for the whole dataset. A list of several measurement-based features that represents the
blobs are chosen and then selected based on their influences on the model’s performance using a wrapper-
based feature selection algorithm, which is built based on a hybrid metaheuristic. The chosen features are
used as inputs for an ANN. We compare the results obtained using our methods with another approach using
popular CNN models (AlexNet, VGG16, ResNet-50) enhanced with transfer learning. The ANN’s results
are better than those of CNNs using a simpler network structure (89.41% vs 78.64%, 79.92%, and 84.88%,
respectively). This shows that our approach can be implemented on low-end devices such as smartphones,
which will be of great assistance to farmers on the field.

INDEX TERMS Neural network, image classification, plant disease, feature selection, precision agriculture.

I. INTRODUCTION
Plant diseases are the main cause of quantity and quality
losses in agricultural production. These losses negatively
impact the production cost as well as the profit of the stake-
holders in agriculture. However, tools for quick and accurate
recognition remains scarce. The welfare and livelihoods of
farmers as well as the food supply and the nutrition security
of a nation are severely threatened should any kinds of disease
outbreaks happen.

Traditionally, farmers and plant pathologists use their eyes
to detect diseases and make decisions based on their expe-
riences, which is often not accurate and sometimes biased
since in the early stage many types of diseases appear to
be the same. Also, their experiences need to be passed
down generations by generations. This approach leads to the
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unnecessary use of pesticides, which in turn results in higher
production cost. Based on these pieces of evidence, the need
for an accurate disease detector associated with a reliable
database to help farmers is necessary, especially for the case
of young and inexperienced ones. Advances in computer
vision pave the way for this with the state-of-the-art Deep
learning (DL) or machine learning (ML) algorithms. There is
also a need for an early disease detection system to protect
the crop in time.

There are many previous research conducted for this
purpose. Most of them make use of the so-called ‘‘Plant
Village’’ [1] dataset, a widely known dataset that is available
online, with CNNs being by far the most popular models.
However, the CNNs require a large amount of data for their
training [2]. In this work, we proposed two approaches: CNN
models enhanced with transfer learning (TL) and Artificial
Neural Network (ANN) with Feature Selection (FS) to solve
the multi-class classification for three types of diseases,
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namely Anthracnose, Gall Midge, and Powdery Mildew. The
proposed frameworks aim at increasing the models’ accuracy
when the data is limited. The rest of this work is structured as
follows: section II discusses related works using CNN and

ANN, section III presents our approaches, followed by
results and discussion in section IV, and culminating in con-
clusion in section V.

II. LITERATURE REVIEW
A. PLANT DISEASES RECOGNITION USING CNN
CNNs are a class of hierarchical model where an object’s
features are learned by training throughmany examples. They
consist of multiple layers with later ones built on top of
previously learned features [3]. Saleem et al. [4] conducted
a review of plant disease detection and classification by Deep
Learning techniques. He concluded that the ‘‘PlantVillage’’
dataset has a simple or plain background and more practical
scenarios should be considered. Also, hyperspectral or mul-
tispectral imaging should be used together with DL mod-
els to develop early disease detectors, and a much wider
variety of training data should be collected, from several
sources of different geographic areas, cultivation conditions,
and image capturing modes. Konstantinos et al. [5] imple-
mented a Visual Geometry Group (VGG) model for plant
disease detection, in which the network achieved 99.53%
of accuracy over the data given in [1]. Rangarajan et al. [6]
used AlexNet and VGG16 to classify tomato leaf diseases,
in which VGG16 reached 97.29% and AlexNet reached
97.49% of accuracy. Mohanty et al. [7] implemented transfer
learning (TL) approach with a pre-trained AlexNet to classify
diseases in crops. The model can classify 26 distinct diseases
in 14 crop species with a sample size of 54,306 images
and 99.35% accuracy. Too et al. [8] conducted a review of
the performances of different deep learning models namely
Visual Geometry Group (VGG), Inception V4, ResNet, and
DenseNet in disease classification using the ‘‘Plant Vil-
lage’’ dataset, in which DenseNet was the most efficient
with 99.75% of accuracy. VGG16 was also been used in
Shijie et al. [9] to classify tomato diseases, which achieved
88% accuracy. Many other applications of CNN are also
discussed in [10].

B. PLANT DISEASES RECOGNITION USING ARTIFICIAL
NEURAL NETWORK (ANN)
Khirade et al. [11] conducted a review of various techniques
to segment the infested part of the plant. This research also
reviewed some feature extraction and classification tech-
niques to extract the features from infected leaves and the
classification of plant diseases. Many approaches are using
ANN methods for the classification of disease in plants
such as self-organizing feature map, backpropagation algo-
rithm, support vector machines (SVMs), etc. Singh et al. [12]
used ANN together with image segmentation to detect dis-
eases on various types of plants, namely banana, beans,
jackfruit, lemon, mango, potato, tomato, and sabota. Firstly,

the Minimum Distance Criterion with K-Mean Cluster-
ing is used, then the classification is done by SVM. The
proposed method reached an average accuracy of 97.6%.
Kulkarni et al. [13] proposed a method using ANN together
with Gabor filter for feature extraction for early plant diseases
detection, which gives a recognition rate up to 91%. The
ANN used the combination of texture and color features for
classification.

In summary, previous research results are significant.
However, there are still gaps in them. Firstly, ‘‘Plant Village’’
is the most widely used dataset in previous research, this
dataset has 54.303 healthy and infected leaf images belonging
to 38 types of plant and diseases, but most of them are in the
later stage of disease spreading in which the infected area is
relatively large compared to the area of the leaf, so it is easy to
spot the type of disease. Secondly, when testing with images
taken under conditions that are different from the training
images, the CNN models’ performance decreased signifi-
cantly, as stated by Mohanty et al. [7]. He also suggested
that more training images in more practical scenarios should
be considered. Another worth noting point is that ‘‘Plant
Village’’ has no sample of mango leaves, which is our main
concern in this research. A new dataset [14] was used in [10]
to detect mango leaves’ diseases, however, they only focus on
healthy leaves and those infected with ‘‘Anthracnose’’ only.
For the research involving ANN, the authors implemented
many processing techniques to extract desired features from
the images then put them to the ANN. However, there was
a lack of a feature selection step to select the most useful
features.

C. FEATURE SELECTION (FS)
FS aims at selecting a number of features and ignoring the
irrelevant, noisy features from a set of features for easier
subsequent analysis. The selection criteria are the redundancy
and relevance of the features. Based on these two character-
istics, Yu et al. [15] have classified the feature subset into
four types: noisy & irrelevant, redundant & weakly relevant,
weakly relevant and non-redundant, and strongly relevant.
An irrelevant feature is one that has no significant influence
on the prediction accuracy, thus should be discarded. Models,
search strategies, feature quality measures, and feature eval-
uation are common techniques that can be implemented to
wrapper or filter methods. The number of features is directly
proportional to the size of the hypothesis space, i.e., as the
number of features increases, the size of the search space is
also increased. One such case is that if there are M features
with the binary class label in a dataset, then it has 22

M

combination in the search space.
There are three types of FS methods, namely Filter,

Wrapper, and Embedded Methods. The Filter method selects
statistics-based features. It can be conducted independently
out of the learning algorithm and therefore is less compu-
tationally expensive. Information gain, chi-square test [16],
Fisher score, correlation coefficient, and variance threshold
are common measures used to understand the importance
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of the features. In contrast, the Wrapper method’s perfor-
mance highly depends on the classifier. Best features are
chosen according to the performance of the classifier. Wrap-
per methods are much more computationally expensive than
filter methods since it needs to run simultaneously with the
classifier many times, but they are more accurate than the
filter ones. Some examples are Recursive feature elimina-
tion [17], Sequential feature selection algorithms [18], and
Genetic algorithms [19]. The third approach is called Embed-
dedmethod, which selects features based on a combination of
ensemble learning and hybrid learning methods. This method
has a collective decision, therefore its performance is better
than the previous ones. One example is Random forest which
is less computationally intensive than wrapper methods. One
drawback of the embedded method is that it is specific to a
learningmodel. Many evolutionarymetaheuristics-based fea-
ture selection methods are also proposed, many of them are
wrapper-type since it has been proven that wrapper provides
better performance [20]. Too et al. [21] proposed a competi-
tive binary Grey Wolf Optimizer (CBGWO), which is based
on the Grey Wolf Optimizer proposed by Mirjalili et al. [22],
for feature selection problem in EMG signal classification.
The results showed that CBGWO outranked other algorithms
in terms of performance for that case study. Many other
wrapper-based feature selection algorithms were also intro-
duced in many previous works to select a subset of fea-
tures, including binary grey wolf optimization (BGWO) [23],
binary particle swarm optimization (BPSO) [24], ant colony
optimization (ACO) [25], and binary differential evolution
(BDE) [26].

III. PROPOSED APPROACH
A. DATASET
Our data set contains 450 images of mango leaves, which
belong to four different types (three diseases and one
healthy): Anthracnose, Gall Midge, Powdery Mildew, and
Healthy. These are also four classes in our classification as
in Fig. 1. The samples are collected from various places in
An Giang province, which is known as one of the places
with the largest productions of mango in Vietnam. The leaves
were collected when blobs started to appear, they were taken
from the tree and their images were taken in the same day.
The images are captured using a camera in the resolution of
3096× 3096 pixels with no background.

The images are taken under different lighting conditions
in a chamber shown in Fig. 2. The chamber consists of an
aluminum frame and one camera model CANON 60D is
mounted on top so that it points straight to the frame at the
bottom. Besides, light sources are placed around the camera
to eliminate the shadow of an object. The lighting intensity
can be adjusted to simulate real lighting conditions.

The flowchart of this work is shown in Fig. 3. To begin
with, Mango images are pre-processed by rescaling into a
lower resolution, compared with the original size. Then, the
centre alignment step is responsible for guaranteeing the

FIGURE 1. Four classes of leaf diseases in this study: Anthracnose (1),
Gall Midge (2), Healthy (3), and Powdery Mildew (4).

FIGURE 2. Chamber for taking images.

region of a leaf to be in the centre of the image fitting exactly
the top and bottom of the image. Since there are various
contrasts in leaf images, we apply the contrast enhancement
method to adjust pixel intensities which benefit in case of
providing more information in some areas of an image. The
image values are then normalized within the [0,1] range so
that the loss function would reach the global optimal eas-
ily. Normalization also speeds up the convergence of the
backpropagation algorithm. The image dataset is divided into
Training, Validation and Testing set: First, 20% of the total
dataset is set as the testing set, then the remaining part of
the dataset is split again in the 80/20 fashion, with the 20%
being the validation set, and the 80% being the training
set. The training and validation set is used for training the
model, while the testing set is used to evaluate the perfor-
mance of the trained model. The data is split randomly using
Python’s ‘‘train_test_split’’ built-in function of the ‘‘scikit-
learn’’ library [27]. Python’s ‘‘shuffle’’ method was used
together with ‘‘train_test_split’’ to produce random subsets.
This method is based on a random number generator and it
reorders the images so that the sampling process is unbiased.
We also split the data in the ‘‘PlantVillage’’ dataset in the
same manner to create pre-trained CNN models.
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FIGURE 3. Flowchart of the two approaches in this study.

FIGURE 4. An example of rescaling and center alignment for a leaf image:
Original image; Corresponding image with bounding box; Final rescaled
and center-aligned image.

B. IMAGE PRE-PROCESSING
Since the leaves have different sizes, it is necessary to perform
rescaling to ensure the training and testing image have the
same dimension. Rescaling is performed to compress the
original images to lower resolution ones, 256× 256 pixels to
be exact. First, the original image is segmented and converted
to binary one to find the minimum bounding box. The vertical
size of the bounding box was used to rescale to 256 pixels to
ensure the top and bottom leaf fit exactly to the top and bottom
of the scaled image. The horizontal size of the bounding box
will be used to shift the leaf image into the exact center of the
scaled image. The results can be found in Fig. 4.

Due to various contrasts in the leaf region, the contrast
enhancementmethod is used to change pixel intensities which
benefit in case of providing more information in some areas
of an image.

Many contrast enhancement methods have been widely
applied to improve the quality of the image [28]. In this
paper, to ameliorate features which are low contrast to achieve
improvement in term of contrast quality, we use a contrast
enhancement approach based on the one in [29] before further

FIGURE 5. Contrast enhancement effect: before and after.

TABLE 1. Comparison of CNN models considered.

FIGURE 6. Feature extraction: Original Image, CLAHE is applied on H
channel, Extracted defective regions, Final result.

analysis. Themain idea of this method is to preserve the mean
brightness of an input image during contrast adjustment in
local regions. Firstly, the input image in RGB color channels
is converted into HSI ones. This approach only focuses on the
intensity parameter and preserves other hue and saturation
values. Afterward, the intensity is divided by separator into
two sub-parameters which are high and low groups. This is
done by the search method shown in the following equation.

γhi = {γ (i) | i > γm}, γlo = {γ (j) | j ≤ γm} (1)

where γhi and γlo are intensity high and low groups respec-
tively, γm is a trial threshold intensity value which is defined
to divide the image into two sub-images. After obtaining esti-
mates of the two sub-parameters of intensity, a combination
of them is performed to achieve the enhanced intensity. The
enhanced intensity is calculated by the following equation as
follows:

γenhance (i) = γlo + (γhi − γlo)× χ (i) (2)
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FIGURE 7. Average benchmarking results of the proposed APGWO with 5 runs. Vertical axis is the function’s fitness.
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TABLE 2. Details of benchmark functions.

where χ (i) is the cumulative density calculated from the
histogram. Mean brightness and input brightness are calcu-
lated and compared to minimize the error. The iteration of
this process is performed until getting an optimal value of
enhanced intensity. Eventually, enhanced intensity and other
initial hue and saturation values are combined and converted
back to RGB color channel to give the output image. The
contrast enhancement effect is illustrated in Fig. 5.

C. APPROACH WITH CNNS
After performing contrast enhancement step, we investi-
gate four popular CNN models, namely AlexNet [30],

VGG16 [31], ResNet [32] (ResNet-50 variant). A compari-
son between these models is available in Table 1 and their
architecture are shown in Fig. 15-Fig. 18 in the Appendix.

In this work, we kept the original architecture of these
CNN and onlymodified the last fully-connected layer of them
to four nodes, according to the four classes in our problem.
We also perform transfer learning to fine-tune the models
to enhance their performances. Transfer learning (TL) is a
solution for the lack of training data in deep learning [33].
TL means using the knowledge from a specific task to solve
another correlated task. In deep learning, TL helps the model
learn the features from a large dataset so that it performs

VOLUME 8, 2020 189965



T. N. Pham et al.: Early Disease Classification of Mango Leaves

TABLE 3. Result of FS. TABLE 3. (Continued.) Result of FS.
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TABLE 3. (Continued.) Result of FS.

FIGURE 8. Process of APGWO- wrapper based feture selection.

better on a relevant dataset but may be smaller in size, and
this method has shown effectiveness in image classification
task [7], [34], [35]. In our work, the models are first trained
on the Plant Village dataset. This dataset has a huge amount
of data and allows the convolutional layers of the models to
learn similar features effectively. Based on the Plant Village
dataset, pre-trained models are created, then the models are
trained one more time on our dataset to calibrate the models.
The cross-entropy is applied as a loss function to estimate the
error prediction after the classification layer. Moreover, the
optimization algorithm for the training process is done by
Adam optimizer[36]. The maximum number of epochs to
train the proposed model is 30 with an initial learning rate
of 0.0005.

D. FEATURE EXTRACTION FOR ANN APPROACH
Contrast Limited Adaptive Histogram Equalization
(CLAHE) was proposed by K. Zuiderveld in 1994 [37]. The
method examines a histogram of intensities in a contextual
region centered at each pixel and sets the displayed intensity
at the pixel as the rank of that pixel’s intensity in its histogram.
That histogram is a modified form of the ordinary histogram
in which the contrast enhancement induced by the method at
each intensity level is limited to a user-selectable maximum.
In this study, CLAHE is utilized to perform the thresholding
of the image. The original image is converted to HSV format,
and CLAHE is applied to the H channel to enhance the
contrast of the defective regions. The defective regions are
then separated and mapped back to the original image. The

FIGURE 9. Performance of VGG16 without TL, and with TL.

FIGURE 10. Performance of AlexNet without TL, and with TL.

process is illustrated in Fig. 6. In this approach, instead of
recognizingwhich types of diseases that a leaf is infested with
like in the approach of CNNs, we extract, learn the features,
and classify the types of infested blobs. In other words, this
approach is more accurate in case a leaf is infested with more
than one type of disease.
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FIGURE 11. Performance of ResNet-50 without TL, and with TL.

FIGURE 12. Correlation between chosen features.

In this study, we extract the following features:
• Statistics-based: mean, standard deviation, skewness,
and kurtosis of color channels R, G, B, H, S, V
(feature 11-34, Table 2).

• Geometry-based (feature 1-10, Table 3):
◦ Area
◦ Perimeter
◦ Major/Minor axis length: Lengths (in pixels) of the

major/minor axis of an ellipse having the same nor-
malized second central moments as the separated
blob.

◦ Eccentricity: distance between the foci divided by
the major axis length.

FIGURE 13. Performance of ANN approach.

◦ Orientation: angle between the x-axis and the major
axis of the above-mentioned ellipse, from −900

to 900.
◦ Convex area: area generated by convex hull of the

blob.
◦ Equivalent diameter: diameter of a circle having the

same area as the blob, calculated by
√

4×Area
π

.
◦ Solidity: Ratio of the blob area over the convex area,

calculated by Area
Convexarea

◦ Ratio of pixels in the region with respect to the total
bounding box.

• Textural features: GLCM features with four distinct
angle offsets, 00, 450, 900, 1350 [38]: Contrast, Homo-
geneity, Sum of squared elements, Correlation (feature
35-50, Table 3).

• Compressed HSV density: Originally, each H, S, and V
layer has 256 bins which total 768 features. To limit the
feature dimension, we reduce the number of bins in H
layer to 16 and those in S and V layers to 2 since in
our case, H channel provides more useful information.
Instead of having 768 features, we only have 16×2×2 =
64. Each defect slob is rescaled to a standard size of
20×20 pixels. The relative frequencies of the 64-feature-
set are computed and to be used for our FS algorithm
(feature 51-114, Table 3).

E. PROPOSED FS ALGORITHM
In this study, we implement a wrapper-based method with
a hybrid meta-heuristic called Adaptive Particle – Grey
Wolf Optimization (APGWO)[39], which is combined from
Particle Swarm Optimization (PSO)[40] and Grey Wolf
Optimization (GWO) [22]. In PSO, there are two controlling
coefficients, namely c1 and c2, which is called ‘‘acceleration
coefficients’’ and influence the exploration and exploitation
capabilities of the algorithm. These two coefficients are usu-
ally set to 1 or 2 by empirical studies to get a balance between
the exploration and exploitation capability. We modified
these two coefficients by the following formulas:

ct1 = 1.2−
f
(
x tk
)

f (gBest)
(3)
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FIGURE 14. Segmentation results of leaves infected with Anthracnose,
Gall Midge, and Powdery Mildew (from left to right).

ct2 = 0.5+
f
(
x tk
)

f (gBest)
(4)

where ct1 and c
t
2 stand for the coefficients at iteration t; f

(
x tk
)

is the fitness of particle k at iteration t , and f (gBest) is the
swarm’s global best fitness. The values of 1.2 and 0.5 are
also found by empirical studies. This modification allows the
search agents to focus on exploration in the early phase, then
encourages them to converge to a good optimum near the
end of the process. We also modify the formula for inertia
as followed:

wt = (maxIter − t)×
wMax − wMin

maxIter
+ wMin (5)

This formula would reduce the inertia of search agents
gradually during the iteration process, thus control the par-
ticles’ velocity so they would not jump out of good solutions
randomly. This strategy also enhances the local search capa-
bility of the algorithm. Finally, we update the velocity and
position of particles by the following equations:

vt+1k = w× vtk + c
t
1 × rand ×

(
pbest tk − x

t
k
)

+ ct2 × rand ×
(
gBest − x tk

)
(6)

x t+1k = x tk + v
t
k (7)

In this study, we introduce a probability of mutation, which
will trigger a small number of iterations of GWO within the
PSOmain loop, and the best solution of the nested loopwould
be added to the swarm. The pseudocode for this algorithm is
given in Algorithm 1.

The proposed algorithm is tested on 23 benchmark func-
tions given in [41], which the author in [22] also used to
evaluate the GWO. Details of the functions can be found

Algorithm 1 Proposed APGWO
Initialize the particle population
Initialize parameters
while (t < Max number of iteration)
for each particle with position xp

calculate fitness value f(xp)
if f(xp) is better than pbestp then

pbestp← xp
endif
if f(pbestp) is better than gbest then

gbest← pbestp
endif

end for
update w according to equation (5)
for each particle with position xp

update c1, c2 according to equation (3), (4)
calculate velocity of each particle by equation (6)
update position of each particle by equation (7)

end for
if rand (0,1) < prob

run GWO
xp = position of the best wolf

endif
t = t+ 1
end while
return gbest

in Table 2. These functions have many local optima. The
problem becomes worse with higher dimension cases and
is usually used to benchmark meta-heuristic algorithms.
‘‘Range’’ indicates the boundary of the search space, and fmin
is the optimum. The proposed APGWO yields competitive
results compared with the standard PSO andGWO algorithm.
Fig. 7 shows some representative cases.

The solution for the APGWO-wrapper is a binary array,
with a dimension of 1 × n, where n is the total number
of features. Selected features will take a value of 1, and 0
otherwise. The parameters set for the algorithms are as fol-
lows: 20 search agents (for PSO main loop), 20 search agents
(for nested GWO loop), 20 iterations for main PSO loop,
5 iterations for nested GWO, wMax = 0.9, wMin = 0.2.
The fitness function is defined as:

Minimize w× Et + (1− w)× Ev (8)

where w = 0.8, Et is the error rate on the training set, Ev is
the error rate on the validation set. The model considered is a
multi-layer perceptron (MLP) with 3 hidden layers, with the
number of neurons being 30, 20, and 10, respectively. Activa-
tion functions of the hidden layers are ReLU. The optimizer
for the MLP is Stochastic Gradient Descend (GSD) with a
learning rate of 0.01. The output layer contains 3 neurons
with Softmax activation function, corresponding to 3 types
of infested blobs, ignoring the healthy ones.

For the ANN approach, we extracted 8246 infested
blobs and split them in the same manner as described in
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FIGURE 15. Architecture of AlexNet.

Section III.A. All the models are programmed using Python
language and implemented on a Desktop PC having GPU
GTX 1070 which has 1920 CUDA cores with processor
Intel(R) Core(TM) i7-7700 at 3.6 GHz, 32 GB of DDR4 Ran-
dom Access Memory (RAM), and a Solid State Drive (SSD)
of 128 GB.

The metrics used in this work are:

Accuracy =
Number of correctly classified samples

Total number of samples
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 = 2 ∗
Precision ∗ Recall
Precision+ Recall

(12)

Precision determines how accurate a model is based on the
true predicted value, how many of them are actually ‘‘true’’.
Recall is the ratio of correctly predicted label to all the sample
of in the same class. F1 score is defined as the weighted
average or harmonic mean of Precision and Recall.

IV. RESULTS
Without TL, VGG16 achieves 77.16% training accuracy,
and 76.74% of testing accuracy, while AlexNet achieves

FIGURE 16. Architecture of VGG16.

FIGURE 17. Main components of ResNet-50: (a) Identity block,
(b) Convolutional block.

69.73% of training accuracy and 70.31% testing accu-
racy. As expected, with more convolutional layers, the
VGG16 model shows a better ability to remove unwanted
information. This helpswith the prediction accuracy as shown
in Fig. 9 and Fig. 10. With TL, VGG16’s performance is
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FIGURE 18. Architecture of ResNet-50.

increased to 82.2% training and 78.64% testing accuracy,
while those of AlexNet are 85.54%, and 79.92%, respectively.
The training process is much more stable with TL.

Before applying TL, ResNet-50 reaches 64.13% training
accuracy and 68.73% testing accuracy. After TL is applied,
the performances of both models are improved to 86.58% and
84.88%. The training process can be seen in Fig. 11.

After running the Wrapper algorithm, we obtained the
selected features as shown in Table 3.

Based on the features obtained by our algorithm, we have
made several observations as follows:

- The majority of features related to the Blue channel are
not selected at all, except for Kurtosis.

TABLE 4. Performances of ANN In recognizing infected blobs.

TABLE 5. Testing performances of ANN.

TABLE 6. Performances comparison of all models.

- Most texture features (GLCM) are used since the textures
of the infected leaves are quite different from those of the
healthy ones.

- Several geometrical features are not used since all blobs
are normalized to a standard size of 20 × 20, therefore, dif-
ferences between features like axis lengths are not important.

- Most compressed HSV density features are used. In the
near future, we plan to increase the number of features in this
category by using more bins for H, S, or V channel, also for
R, G, and B ones. For example, if we use 16, 4, and 4 bins
for H, S, and V channels respectively, the total compressed
HSV density features will increase to 16∗4∗4 = 256 and we
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TABLE 7. Glossary.

can increase the prediction capability of our model regarding
these features. Fig. 12 shows the heatmap indicating the
correlation between the 81 selected features.

For the ANN with FS approach, the model attains 91.32%
training accuracy and 85.45% testing accuracy for recogniz-
ing type of infected blobs, as shown in Fig. 13. Other metrics
can be found in Table 4.

For the ANN approach, the program takes in a leaf image
and classify the infected blobs in that one. If more than
50% of the infected blobs on a leaf belong to one type
of disease, we conclude that the leaf is infested with that
disease. If there is no blob detected, then the leaf is healthy.
An example of segmentation results of the ANN can be seen
in Fig. 14. We took out the same testing sample which is
used for ResNet-50, the CNN that performed best in this
study, to compare the two models. The ANN reached 89.41%
of testing accuracy. Recall, Precision and F1-score can be
found in Table 5. Table 6 summarizes the performances of
all models. It can be seen that the ANN’s metrics are very
competitive to those of the CNNs for the case of infected
leaves, although it still misclassifies some healthy leaves.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a multi-class mango leaf dis-
ease classification using deep neural networks. At first, a
wrapper-based feature selection approach using an Adaptive
Particle-Grey Wolf metaheuristic (APGWO) was performed
to select 81 features out of the originally proposed 114 fea-
tures. These features are selected as inputs for the MLP for
the classification task. The approach developed outperformed
deep learning models such as VGG, AlexNet, ResNet-50,
which are already enhanced with transfer learning (89.41%
vs 78.64%, 79.92%, and 84.88%, respectively). Furthermore,
the MLP network is much smaller, therefore, leads to faster

performance. This is preferable since we want to implement
this algorithm on resource-constrained devices such as smart-
phones. Some of our future works are given as follows:

1. Further fine-tuning the parameters of the MLP model,
such as the number of layers, the number of hidden
nodes, as well as the activation function.

2. Working with plantations to obtain a more diverse
dataset.

3. Fine-tuning the feature selection algorithm.
4. Build a complete disease monitoring system that can be

deployed on several platforms.

APPENDIX
See Table 7.
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