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ABSTRACT In delivering perishable goods, certain unexpected disruptive events may cause the initial
routing scheme to be infeasible. A new routing scheme must be generated quickly to alleviate delivery
disturbances. According to the idea of disruption management, a disruption recovery model with a dis-
tinctive type of split delivery is developed for inter-route recourse based on an initial time-dependent
vehicle routing model with time windows, which synthesizes the perishable nature of delivered goods and
dynamic travel route choice in urban road networks. Then, a tabu search algorithm is proposed to solve
the initial routing problem and further extended to generate the disruption recovery plan. Three compu-
tational experiments on the instances adapted from Solomon’s and Gehring and Homberger’s benchmark
problems are conducted to illustrate the effectiveness of the proposed model and algorithm. Supplementary
data associated with this article can be found at https://www.amazon.com/clouddrive/share/foL0Vfo5C0G
UjTrdO2UwljhZ9j6nNnHcD2Q0bKCTXJS.

INDEX TERMS Vehicle routing, disruption management, time-dependent, time windows, split delivery.

I. INTRODUCTION
In practice, many life necessities are highly perishable goods,
such as fast food, delicatessen products, fresh aquatic prod-
ucts, fresh meat, and fresh milk, as well as fresh-cut fruits,
vegetables and flowers. These goods’ quality deteriorates
continually during the distribution process due to their highly
perishable nature. For example, the shelf life and keeping
quality of meat are influenced by many factors, such as hold-
ing temperature, atmospheric oxygen, endogenous enzymes,
moisture, light and, most importantly, microorganisms. All
these factors can result in detrimental changes in the color,
odor, texture and flavor of meat [1]. Therefore, the value of
delivered goods is affected by their freshness. It is practical
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to characterize the perishability to improve the efficiency of
delivery activities.

As a core issue of delivery process, the optimal scheduling
of vehicle routing problem (VRP) is a challenge task, which
not only takes into account of customers’ demand but also
reduces the total relevant costs. To achieve effectiveness, sev-
eral customers would be coordinated in a same route originat-
ing and terminating at a central depot. Especially considering
the perishability of goods, orders are expected to be delivered
at desired time intervals. To avoid big losses, cancellation
of placed orders is usually not allowed. When customers’
time windows are imposed, VRP is extended to vehicle rout-
ing problem with time windows (VRPTW), which has been
studied extensively in the literature [2]. However, the real
problem is that, particularly in urban areas, traffic flow is
not static and always fluctuates over time. For example,
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during the morning and evening rush hours, huge traffic load
slows the vehicle speed. Such regular phenomenon can be
predicted by analyzing daily traffic data. By means of valid
stochastic information, a vehicle routing scheme consider-
ing varying travelling times is devised to avert unnecessary
traffic jams, which refers to time-dependent vehicle rout-
ing problem (TDVRP) [3]. Still and all, certain unexpected
disruptive events may cause troubles for vehicle travelling
en route, such as terrible traffic block, vehicle breakdown,
which would result in enormous transportation delay leading
the initial routing plan no longer optimal or even infeasible.
When such disruptions occur, a disruption recovery scheme
must be generated rapidly based on the instant situation [4].
Fortunately, resorting to advanced equipment and commu-
nication technologies, including GPS/GIS/GPRS, site data
related to traffic and vehicles can be acquired in real-time [5],
and efficient vehicle rerouting decisions can be provided for
drivers in time.

Consequently, this work is intended to study a disruption
recovery approach for transportation delay in delivering per-
ishable goods. As detailed in the next section, although there
have been several studies on VRP in delivering perishable
products in time-dependent road networks, minimal litera-
ture is available on disruption recovery in such a process.
Since the quality of perishable products deteriorates with
time during the delivery process, it is critical to select the
shortest path from multiple accesses to shorten the travel-
ling time. In addition, the vehicle is advisable to be loaded
with only the required amount; however, it will result in no
more products being provided to the unserved customers in
the disruption recovery process when no extra vehicles are
dispatched. The disruption recovery is sequentially confined
to inter-route recourse and regeneration of each route. Split
delivery is inevitable because of inequality in customers’
demand. In general, to improve the overall satisfaction of
customers, the urgent requirements in disrupted routes are
expected to be served with higher priority by an available
vehicle nearby, while the customers with wider time windows
are served later. Although split delivery has been widely
studied in the extant literature [6], [7], it is only considered
in the initial routing plan, and route generation is constricted
by the vehicle capacity, which are different from the split
delivery implemented for disruption recovery in this article.
Therefore, in contrast to the extant literature, we present
a time-dependent vehicle routing problem with time win-
dows (TDVRPTW) on a multigraph in the initial routing plan
of perishable product delivery, which characterizes the per-
ishability of products and elaborates the real traffic network
by considering multiple paths between each couple of nodes.
Then, in the initial routing scheme executing stage, the idea of
disruption management is adopted, and a disruption recovery
model with split delivery is developed to diminish the nega-
tive effects of transportation delay.

The contributions of this work are threefold. First,
we develop a comprehensive time-dependent vehicle routing
model with time windows for the initial routing plan in

delivering perishable goods, which simultaneously consid-
ers the perishability of goods, time-dependent traffic flow
and alternative path selection in traffic networks. Second,
we develop a disruption recovery model with a distinctive
type of split delivery, which considers the situation that the
total remaining supply is only equal to the total remain-
ing demand. Third, according to the problem characteristics,
an effective tabu search (TS) algorithm is proposed to solve
the initial routing problem and further extended to address
the disruption recovery problem with new elaborate neigh-
borhood structures for the specific split delivery.

The remainder of this article is organized as follows.
A brief literature review related to our research is performed
in the next section. In Section III, a mathematical model
for the initial routing scheme is proposed in addition to
the problem description, followed by a disruption recovery
model for delivery delay. In Section IV, TS algorithms are
presented with detailed differences in their applications to
the two models. Section V presents the computational results
and the effect analysis of disruption recovery scheme. Finally,
conclusions are provided, as are hints for future research.

II. LITERATURE REVIEW
Since Dantzig and Ramser [8] first introduced the basic VRP
model, vehicle scheduling in goods distribution system has
garnered much attention. The literature is rich in studies on
variant models and algorithms of VRP, such as the location
routing problem [9] and the production routing problem [10].
In contrast, this study focuses on the disruption recovery
of unpredictable events in perishable goods. Thus, only the
papers related to our study are reviewed instead of a detailed
overview. Interested readers can please refer to [2] and [11]
for a comprehensive knowledge on general VRPs.

In the early literature, although there are explicit con-
cerns on perishable product delivery, the perishable nature
has not been incorporated into VRP models. For example,
Adenso-Diaz et al. [12] considered the distribution of dairy
products in an integrated distribution network, which strives
to minimize total distribution costs when clients are allocated
fairly among vendors. Tarantilis and Kiranoudis [13], [14]
investigated the real-world distribution of freshmilk and fresh
meat based on VRP and solved them using meta-heuristic
algorithms. Belenguer et al. [15] modeled the distribution of
meat as a multiobjective VRPTW to simultaneously mini-
mize the lateness in servicing customers and the total distance
travelled.

Considering the significance of perishability in vehicle
routing decisions, elaborate models incorporating the per-
ishable nature were developed in most later works. Under
the consideration of time-dependent traffic conditions and
the perishability of products, Osvald and Stirn [16] mod-
eled the delivery problem of fresh vegetables as a VRPTW.
A TS-based algorithm was devised to minimize the weighted
sum of travel distance, travelling time, delay penalties and
perishability costs. Hsu et al. [17] formulated the distribution
of perishable foods as a stochastic VRPTWwith the objective
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to minimize total relevant costs and then extended the model
to allow for time-dependent temperature and time-dependent
vehicle travelling times. The calculation of perishability
costs is different from that of Osvald and Stirn [16], which
employed probability density functions to determine the
quantity of spoiled products in the travelling process instead
of a linear decay function. Considering the same factor of
time-dependent environment temperature, Hu et al. [18] stud-
ied a refrigerator car scheduling problem from the energy
consumption perspective. They developed a time-dependent
mixed integer programming model to reduce the total
operation cost and then solved the problem by an adap-
tive heuristic method combining a variable neighborhood
search with particle swarm optimization. To demonstrate the
trade-off between delivery cost and customer service related
to the freshness aspect, Amorim and Almada-Lobo [19] pre-
sented a biobjective model for the delivery of highly per-
ishable food products, where three types of geographical
scenarios of requests’ locations were examined to explain
the cost-freshness relationship. Combing prevalent con-
cerns such as the traffic congestion, limited working hours,
and carbon emissions caused by the fuel consumption,
Zulvia et al. [20] also proposed a many-objective green VRP
for perishable products delivery which optimizes the opera-
tional cost, deterioration cost, carbon emissions and customer
satisfaction. The problem was successfully tackled by an
improved gradient evolution algorithm with discretization,
non-dominated sorting, and crowding distance approaches.
In contrast to the models addressing the delivery of all
received orders, Song and Ko [21] developed a nonlin-
ear mathematical model to deliver a part of ordered food
products using limited number of refrigerated vehicles and
general-type vehicles for on-line shopping stores, which is to
maximize the total customers’ satisfaction with the freshness
of delivered food products. Ma et al. [22] further considered
order acceptance of high perishable goods delivery from the
revenue maximizing perspective in a time-dependent net-
work, and integrated order selection and TDVRP as a mixed
integer programming model.

Another stream of literature concerns VRP with disruptive
events. The idea of disruption management provides a prac-
tical approach to address real-time and unpredictable events
with objectives to minimize deviations of actual operations
from the intended plans at minimum costs [23]. When unpre-
dictable events hinder or disrupt the initial routing plan of the
vehicle travelling on the path, a revised schedule should be
created to reduce the negative effects on all involved parties;
this matters to the tradeoff among multiple conflicting objec-
tives. The idea of disruptionmanagement simply accordswith
these situations.

Until recently, the idea of disruption management has been
applied broadly in flight scheduling, machine scheduling,
supply chain management, and so on [24]. The concept has
also been incorporated into the field of delivery systems.
Li et al. [25] introduced a real-time vehicle rerouting problem
with time windows to address vehicle breakdown, whose

objective was to minimize a weighted sum of operation,
service cancellation and route disruption costs. The proposed
model was solved by a lagrangian relaxation heuristic with
an insertion procedure embedded in it. Mu et al. [26] inves-
tigated a similar problem addressing vehicle breakdown but
without considering customers’ time windows. To minimize
the number of vehicles used and the total travel distance, two
TS algorithms were proposed. Nikolić and Teodorović [27]
studied a scenario in which unexpected high demand in
certain nodes makes one or more planned routes infeasible,
where goods are distributed to the customers in the same
order every day. A mathematical model was formulated to
minimize the negative consequences of these disturbances,
followed by a bee colony optimization algorithm to solve
the problem in lexicography. In contrast to discussions about
disruptive events in the delivery process, Mu and Eglese [28]
introduced a new situation that delayed supply causes insuffi-
cient commodities available for loading on all vehicles at the
start of the delivery period in the just-in-time system. Amodel
was developed to reduce the impact of supply delay on the
distribution company, and two TS algorithms were proposed
to generate disruption recovery plan. To address a variety and
a combination of delivery disruptive events, Wang et al. [29]
developed a combinational disruption recovery model for
VRPTW. An approach was suggested to transform various
delivery disruptions into new-adding customer disruption,
and the effect of disruptions on real-world participators was
measured. The problem was solved by a nested partition
method with optimal starting times of rescue vehicles from
the depot. In addition, by considering the uncertainty of
human behaviors and adopting hierarchical cluster analysis to
segment customers, Ding et al. [30] formed a disruptionman-
agement model with multiple stages and multiple objectives
for solving delivery delay. The method is verified by a case
study on fast food delivery but without considering perishable
nature of products. Similar to above vehicle reroutingmodels,
Yuan and Jiang [31] introduced disruption management to
the real-time home caregiver scheduling and routing problem.
A mathematical model was constructed which minimizes the
weighted sum of deviation measurements on customers, care-
givers, and companies. Then a TS heuristic was developed to
efficiently solve the problem with a cost recorded mechanism
to strengthen its performance.

In Table 1, we compare our work with the relevant liter-
ature in terms of the type of disruptive event, the type of
product, and the modeling characteristics. The fifth column
shows the recourse approaches before and after executing
routes, which are divided by lines.

In summary, although there is minimal literature regarding
disruption recovery of TDVRP, dispatching new vehicles or
loading vehicles fully before they leave the depot are main
recourse approaches to disruptive events in the delivery pro-
cess. However, these actions are not practical for perishable
product delivery due to its perishability, which in practice
restricts a delivery vehicle leaving the depot with a load
equal to the total demand of its customers. As an effective
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TABLE 1. Comparison of the related works dealing with disruptive events.

FIGURE 1. Computation framework proposed for responding to disruptive events.

inter-route recourse approach, split delivery is adopted in this
study to decrease the dissatisfaction caused by delivery delay,
which is distinct from the traditional split delivery studied in
the literature [6] and [7]. Therefore, the disruption recovery
model with a distinctive type of split delivery presented in this
article is a new and practical delivery scheduling problem.

III. MODEL FORMULATION
Before dispatching vehicles for the delivery of assigned
orders, an initial routing scheme should be generated to guide
the vehicle travelling. At the execution stage, when trans-
portation delay is discovered, a disruption recovery plan must

be constructed quickly to respond to it. The following visits
of vehicles in transit are associated with the current traffic
condition. Therefore, a computation framework for respond-
ing to disruptive events is suggested in Fig. 1. To obtain an
efficient disruption recovery scheme, the arc travelling times
are computed by using combinational traffic information.
Specifically, the travelling time from its current site to the
next visit node is calculated based on real-time speed, and
other travelling times continue to be calculated based on
time-dependent speed.

In this section, we first introduce the properties of
the time-dependent road network and the calculation of
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time-dependent travelling time. Then, the initial rout-
ing plan and disruption recovery plan are modeled
successively.

A. TIME-DEPENDENT ROAD NETWORKS
Under the stable traffic condition, each path has a constant
travelling time. In addition, the shortest path between two
road network nodes is definite and associated with the least
distance. However, when the dynamic nature of traffic flow
is significant, particularly in busy urban areas, the travelling
time of any path changes as time passes. Thus, the optimal
path with the least travelling time depends on the specific
time of the day. To elaborate the time-dependent character-
istics, we model the road network with a multigraph. The
similar application is provided in thework of Setak et al. [32].
In contrast to the simple graph, the multigraph has more than
one edge between each couple of nodes. To clarify different
directed edges, we represent each arc with a triple (i, j, h),
where the first and second numbers correspond respectively
to the origin and destination nodes, while the third number
indicates the edge identifier. The set of arcs from i to j is
denoted by Hij.

Then, the calculation of arc travelling times is considered.
When a vehicle traverses an arc, an earlier departure from the
origin constantly ensures an earlier arrival at the destination,
which refers to the first-in-first-out (FIFO) principle. In this
paper, we apply the method provided by Ichoua et al. [33]
to derive a continuous travelling time function from a dis-
crete travel speed function, which overwhelms the noncom-
pliance with FIFO policy when using the speed function
directly.

FIGURE 2. Discrete speed function of an arc in time-dependent network.

As shown in Fig. 2, the planning horizon is divided into a
specified number of periods, and each has an approximately
equal travel speed; thus, the travel speed on arc (i, j, h) can
be described as a pricewise linear function. In other words,
the speed vijhu is stable during the time period [Tijhu,Tijh(u+1))
when a vehicle travelling through arc (i, j, h), where time
points Tijhu and Tijh(u+1) represent the start and end of the
time period u, respectively. When a vehicle departs later,
or the arc is sufficiently long, the travelling may cover several

time periods, and the correct travelling time can be calculated
recursively by formula (1). Given a departure time t ′i from
point i and the length dijh of arc (i, j, h), the arrival time at
node j is equal to tj = t ′i + τijh(dijh, t

′
i ),

τijh(`j, tcurr )

=

{
tres + τijh(`j − `res, tcurr + tres), `res < `j

`j/vijhu, `res ≥ `j
(1)

where tcurr and tres are, respectively, the current time and the
remaining time of current period, i.e., tres = Tijh(u+1) − tcurr
and tcurr ∈ [Tijhu,Tijh(u+1)); `j and `res denote respectively
the length from the present site to vertex j and the distance that
can be covered within tres, i.e., `res = tresvijhu. The recursive
function τijh(`j, tcurr ) is used to compute the travelling time
of traversing the remaining length `j from the current time
point tcurr . This recursive formula can be implemented by
an iterative computation process as described in the work of
Ichoua etc. [33].

B. INITIAL ROUTING PLAN
1) PROBLEM DESCRIPTION
A distribution network is described by a complete directed
graph G = (N ,E), where N represents the nodes set, and E
corresponds to the edge set. Each customer i has a demandDi,
which should be fulfilled during a specified time window
[ei, li]. A homogenous fleet located at the depot are responsi-
ble for delivering one kind of perishable product to customers.
Although occasionally a few kinds of products are required
to be delivered simultaneously, each kind is addressed sep-
arately in case of interaction influence leading to increasing
deterioration. Similar to the work of Osvald and Stirn [16],
the perishability of delivered products is characterized as a
constant value-loss for the unit product in the unit delivery
time. Although there may be material loss during the delivery
process, it can be transformed into value loss, i.e., loss in
revenue. It is assumed that the decayed product continues to
be delivered to customers, and lost sales are not considered,
which guarantees that the customer demand is entirely sat-
isfied. To decrease the deterioration loss during the delivery
process, the initial load of dispatched vehicles is simply equal
to the total demand of its customers instead of a full load.
All the dispatched vehicles leave the depot simultaneously
and return to the depot after finishing their delivery tasks.
For the convenience of receiving goods, each customer is
assigned to one vehicle route, and its demand is delivered
entirely. The objective is to find a set of routes such that the
sum of the total travelling cost and the deterioration loss is
minimized. The decision variables not only involve vehicle
assignment and node visit sequence, but also path selection
in the time-dependent road network.

2) INITIAL ROUTING MODELING
The notations used in the initial routing model are listed as
follows:
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Sets
C : a set of vertices representing n customer nodes,
|C| = n.
O : a set of vertices representing copies of the depot as

return centers of vehicles.
N : a set consisting of the depot 0 and elements in set C

and O, N = C ∪ O ∪ {0}.
K : a set of trucks for delivering products.
Hij : a set of arcs from node i to node j, Hij ∈ E .
Indexes
k : index of vehicles.
i, j : index of nodes.
n + k : a copy of the depot representing the return center

of vehicle k , n+ k ∈ O, k ∈ K .
Parameters
Q : capacity of vehicle.
Di : product demand of customer i.
si : service duration at customer i.
ei, li: lower and upper limit of time window specified by

customer i, respectively.
τijh(dijh, t ′i ) : travelling time needed from node i to node j

along hth path at the departure time t ′i .
θ1, θ2: variable cost derived from transportation operations

and deterioration loss per unit product per unit travelling time,
respectively.
M : a sufficiently large number.
Decision variables
ti : service start time at node i by the assigned vehicle or

return time to the depot when i ∈ O.
xkijh : a binary variable that equals 1 when arc (i, j, h) is

traversed by vehicle k; 0 otherwise.

The initial routing model is formulated as follows:

min F = θ1
∑
i∈O

ti + θ2
∑
i∈C

tiDi (2)

Subject to∑
j∈C

∑
h∈H0j

∑
k∈K

xk0jh ≤ |K | (3)

∑
j∈C

∑
h∈H0j

xk0jh =
∑
i∈C

∑
h∈Hi0

xki,n+k,h,∀k ∈ K (4)

∑
i∈C∪{0}

∑
h∈Hij

∑
k∈K

xkijh = 1, ∀j ∈ C (5)

∑
i∈C∪{0}

∑
h∈Hij

xkijh =
∑
i∈C∪O

∑
h∈Hji

xkjih, ∀j ∈ C, k ∈ K (6)

∑
i∈C

∑
j∈C∪O

∑
h∈Hij

Dixkijh ≤ Q, ∀k ∈ K (7)

tj≥ ti+si+
∑
h∈Hij

τijh(dijh, ti+si)−M
∑
h∈Hij

∑
k∈K

(1−xkijh),

∀i ∈ N\O, j ∈ N (8)

ti ≥ ei, ∀i ∈ C (9)

ti ≤ li, ∀i ∈ C (10)

t0 = 0 (11)

xkijh ∈ {0, 1} , ti ≥ 0, ∀i, j ∈ N , k ∈ K , h ∈ Hij (12)

The objective function (2) is to minimize the weighted sum
of transportation cost and deterioration loss. In the first term,
vehicle travel time is employed to calculate its corresponding
transportation cost, while product losses are evaluated by
order delivery time in the second term. Constraints (3) to (6)
are vehicle flow conservation constraints. Constraint (3)
restricts the available vehicle quantity, while constraint (4)
forces the dispatched vehicles to return to the depot after
serving customers. Constraint (5) states that each customer is
served by exactly one vehicle. Constraint (6) ensures that the
vehicle leaves a customer after the completion of its service.
Constraint (7) requires the total delivery quantity of a vehicle
to be no more than its capacity. Constraint (8) expresses that
the service start time of a customer is in accordance with
the vehicle visiting sequence, in which the travelling time on
an arc is calculated by formula (1). To establish a feasible
node visit sequence, service start time of each node is also
required to be determined. Constraints (9) and (10) impose
that the start time of serving a node cannot be earlier than
its lower time window or later than its upper time window.
Constraint (11) initiates the start time of each route with zero.
Constraint (12) states the binary and nonnegative variables.

C. DISRUPTION RECOVERY PLAN WITH SPLIT DELIVERY
When transportation delay in one or more routes causes the
initial routing plan to be infeasible, vehicles in transit should
be rescheduled rapidly to reduce the loss from the failure of
serving the remaining customers on time. The idea of disrup-
tionmanagement provides a practical approach to address this
situation, which attempts to recover the initial routing plan
and diminish the negative effects of the recovered routing
plan on the main participators.

1) DISRUPTION MEASUREMENTS
Given a disruption recovery scheme, three key participants
(customers, drivers and delivery company) will be mainly
affected by the deviations of the new routing plan, and cor-
responding disturbance are described quantitatively as dis-
ruption measurements [34]. For the convenience of further
explanation, certain new notations regarding the situation
when a disruptive event occurs are illustrated as follows.

DisT : occurrence time of a disruptive event.
IK : a set of vehicles in transit.
Q′k : remaining load of vehicle k ∈ IK .
pk : a virtual node representing the site of vehicle k in

transit.
P : a set of virtual nodes, P = {p1, p2, · · · , pk · · · , p|IK |}.
C ′ : a set of vertices representing unserved customers.
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N ′ : a set consisting of the elements in set C ′ and O,
N ′ = C ′ ∪ O, where O denotes a set of vertices representing
copies of the depot as return centers of vehicles.
xkijh : a binary number determined by the delivery sequence

of the initial routing scheme, which equals 1 when arc (i, j, h)
is traversed by vehicle k; 0 otherwise.
x̄kijh : a binary variable indicating the delivery sequence

of vehicle k in the disruption recovery plan, which equals
1 when arc (i, j, h) is traversed by vehicle k; 0 otherwise.
tik : time of vehicle k arrives at node i.
qik : delivery quantity for node i by vehicle k .

The disruption measurements of customers, the delivery
company and the drivers are sequentially analyzed as follows.

First, split delivery is an appropriate means to provide
products for customers in time. However, each customer
expects that his/her demand is satisfied by minimal visits
to reduce the trouble of receiving goods. Hence, the visit
frequency and the service start time should be traded off
in the disruption recovery plan for each unserved customer.
In addition, each customer is not of equal importance to the
decision maker; thus, discrepant concerns will be assigned
to them. For instance, long-term customers providing great
benefits should be taken care of to avoid damage, while
occasional customers can be serviced at the second position.
Without loss of justice, the delivery company usually claims
that unexpected arrival delay is guaranteedwithin amaximum
limit to improve their business competition power. Therefore,
in addition to highlighting the justice by establishing an
allowablemaximum delay time for each customer, the disrup-
tion recovery scheme should minimize the sum of weighted
service dissatisfaction.

F1 =
∑
i∈C ′

wi

µ1(
∑
j∈N ′

∑
h∈Hij

∑
k∈IK

x̄kijh − 1)

+µ2

∑
k∈IK

max {tik − li, 0} · qik
Di(li − ei)

)
Subject to tik ≤ li + L, ∀i ∈ C ′, k ∈ IK (13)

where wi is the importance degree of customer i. Coefficients
µ1 and µ2 are relative weights of visit frequency and service
start time, respectively. Factor L in the constraint is defined
as a commitment of the maximum tolerable delay limit.

Second, the delivery company cares particularly about
reducing transportation cost and product deterioration loss.
In the disruption recovery plan, some alternative routes may
induce charge changes. Regardless of the constant cost of the
initial routing plan, the delivery company will look forward
to minimizing the delivery cost of new routing plan under the
traffic conditions at that time. Therefore, the deviation of total
relevant cost is expressed as follows:

F2 = θ1
∑
i∈O

∑
k∈IK

tik + θ2
∑
i∈C ′

∑
k∈IK

tikqik (14)

Third, drivers are usually well primed with the assigned
delivery routes. As the real-time disruption recovery plan
is transmitted, route adjustment will trouble the drivers and
make them feel tired of new paths. To diminish the distur-
bance on drivers, the new routing scheme should seek to
maintain the initial routing scheme as much as possible. The
deviation of total driving paths is described as the number of
newly added or alternative paths.

F3 =
∑

i∈C ′∪P

∑
j∈N ′

∑
h∈Hij

∑
k∈IK

max
{
x̄kijh − x

k
ijh, 0

}
(15)

2) DISRUPTION RECOVERY MODELING
According to the assumption of product perishability, lost
sales are not considered in the disruption recoverymodel. The
recourse process is to split the total remaining load to fulfill
the demand of unserved customers. Given the analysis above,
a triple-objective mathematic model of disruption recovery
scheme is formulated as follows.

min {P1 : F1, P2 : F2, P3 : F3} (16)

Subject to

P1 � P2 � P3 (17)∑
i∈C ′

∑
h∈Hi,n+k

x̄ki,n+k,h = 1, ∀k ∈ IK (18)

∑
j∈N ′

∑
h∈Hij

x̄kpk jh = 1, ∀k ∈ IK (19)

∑
i∈C ′∪P

∑
h∈Hij

∑
k∈IK

x̄kijh ≥ 1, ∀j ∈ C ′ (20)

∑
i∈C ′∪P

∑
h∈Hij

x̄kijh =
∑
i∈N ′

∑
h∈Hji

x̄kjih, ∀j ∈ C
′, k ∈ IK

(21)∑
k∈IK

qik ≥ Di, ∀i ∈ C ′ (22)∑
i∈C ′

qik ≤ Q′k , ∀k ∈ IK (23)

qik ≤ Q′k
∑
j∈N ′

∑
h∈Hij

x̄kijh, ∀i ∈ C
′, k ∈ IK (24)

tjk ≥ tik + si +
∑
h∈Hij

τijh(dijh, tik + si)

−M
∑
h∈Hij

(1− x̄kijh), ∀i, j ∈ N
′, k ∈ IK (25)

tik ≥ ei, ∀i ∈ N ′, k ∈ IK (26)

tik ≤ li + L, ∀i ∈ N ′, (27)

tpk ,k = DisT (28)

x̄kijh ∈ {0, 1} , tik > 0, ∀i, j ∈ N ′, k ∈ IK , h ∈ Hij
(29)

In addition to the notations defined specially in this
part, other symbols in the disruption recovery model retain
the same meaning as the initial routing model. Objective
function (16) strives to minimize triple disturbances from
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deviations between the disruption recovery plan and the ini-
tial routing scheme. The series of objective functions F1,
F2 and F3 represent the disturbances to customers, the deliv-
ery company and drivers, respectively; these are correspon-
dently assigned to different preemptive priority levels P1,
P2 and P3. Constraint (17) indicates the priority order of
different objectives, which can be adjusted according to the
preference of the decision maker and the practical experi-
ences. Constraints (18) to (21) ensure the flow conservation
of vehicles in transit. Constraint (18) restricts the dispatched
vehicles finally returning to the depot. Constraint (19) forces
the vehicles at virtual nodes to move ahead to unserved cus-
tomers or the depot. Constraint (20) states that each customer
can be visited more than once. Constraint (21) ensures that
the vehicle must leave a customer after finishing its service.
Constraint (22) guarantees that the remaining demand of each
customer is fulfilled. Constraint (23) restricts the total deliv-
ery quantity of a vehicle en-route is no more than its remain-
ing load. Constraint (24) ensures that the delivery quantity for
a customer is offered by a vehicle visiting it. Constraint (25)
requires that the service start time of a customer respects the
vehicle visiting sequence. Constraints (26) and (27) impose
that customer service must be begun between its earliest
allowable time and maximum limitation with tolerable delay.
Constraint (28) realizes the start time of recovery routes with
the occurrence time of a disruptive event. Constraint (29)
introduces the involved binary and nonnegative variables.

In addition to nonlinear multi-objective functions, the dis-
ruption recovery model is a variant of the dynamic vehi-
cle rerouting problem, which is an NP-hard problem. It is
impossible to find optimal solutions to actual problems in a
reasonable computation time; therefore, it is better to develop
meta-heuristic methods to solve the model.

IV. TABU SEARCH ALGORITHM
The disruption recovery model is developed from the ini-
tial routing model. Except for several special characteristics,
such as multiple criteria in objectives, virtual depots and
split delivery of each route, constraints on customer require-
ments and service sequences are the same in both models.
To facilitate an ongoing optimization, we attempt to adopt a
unified computation framework to solve the two models. The
computation process is introduced based on solving the initial
routing model, and the disruption recovery model is resolved
in the same manner, unless otherwise specified.

In this section, we introduce a tabu search (TS) heuristic
to solve the above proposed models. TS provides an adap-
tive search mechanism that begins with an initial solution
for solving optimization problems. The solution space is
explored iteratively by simple local modifications to the cur-
rent solution. To escape the trap of local optimality, the best
neighboring solution is accepted as the incumbent event if
its objective value deteriorates. In turn, the movement back
to the newly visited solution is declared tabu for a certain
number of iterations to avoid cyclic search. The motivation
for using TS in our particular application is based on the

fact that this metaheuristic approach has been used in a wide
variety of classical and practical problems of a high degree of
complexity, including several variants of the vehicle routing
problem, such as vehicle routing problem with split deliv-
ery [7] and time-dependent vehicle routing problem [35].
On the other hand, among the meta-heuristics proposed for
the vehicle routing problem, TS has been shown to be a very
effective one, providing a good compromise between solution
quality and computation time, which facilitates the solving
of the disruption recovery model to provide an effective
and timely respond for the vehicles en route. The algorithm
has been adopted to solve some dynamic models of routing
problems [26], [28].

The proposed approach differs from the TS procedures
for the similar vehicle routing problems reported by Ho and
Haugland [7] andMu et al. [26] in two aspects. First, the sup-
ply of each route is equal to its remaining load in the disrup-
tive recovery model, which requires that the neighborhood
structures of the split delivery sustain the balance of supply
and delivery. New neighborhood structures are designed for
the specialties of the disruption recovery model, which have
not been taken into account in the literature. Moreover, based
on the above analysis about the difference between the ini-
tial routing problem and disruption recovery problem, TS is
adjusted to accommodate to both models for the convenience
of its practical application. A greedy randomized strategy is
also introduced to improve the performance and accelerate
the convergence speed of the proposed TS algorithm.

The procedure is outlined in Algorithm 1. First, an initial
solution is constructed, and certain related parameters are ini-
tialized. Then, inter-route operators are employed to generate
neighborhoods of the incumbent solution when it comprises a
few routes. After evaluating all generated neighborhood solu-
tions, the incumbent solution for the next iteration is replaced
and then improved by intra-route operators. Finally, the best-
thus-far solution is updated if a better feasible solution is
found, followed by updating related parameters and tabu
tenures. To provide a detailed description of the algorithm,
a few critical components are explained, including the ini-
tial solution construction, neighborhood structures, objective
evaluation, tabu list and stopping criterion, as well as the
complexity analysis of the proposed algorithm.

A. INITIAL SOLUTION
In Algorithm 1, the initial solution generation process
GenerateInit() is realized with a greedy randomized proce-
dure, which is used for the initial routing model and described
as Algorithm 2. Each route is from the depot and sequentially
constructed by inserting one delivery node at the last place at
a time. For each unvisited node j, the insertion cost into the
partial route Rm,k = (0, i1, · · · , ik , 0) is evaluated by formula
c = max{tik + sik + τik jh, ej}− tik , where τik jh is computed by
the embedded iterative procedure of the time-dependent trav-
elling time. To embody greed and the randomness property in
the insertion process, a restricted candidate list (RCL) is con-
structed, which only includes feasible nodes with inserting
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Algorithm 1 Pseudocode of the Proposed TS Algorithm
function TS( )
% generate an initial solution and update the best-thus-

far solution
S ← GenerateInit( ), S∗← S
TabuTenure← 0% initialize tabu tenures of operators
α← 1, β ← 1, choose γ ∈ [0, 1] randomly% initialize

parameters
while terminal criterion is not meet do
N (S) ← Neighborhood(S)% generate inter-route

neighborhoods of S
S ← UpdateIncumbent(N (S))% update the incumbent

solution S
S ← IntraImprove(S)% generate intra-route neighbor-

hoods of S
% update tabu tenures, penalty parameters and the best-

thus-far solution
Update(TabuTenure, α, β, γ, S∗)
end while
return the best solution S∗ found in the search process

end function

Algorithm 2 Pseudocode of Greedy Randomized Procedure
m← 1% initialize the number of solutions
for m ≤ Psize do
k ← 1% initialize the number of routes
Rm,k ← {0, 0}, i← 0, C̃ ← C
while the set C̃ is not empty do
cmin← minh∈Hij,j∈C̃ {max{ti + si + τijh, ej} − ti}

RCL ←
{
j ∈ C̃

∣∣∣∣ c ≤ (1+ α)cmin, tn+k ≤ l0,
Quantity(Rm,k ) ≤ Q)

}
if RCL is not empty randomly select j ∈ RCL,
Rm,k ← {0, · · · , i, j, 0}, C = C\{j} and i← j

else
k ← k+1,Rm,k ← {0, 0}, i← 0when k+1 < |K |
Insert all nodes in C into the current route Rm,k

when k + 1 = |K |
end if

end while
Sm = {Rm,1,Rm,2, · · · ,Rm,k}
end for
Return the optimal solution S∗ with the minimum objec-

tive value

cost less than the percentage (1+α) of the minimum insertion
cost; then, the node to be inserted is selected randomly from
RCL. It is worth noting that, between every two consecutive
nodes, the arc with the minimum travelling time is selected
for travelling, since the optimal solution always possesses the
feature that the arrival time at each customer is as early as
possible for the given customer sequence, which complies
with the property of objective function (2).

The insertion process is implemented until a node could no
longer be inserted into the current route, and then a new route

is created if available vehicles remain. If the current vehicle is
the last one, all unvisited nodes will be continuously inserted
into its route without considering the constraints of vehicle
capacity (Quantity(Rm,k ) ≤ Q) and customers’ time windows
(tn+k ≤ l0).
For the disruption recovery model, each initial solution

contains routes with the number of used vehicles. Each route
is generated from a virtual node, which represents a site of
vehicles on the way, and then constructed sequentially using
the same approach as in the solution construction of the initial
routing problem. When the supply of the current route is
insufficient to meet the demand of the last inserted node,
the demand is split, and only the amount equal to the left
supply is met by the current route.

B. SOLUTION EVALUATION
To expand the search space, certain infeasible solutions are
also accepted, which helps the incumbent solution to escape
from being trapped in the local minima and enables it to move
to promising regions. In this article, the infeasible solutions
are evaluated by adding a penalty cost in the objective func-
tion. That is, the evaluation function is defined as O(S) =
F + β1 · 1C + β2 · 1T , where 1T is the total time excess,
and1C is the total capacity excess. For a solution represented
as S = {R1,R2, · · ·Rk}, the total capacity excess is calculated
by1C =

∑
R∈S

max{
∑
i∈R

Di − Q, 0}, while the total time excess

is computed by 1T =
∑
R∈S

∑
i∈R

max{ti − li, 0}. The departure

time from node i is noted as li + si if its service start time
meets the condition that ti > li; otherwise, equals ti+si. Both
penalty coefficients β1 and β2 are initially set as 1, and after
each iteration, their value is divided by 1+γ (γ ∈ (0, 1]) if
the corresponding constraint is respected; otherwise, they are
multiplied by 1+γ . The specific operations enable the search
process to oscillate between feasible and infeasible solutions.

In the disruption recovery model, the capacity constraint
of each neighborhood solution is always satisfied according
to neighborhood structures described in Section 4.3. The
penalty cost of the time window violation is only added in the
objective function F1, i.e., O1(S) = F1 + β21T . When two
solutions have the same value of O1(S), the better solution is
identified by the hierarchical comparison of the values of the
subordinate objective functions F2 and F3.

C. NEIGHBORHOOD STRUCTURES
In this study, three inter-route operators and one intra-route
operator are implemented to explore a more extensive
solution space. The former includes cross exchange, node
exchange and inter-route relocation, while the latter is
intra-route relocation. The inter-move and intra-move coop-
erate for exploration and exploitation. In each iteration,
one of inter-route operators is randomly selected to be
executed, and then the updated incumbent solution is
improved by the intra-route operator. Particularly when the
cross-exchange operator moves a string of consecutive visit
nodes, reversing its sequence is also carried out to enrich the
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FIGURE 3. Cross exchange operations for the initial routing plan and the disruption recovery scheme.

FIGURE 4. Node exchange operations for the initial routing plan and the disruption recovery scheme.

neighborhood solutions. Since the restrictions of the disrup-
tion recovery model are different from those of the initial
routingmodel, particularly the limitation on delivery capacity
and the allowance of split delivery, the neighborhoods of their
solutions have different characteristics. In the following, the
details of the four neighborhoods are illustrated given the
initial routing model, and certain differences for the disrup-
tion recovery model are supplemented later. Similar to the
process of generating initial solution, the arc with minimum
travelling time between any couple consecutive nodes should
be selected for each route. Note that dashed boxes were used
to select the subsequence of nodes to execute neighborhood
operations in Fig. 3 to Fig. 5, and the nodes being visited
or just visited by the travelling vehicles on the way at the
time of disruption were underlined in these figures for split
delivery.

1) CROSS EXCHANGE
From two randomly selected routes, two strings of consecu-
tive visit nodes are extracted. Then, they are exchanged such
that two new routes are reconstructed. Detailed operation is
illustrated in Fig. 3(a).

For split delivery, the total delivery quantity of the two
strings is compared first. While the string with less quantity
is directly shifted into the other route, the string with more
delivery quantity leaves the redundancy in its source route
and only shifts a substring with an equal amount into the other
route. Fig. 3(b) depicts the way this operator works. Nodes
i3 and i7 are just visited by vehicles in two different routes.

Strings (i8 − i9) and (i4 − i5) are selected to exchange.
Then, string (i8− i9) only exchanges the demand equal to that
of string (i4 − i5), and the extra demand (a part of demand of
node i9) is left in its original route.

2) NODE EXCHANGE
As a special case of cross exchange operator, only one node
is extracted from each selected route, and then the two nodes
of different routes are exchanged. Through this operation,
a smaller neighborhood is explored, as shown in Fig. 4(a).

For split delivery, the node with more delivery quality is
essential to be divided into two same visit nodes. The delivery
quantity of exchanged nodes remains equal to ensure the total
delivery quantity of each vehicle coincide its load. Fig. 4(b)
describes the process in detail. Nodes i3 and i7 are just vis-
ited by vehicles in two different routes. Nodes i4 and i8 are
selected to exchange. Then, node i8 leaves the extra demand
in its original route and only the equal demand is exchanged
with node i4.

3) INTER-ROUTE RELOCATION
Two routes are selected randomly, and then a node in one
route is removed into the other route at an optional posi-
tion. However, in the case of split delivery, this operation
is confined into two routes with more than one same visit
node. A split visit node in one route is combined into the
same visit node in the other route, and the route with delivery
increase transfers a part of visit nodes with equal delivery
quantity back to the former route. Detailed process is depicted
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FIGURE 5. Inter-route relocation operations for the initial routing plan and the disruption recovery scheme.

in Fig. 5. Nodes i3 and i7 are just visited by vehicles in two
different routes. Node i8 is a split node visited by the two
routes. Then, node i8 in the second route is removed and
combined with the demand of node i8 in the first route, and
a part of demand of another node i5, which is equal to the
demand increase in the first route, is transferred to the second
route.

4) INTRA-ROUTE RELOCATION
Within a route, a node is randomly removed from its primary
site into another site. Thus, the visit sequence of the route is
reordered to help exploit a large solution space.

D. TABU LIST AND STOPPING CRITERION
In each iteration, the accepted neighborhood solution meets
either of the following conditions: (i) the solution with the
best evaluation value is non-tabu; and (ii) the tabu status of
the solution is overridden by an aspiration criterion, which
is feasible and has the best objective value thus far. When a
move is employed, its inverse operation is set tabu for the next
δ iterations until the tabu status is expired or overridden by the
aspiration criterion, where tabu tenure δ is chosen randomly
in [1,

√
n] in each iteration. In this article, for the node

exchange and the inter-route relocation operator, moving the
operated visit node back to its source route is tabu; for the
cross-exchange operator, moving the end of the exchanged
string to its source route is set tabu. For split delivery, only
the non-split node can be set tabu, which strives to decrease
the frequency of split.

Regarding the above two models, if the best solution thus
far, S∗, is not improved for consecutive NoImp iterations,
the search stops and returns S∗.

E. COMPUTATIONAL COMPLEXITY
The time complexity of the proposed TS depends on some
critical steps. When choosing the optimal path between two
different nodes, all alternative paths are evaluated giving a
time complexity of O(|H | · |U |), where |H | is the maxi-
mum number of alternative paths between any two nodes,
and |U | is the maximum number of time periods segmented
from the work horizon. To avoid high computational burden
associated with excessive insertion trials, nodes that can be

visited directly after each ahead point with the ideal travelling
speed are first calculated in O(|C|2) time. In the process of
generating a candidate initial solution, at most |C| nodes are
attempted to be inserted following the last element of the
just constructed route. Then in worst case, the time complex-
ity of evaluating all insertion operations for one solution is
O(|C| · (|K | + |C|) · |H | · |U |). When Psize candidate initial
solutions are generated, the overall complexity of the greedy
randomized procedure isO(|C|·(|K |+|C|) ·|H |·|U |·Psize+
|C|2) = O(|C|2 · |H | · |U | · Psize).
To improve the performance of neighborhood operations,

only nodes with similar visit time could be exchanged, and
removed nodes are confined to be inserted into positions
without excess waiting time. In the worst case, |C|-1 possible
nodes to be exchanged or |C| positions need to be evaluated
for an neighborhood operation, and the computation com-
plexity of determining an optimal position isO(|C|·|H |·|U |).
Then for a specific neighborhood solution, the complexity of
checking time feasibility is O(|C| · |H | · |U |). So, an appro-
priate neighborhood solution can be obtained and evaluated
in O(2|C| · |H | · |U |) = O(|C| · |H | · |U |) time. To miti-
gate expensive computation of evaluating too many neigh-
borhoods, the proposed algorithm is improved by executing
intra-route relocation operator every q iterations. Suppose Ng
neighborhood solutions are generated in each iteration and
total Iter iterations are processed. The time complexity of
neighborhood search isO(|C|·|H |·|U |·Ng·(Iter+

⌊
Iter
q

⌋
)) =

O(|C| · |H | · |U | · Ng · Iter).
Apart from the above analysis, the complexity of other

computation process can be neglected. Although the three
objectives of the disruption discovery model need to be eval-
uated, it does not affect the computation complexity. There-
fore, the computation complexity of the proposed algorithm
is O(|C|2 · |H | · |U | · Psize + |C| · |H | · |U | · Ng · Iter),
which is directly associated with the problem scale |C| and
the complexity coefficient |H | and |U | of the road network,
and also affected by the number Psize of initial candidate
solutions and the number Iter of computation iterations.
As the initial routing plan is executed, the disruption recovery
model is awakened with a relatively small-scale problem, but
its computation iteration maybe enlarged for lexicographical
optimization.
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V. EXPERIMENTS
In this section, the effectiveness of the presented models and
TS algorithms are demonstrated by sample problems. Three
computational experiments are conducted. First, the pro-
cess of vehicle rerouting is exemplified by two different
approaches on a small-size instance, and the results are
compared to interpret the implication of disruption recovery
approach. Second, to validate the effectiveness of the pro-
posed algorithm, we compared the results of certain instances
against the methods suggested for similar problems. Third,
the effect of recovering disruptive events at different occur-
rence times are compared to illustrate the feature of disruption
recovery plan with split delivery.

A. TEST PROBLEMS
Since there is no standard testing dataset appropriate for
our problems, two sets of problems are created by modi-
fying the benchmark problems from the literatures. For the
first set of medium-scale instances, eighteen of Solomon’s
VRPTW benchmark problems [36] with 100 customers are
randomly selected as the base data to generate 100-customer
instances. According to the characteristics of customers’ geo-
graphical locations, these instances are divided into three
categories: C-type (clustered customers), R-type (uniformly
distributed customers) and RC-type (a mix of R and C
types), which can be further classified by the time win-
dow widths. To be fair, herein we construct six instances
for each geography type, three with narrow time windows
and three with large time windows. Additionally, the second
set of test instances is composed of forty-eight large-scale
instances (200-customer instances, 400-customer instances,
600-customer instances and 800-customer instances), which
are generated from Gehring and Homberger’s data sets [37]
for the VRPTW problem. This benchmark problems were
constructed based on Solomon’s data, and consequently, they
are also classed into six groups by customers’ locations and
time windows. Hence, two instances are sampled randomly
from each group with any scale of customers mentioned
above. In total, sixty-six instances derived from the above
two benchmark sets were tested using the tabu search algo-
rithm. Each instance is coded as A_Bx_id, where A is the
abbreviation of the author name, B denotes the geography
property, and x and id are the customer scale and identifier
of the instance, respectively.

For each specific instance, all data related to customers
remain dimensionless. Some essential corrections are made
to supplement necessary information, such as arcs between
couples of nodes and time-dependent travel speeds on arcs.
Each couple of road network nodes has 2∼3 arcs with the
length of a percent λ (λ ∈ [0.7, 1.3]) of the Euclidean distance
between them. The importance degree of each customer fol-
lows a discrete uniform distribution U (1, 3). For simplicity,
the planning horizon is divided into three equal intervals,
and then five types of time-dependent speed functions are
devised, each with the pattern (1−ε, 1+ε, 1−ε). Each value

of ε(ε ∈ {0.0, 0.1, 0.2, 0.3, 0.4}) corresponds to one speed
profile. To construct a time-dependent network, each arc is
randomly assigned a speed profile. When disruptive events
occur, the real-time speed on an arc is set as a percentage λ
of its current time-dependent speed.

All proposed procedures are implemented in MATLAB
R2014a and run on a PC with a Core i3, 2.13 GHz CPU and
4 GB of memory. These parameters are best set by tuning
experiments as follows: Psize = 10, α = 0.15, NoImp = 50
and q =

⌊√
n
⌋
.

B. ILLUSTRATION OF DISRUPTION RECOVERY APPROACH
An example is conceived by the first 25 customers of instance
S_R100_1 (as shown in Table 5) modified from R101 of
Solomon benchmark, since the requirement of customers is
randomly distributed. To reflect the importance of both items
in function (2), the cost coefficients are set as θ1 = 1 and
θ2 = 0.015. Assume that the depot possesses 8 vehicles and
solve the initial routing model, the optimal result is shown
in Table 2 and illustrated in Fig. 6. The squares in Fig. 6 rep-
resent the customer locations.

TABLE 2. Details of the initial routing plan of an illustrated example.

FIGURE 6. The initial routing plan of an illustrated example with
25 customers.

According to the predetermined routes, 7 vehicles are dis-
patched to deliver the signed orders. Suppose that all the
dispatched vehicles were travelling in their specific sites
(i.e., virtual nodes in the set P) at time 67, which are marked
with solid circles in Fig. 7 and Fig. 8. It was found that
vehicles 3 and 5 were both affected by traffic accidents; their
transportation delay times are 30.5 and 26, respectively. It is
evident that the initial routing plan is not applicable by the
subsequent evaluation.
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TABLE 3. Details of the recovered routing scheme for delivery delay.

FIGURE 7. The recovered routing scheme produced by the disruption
recovery model for delivery delay.

According to the disruption recovery approach proposed
in this article, the best disruption recovery plan is revealed
in Table 3 and illustrated in Fig. 7, which is the best result
among 5 repeat computations with average consuming times
of 38.5 seconds. The objective function values of disruption
recovery model are F1 = 1.4272, F2 = 1478.2, and F3 = 11.
Here, coefficients µ1, µ2 and L are respectively set as 0.1,
0.9 and 30. Furthermore, another vehicle rerouting scheme
is calculated by a global rescheduling method, which con-
siders a re-execution of the initial routing model. Thus, only
the interest of the delivery company is focused on instead
of the effects of the recovery scheme on all participators.
The computation results are provided in Table 4 and illus-
trated in Fig. 8. The objective function values of the global
rescheduling method are F1 = 10.4491, F2 = 1398.2, and
F3 = 13. In both the two figures, full lines and dotted lines
represent the initial routes and recovery routes, respectively.

TABLE 4. Details of the global rescheduling routing scheme for delivery
delay.

In Tables 3 and 4, the split delivery nodes are marked
in bold. There are two split nodes in both solutions.
By comparing the objective function values, the disruption

FIGURE 8. The global rescheduling routing scheme produced by
reoptimizing the initial routing model for delivery delay.

recovery scheme has fewer negative effects on customers
with approximately equal cost, while the global rescheduling
scheme leads to a larger influence on customers with minimal
cost saving. It can be inferred that the disruption recovery
model is more appropriate in real applications.

C. COMPARISON OF ALGORITHM PERFORMANCE
Suitable performances of the adapted ant colony optimiza-
tion (ACO) algorithm have been achieved on disruption
management models [38], [39] and SDVRP [40], which are
closest to our study. Hence, the ACO algorithm is fit for
solving our problem with certain modifications. To meet the
rigid constraint that the supply quantity of each vehicle is
equal to the left load, initial solutions of the ACO algorithm
are constructed with the method that the unmet demand of the
last inserted customer is split and left to other routes when the
supply of the current route is not sufficient. The search termi-
nation criteria are the same as that of the TS algorithm. Based
on parameters tuning experiences, the size of ant solutions is
set as 20 and importance levels of heuristic information and
pheromone trail are set at 1.5 and 4, respectively. Similar to
the work of Ding et al. [38] the ACO algorithm procedure is
described briefly as follows.
• Step 1: generating initial ant solutions sequentially
according to the pheromone trail and heuristic informa-
tion. Each ant solution consists of several routes with the
number of vehicles in transit. Each route begins from a
virtual node indicating the vehicle site. When the supply
of a route is insufficient to meet the demand of the last
inserted node, the unmet amount is split as a new node.

• Step 2: evaluating the generated solutions by the meth-
ods introduced in the part B of Section IV. The best local
solution is the recorder as Slocal , and then the neighbor-
hood operators introduced in the part C of Section IV are
performed on it. If Slocal is improved, Slocal is updated.
If Slocal is better than the recoded global best solution,
Sglobal , Sglobal is also updated.

• Step 3: updating the pheromone trail on the routes
of solution Slocal . Repeating Step 1 if the termination
criteria are not met.
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TABLE 5. Results of TS and ACO algorithms on the instances modified from Solomon benchmark.

The effectiveness of the TS algorithm is investigated by
an experiment test conducted on different scale instances in
comparison with ACO. For equitable performance appraisals
within acceptable disruption reaction time, the 100-customer
instances are resolved within 2 minutes while the calculation
time limit of other larger instances is 5 minutes. All the
computation results are shown in Tables 5 and 6. ColumnsF1,
F2 andF3 list the best objective values among 10 repeated cal-
culations. According to the objective priority, the computa-
tion results of the two algorithms are compared hierarchically.
For each instance, when the objective values obtained by the
two algorithms are different, index RateTS is calculated to
reflect the superiority of the TS algorithm. RateTS is defined
as RateTS =

F∗, ACO−F∗, TS
max(F∗, ACO,F∗, TS )

, where ‘‘∗’’ represents the
priority level.

From the last column in Table 5, we can observe that the
results of these 100-customer instances show a significant
superiority of the TS algorithm over the ACO algorithm. The
former achieves better outcomes in sixteen of total eighteen
instances, except two instances with slightly worse solutions.
As the scale of the instances expands, the advantage of the TS
algorithm begins to fade, which is discovered from Table 6.
In every twelve instances for different scales, with 200, 400,
600 and 800 customers, there are seven, five, six and five
instances with better solutions, respectively. The best results
in Tables 5 and 6 are bold-faced. Statistical analysis of the
comparative improvement rates of the TS algorithm on dif-
ferent scale instances are reported in Fig. 9. We can see that
the average improvement rates approach 40% on the 100- and
200- customer instances. Although slightly worse solution
results were achieved with the TS algorithm on the half of
the larger scale instances (with 400, 600 and 800 customers),
the comparative weakness rate is less than 25% on average.

FIGURE 9. Performance statistic of the proposed TS by comparing with
the ACO.

Given the analysis above, the TS algorithm, with a
time-consuming process of examining neighborhood-based
changes for better solution, overall, is appropriate for the
general scale problem investigated in this article. It is asserted
that the solutions of large-scale instances can be improved
when the computation time is prolonged. In addition, the TS
algorithm is easy to be realized and convenient to address
the proposed two models in the same algorithm framework.
In contrast, the ACO algorithm has parallel search capa-
bilities to obtain satisfactory solutions; however, its short-
comings of the local search ability impede the performance
improvement.

D. EFFECT OF DISRUPTION MANAGEMENT
To evaluate the effectiveness of the disruption recoverymodel
for a different number of disruptive events at different times,
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TABLE 6. Results of TS and ACO algorithms on the larger instances modified from Gehring & Homberger benchmark.

nine instances are randomly extracted from the above gener-
ated test set. In the light of solving efficiency of the proposed
algorithm on different scale problems, they are composed of
three instances with 100 customers, three with 200 customers

and the other three with 400, 600 and 800 customers, respec-
tively. For each instance, the same disruptive events are
set at time t1 and t2 to generate two different situations,
which correspond to 0.3 and 0.6 of the planning horizon,
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TABLE 7. Maximum delay time and total delay time caused by a single disruptive event.

TABLE 8. Maximum delay time and total delay time caused by double disruptive events.

respectively. At each time point, two scenarios are derived,
one disruptive event occurring on the longest route and double
occurring on the first two longest routes, respectively. For
each disruption scenario, the best solution is attained by
the TS and ACO, each with ten repeated runs. The corre-
sponding maximum delay time (MDT) and total delay time
are calculated and compared with its direct consequence
of an uninterrupted initial routing plan. For comparison,
we cancel the delay time limits in the disruption recovery
model.

All computation results of single and double disruptive
events are shown in Tables 7 and 8, respectively. MDT and
TDT are marked with superscript ‘‘0’’ and ‘‘1’’, which are
used to identify the uninterrupted initial routing plan and the
disruption recovery scheme, respectively.

Given the results shown in Tables 7 and 8, two indices
could be calculated, i.e., the recovery rate of the maximum
delay time (RM) and the recovery rate of the total delay time
(RT). RM is defined as RM =

MDT0−MDT1

MDT0
, while RT is

defined as RT = TDT0−TDT1

TDT0
. To differentiate the scenarios

with single and double disruptive events at a time, the prefixes
‘‘S’’ and ‘‘M’’ are used, respectively, before indices. That is,
SRM signifies RM of a single disruptive event, while DRM
signifies RM of double disruptive events, and so is RT. The
summary statistics of the results related to RM and RT are
described in Fig. 10 and Fig. 11.

FIGURE 10. The recovery rates of the maximum delay time against the
effects of adhering to the initial plan.

From Fig. 10, we can observe that curves SRMt1 and
SRMt2 distribute over DRMt1 and DRMt2, respectively, and
similarly, except for two nodes close to its counterpart, curves
SRMt1 and DRMt1 spread over SRMt2 and DRMt2, respec-
tively. It is concluded that the disruption recovery scheme can
reduce the maximum delay time of earlier disruptive events
to a larger extent, and the maximum delay time of a single
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FIGURE 11. The recovery rates of the total delay time against the effects
of adhering to the initial plan.

disruption event can be shortened by a higher percentage than
that of double disruption events. Fig. 11 reports a similar trend
of the curves. A disruption recovery scheme can reduce the
total delay time of earlier disruptive eventsmore significantly.
However, it is not ensured that a higher percentage of total
delay time is saved in a single disruptive event than that of
double disruptive events.

This phenomenon can be explained by the observation
that a more feasible recovery plan can be found for earlier
disruptive events since all dispatched vehicles travel near the
depot with short distances between one another and load a
large volume of products for inter-route recourse.

Although double disruptive events occurring at an early
time can continue to be rescued efficiently, with a mere split
delivery-based recourse method, it is difficult to address that
occurring at a later time. In this case, other methods may need
to be adopted, such as order cancelation.

VI. CONCLUSION
In this article, we study a disruption recovery model for
transportation delays in perishable product delivery. To char-
acterize the problem accurately, inherent characteristics are
integrated into the proposed models, which embrace the
nature of perishable products and the time-dependent travel
speed of urban traffic. In addition, to describe the path selec-
tion under dynamic traffic conditions in urban areas, more
than one edge between each pair of road network nodes
is considered. In the initial routing problem, the model’s
objective is to minimize the total cost including value loss
of perishable products and transportation cost during the
delivery. The perishability of products enables the load of
scheduled vehicles to just meet the total demand of assigned
customers. Therefore, in the disruption recovery model for
transportation delay, there is nomore supply tomeet unserved
customers, and split delivery may be the only strategy for
inter-route recourse. With the disruption measurements of

customers, the delivery company and drivers being analyzed,
a triple-objective model is formulated to provide a disruption
recovery plan. Furthermore, a TS algorithm is proposed to
solve the initial routing problem, which is also extended to
address the disruption recovery model with certain modifica-
tions in the neighborhood search process. Finally, a small-size
disruption recovery example demonstrates the advantage of
the disruption recovery approach over the traditional global
rescheduling approach. The effectiveness of the proposed
algorithm is validated by the comparison of the computation
results with the ACO algorithm. The effect analysis of dis-
ruption occurrence time reveals that an earlier transportation
delay can be relieved more effectively.

However, the scope of this work is limited to the split
delivery-based method for the recovery of transportation
delay. In certain extremely difficult circumstances, solely
using this method is not efficient to address an excessive
delay occurring in the terminal portion of a route. Future work
can be conducted by considering more recourse methods,
such as order cancelation, in the disruption recovery model.
In addition, more efficient algorithms should be studied to
accommodate to the real-time vehicle rescheduling process,
particularly for the large-scale real-life problem, and then the
performance of actual disruption recovery operation could be
further enhanced.
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