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ABSTRACT In this paper, a novel nature inspired meta heuristic optimization approach of Grey Wolf Opti-
mization (GWO) algorithm is employed to solved the optimal reactive power dispatch (ORPD) problems.
Essentially, it is the sub and non-linear optimization problem of optimal power flow (OPF) in which the
control parameters of the power networks are optimized. The Grey wolf optimizer (GWO) which is inspired
from grey wolves’ leadership and hunting behaviors to solve the ORPD problems. For which, the optimizer
is tested on two test cases of IEEE30 standards specially, for 13 and 19 variables in order to get three fitness
objectives for instance; transmission line losses (Plosses, MW), voltage deviation (VD), voltage stability
index (VSI) and cost of energy in ($). During computing all fitness objectives, the minimum fitness values
are possibly achieved by the finest settings of control variables. The simulation results are compared with
other artificial intelligence methods in previous literature to ensure the superior performance of the GWO
for ORPD problem. The consistency of GWO will further be validated through detailed statistical analysis
including histogram illustrations, boxplots, empirical CDF plot, probability plot and plot of minimum fitness
during each independent trial.

INDEX TERMS Optimal power flow (OPF), optimal reactive power dispatch (ORPD), grey wolf algorithm
(GWO), load flow analysis (LFA).

I. INTRODUCTION
The recent span of revisions related to the power systems are
mostly attentive to reduce the entire cost of the generation
with stable and secure operations. In accumulation, the reduc-
tion in transmission line losses with the improved of voltage
profile plays a vital part in resolving the optimal reactive
power dispatch (ORPD) issues. These tasks can be achieved
by improving the settings of control parameters for instance;
the reactive outcomes of generator voltages, tap changer of
transformers and reactive shunt VAR compensators. While,
the contingent constraints such as load bus voltages, gen-
eration from the reactive generators and apparent power
through transmission lines should be in limits to avoid getting
penalties [1].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ahmed F. Zobaa .

The mostly objective functions are optimized while resolv-
ing the optimal reactive power dispatch issues comprises as;
minimization of transmission line losses, voltage deviation,
improvement of voltage stability index and minimization of
cost of energy. In the initial step of research led to resolve
the ORPD problems, there are several techniques which
are used such as; classical methods including the gradient
method [2], [3], interior point method [4], linear program-
ming and non-linear programming [5], quadratic program-
ming and Newton method [6], Langrangian technique [7] and
dynamic programing [8].

However, these techniques have some drawbacks in resolv-
ing the complex optimization problem ofORPD such as; trap-
ping in local minima, untimely convergence and algorithmic
intricacy. To resolved these cited issues and overwhelmed
the weakness these approaches, the scholars/researchers have
implemented meta-heuristic and evolutionary techniques
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such as; evolutionary programming [9], differential evolu-
tion algorithm [10], genetic algorithm [11], moth-flame algo-
rithm [12], whale optimization algorithm [13], binary bat
algorithm[14], seeker optimization algorithm [15], firefly
algorithm [16], chaotic krill herd algorithm [17], jaya algo-
rithm [18], backtracking search algorithm [19], gravitational
search algorithm [20], particle swarm optimization [21], inva-
sive weed optimization [22], imperialist competitive algo-
rithm [23], cuckoo search algorithm [24], improved GWO
optimizer [25] and other hybrid solution mechanisms by
relating these concepts are studied in [26]–[33]. While, some
hybrid techniques are used to solve the optimal reactive
power dispatch problems such as; PSOGSA algorithm [34],
HGAPSO [35], SOA-FS [36].

The paper proposes the practice of a novel meta-heuristic
approach based on GWO optimizer which aims to resolve
the ORPD problem in the power networks. This technique
is based on population and inspired from the conduct of grey
wolves. The hunting and the social conduct of grey wolves
has proposed in [37]. For GWO simulation, the standard
MATPOWER package is used to run the load flow analysis
and the objectives of the research are given as follows:
• A novel nature inspired meta-heuristic optimization
technique of GWO is tested on IEEE30 Bus Standards
with 13 and 19 control variables for solving ORPD
problems.

• The aims / objectives of this research are to minimize
the power transmission line losses (Plosses,MW), voltage
deviation (VD), voltage Stability index and the energy
cost in $.

• The validation and verification of the proposed results
of GWO optimization algorithm through comparative
studies with state-of-the-art methodologies to prove the
worth of the scheme.

• The performance of GWO via statistical analysis in
term of histogram, probability CDF plots with learning
curves is revealed the stability and the robustness of the
algorithm.

The rest of body of the paper is set into the following
sections: Section 2 deliberates the problem formulation of
ORPD, Section 3 represents the methodology of GWO with
its pseudocode and graphical abstract, Section 4 describes
the results/discussion, Section 5 demonstrates the statistical
analysis while Section 6 represents the conclusion of this
research.

II. PROBLEM FORMULATION OF OPTIMAL RPD (ORPD)
The fitness objective of the ORPD problem is to minimize the
transmission line losses, voltage deviation, voltage stability
index and cost of energy. The mathematical formulations of
these objectives are described in following sections.

A. POWER LOSSES MINIMIZATION (F1)
Here, f (q, p) denotes as the first objective function which
aims to minimize the transmission line losses in MW. While,
the mathematical expression of this function is defined as

follows [32]:

F1 = Ploss(q, p) =
nl∑
i=1

Ploss (1)

The q along with p are defined as the dependent variables
vector as well as control variables vector correspondingly.
The function solution requirement is to pay attention towards
equality and inequality restraints.

x(q, p) = 0 (2)

y(q, p) ≤ 0 (3)

where, x(q, p) = 0 is defined as the equality constraints as
well as y(q, p) ≤ 0 define as the inequality constraints.

The equality restraint stands as the balanced power equa-
tion while the inequality restraints are described as generator
voltages, tap changer of transformers and reactive shunt VAR
compensators.

1) EQUAILITY CONSTRAINTS
The equality restraint which represents the power equality
of load flow defined that the modification concerning gen-
erated power in addition to demand power is equivalent to
the power losses. The equality restraint equations proposed
in [40] are still effective to give the power balanced of load
flow, as follows:

PGt,i − PDe,i = Vi
∑
j∈Ni

Vj(Gij cos θij + Bij sin θij) (4)

QGt,i − QDe,i = Vi
∑
j∈Ni

Vj(Bij cos θij + Gij sin θij) (5)

where, PDe,i and PGt,i denoted are the real power demand and
generation, QGt,i and QDe,i are the reactive power generation
and demand, Vi and Vj indicate as the voltages at ith and jth

load buses correspondingly, while Bij and Gij are the sus-
ceptance along with conductance between ith and jth buses
respectively.

2) INEQUAILITY CONSTRAINTS
The inequality restraints are defined in the following sub
sections.

a: GENERATOR CONSTRAINTS
The bus voltages’ generation along with generation of real as
well as reactive power need to be limited through their limits
as below:

Pmin
Gt,i ≤ PGt,i ≤ Pmax

Gt,i i = 1, 2, . . . ,NGt

Qmin
Gt,i ≤ QGt,i ≤ Qmax

Gt,i i = 1, 2, . . . ,NGt

Vmin
Gt,i ≤ VGt,i ≤ Vmax

Gt,i i = 1, 2, . . . ,NGt (6)

where, Pmin
Gt,i, Q

min
Gt,i and V

min
Gt,i denoted as the minimum limits

of active, reactive power generation and voltages, Pmax
Gt,i,Q

max
Gt,i

and Vmax
Gt,i are the maximum limits of active, reactive and

voltages, while NGt represents the number of generators.
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b: TRANSFORMER TAP SETTING
The formulation of setting of transformer tap limits is defined
as follows:

Tmin
ts,i ≤ Tts,i ≤ T

max
ts,i i = 1, . . . ,NTs (7)

where, Tmin
ts,i and Tmax

ts,i are the upper and lower limits of the
transformer tap settings, whereas NTs represents the number
of transformers.

c: REACTIVE SHUNT COMPENSATORS

Qmin
ct,i ≤ Qct,i ≤ Q

max
ct,i i = 1, . . . ,NCt (8)

where, Qmin
ct,i and Q

max
ct,i are upper and lower limits of compen-

sators, while NCt is the number of compensators.
All the fitness objectives for ORPD problem are needed to

be minimize while satisfying the equality and inequality con-
straints. The number of parameters should be set to optimum
values for obtaining such objectives. In ORPD, the inequality
restraints are exposed to be considered as the penalty factors
which is computed as the following mathematical expression.

FP = f (f1,2,3)+
∑
i∈Nqp

PVge,i
(
Vi − V lim

i

)2
+

∑
i∈NT

PTc,i
(
Ti−T lim

i

)2
+

∑
i∈NG

PGrp,i
(
Qi−Qlim

i

)2
(9)

where, PVge,i, PTc,i and PGrp,i are denoted as the penalty
multiplier factors for voltage, transformer tap and reactive
power generation limits. Whereas, the bound restraints of
V lim
i , T lim

i and Qlim
i are given as follows:

GENERATOR BOUND CONSTRAINTS

V lim
i =

{
Vmin
i ; Vi > Vmax

i

Vmin
i ; Vi < Vmax

i
(10)

TRANSFORMER BOUND CONSTRAINTS

T lim
i =

{
Tmin
i ; Ti > Tmax

i

Tmin
i ; Ti < Tmax

i
(11)

REACTIVE POWER GENERATION CONSTRAINTS

Qlim
i =

{
Qmin
i ; Qi > Qmax

i

Qmin
i ; Qi < Qmax

i
(12)

B. MINIMIZATION OF VOLTAGE DEVIATION (F2)
It is defined as; summation of voltage deviations at the entire
buses in the electric networks from the reference values.
It is considered as an important index factor in functioning
the electric power networks. The mathematical expression of
the second objective of this research is given as follows [40]:

F2 = VD(q, p) =
nl∑
i=1

[
Vt − V sv

t
]

(13)

where, nl is the number of transmission lines and V sv
t is the

stated value which is usually set to 1.0p.u.

C. MINIMIZATION OF VOLTAGE STABILITY INDEX (F3)
The instability of voltage is one of the most destructive
phenomena for the power system that can cause the volt-
age collapse steadily even immediately. The improvement
of voltage stability is equivalent to minimization of voltage
stability indicator that normally called L-index at each bus in
the power system. The improvement of the voltage stability
is carried out by minimizing the highest value of the L-index
in the power system at one bus. It is formulated by the given
mathematical expression [38]:

F3 = Lj =

∣∣∣∣∣∣1−
Ng∑
j=1

Yji
Vi
Vj

∣∣∣∣∣∣ , j = 1, 2, . . . ,NBus (14)

L = max(Lj), j = 1, 2, . . . ,NBus (15)

here, Lj is the value of bus j and called L-index, while Yji is
the mutual admittance between bus j and i.

D. MINIMIZATION OF ENERGY COST (F4)
The computing of minimization of cost is considered as the
third fitness objective of this research. The mathematical
expression is defined as follows [39]:

F4 = min(Ctotal) = CEnergy (16)

CEnergy = F1 × (0.06× 365× 24) (17)

where, the value of 0.06 $/KWhr cost due to energy losses,
365 represents days/year while 24 indicates the hour/day.

III. METHODOLOGY
This section presents the fundamental concepts of the Grey
Wolf Optimizer (GWO), pseudo code and the graphical
abstract for the solution to ORPD problems.

A. GREY WOLF OPTIMIZER (GWO)
The Grey Wolf Optimizer is Swarm Intelligence tool. It was
first proposed byMirjalili et al. [37]. The grey wolf optimizer
is inspired from the behavior of grey wolves. The grey wolves
usually live in a pack of 4-10 wolves. The Group consists
of one leader which is on top of its hierarchy. The leaders
are alpha wolves which dominate the whole pack and they
take decisions for the pack. The alphas (α) are followed by
betas (β), they help alphas (α) in decision making and they,
too, dominate rest of the pack. The deltas (δ) are third in order
and they control rest of the wolves. The omegas (ω) are at
last on the hierarchy and they follow the commands from top
orders.

The social hierarchy is shown in Fig. 1. The hunting
behavior of grey wolves consists of chasing, encircling and
attacking the prey. These behaviors help in exploration and
exploitation in search space for optimization problems.

The mathematical approach of social hierarchy and hunt-
ing behavior of grey wolves is explained in this section.
To formulate the social hierarchy for grey wolf optimizer,
we consider the best solution as the alphas (α). The
second-best solution is called beta (β), followed by delta (δ)
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FIGURE 1. The dominance hierarchy of grey wolves.

as the third best solution. The rest of the population is
called omega (ω). The hunting in GWO algorithm is focused
through (α), (β), as well as (δ) whereas the omega tracks
them. The attacking procedure of the grey wolves com-
prises numerous phases before they catch the prey. Initially,
the wolves tend to encircle the prey to stop her as of mov-
ing, this encircling behavior can be represented through the
subsequent set of equations:

The hunting behavior of grey wolves comprises of search-
ing, encircling and attacking the prey. The mathematical
expression is given as follows:

ED =
[
EC .X→Pvl(titer )− EX (titer )

]
(18)

EXps(titer + 1) = EXPvl(titer )− EA. ED (19)

where, EA and ED stand for the vectors coefficient constants,
X→Pvl is denoted as the vector location of the prey, titer is
donated as iteration, EXps is the position vector of a grey wolf.
The encircling equations are able to be acquired through
finding the EA in addition to EC vectors.

EA = 2a. Er1 − a
EC = 2.r→2 (20)

where, a is in range [2, 0] in addition decreased from 2 to
0 through every iteration, whereas Er1 and Er2 are random
vectors between [0, 1].

In each iteration, the three best solutions namely alpha (α),
beta(β) and delta(δ) are chosen and other wolves (ω) update
their position established on the best solutions. The mathe-
matical formulation is given as follows:

EDα =
∣∣∣C→1 .X→α (titer )− EX (titer )

∣∣∣ (21)

EDβ =
∣∣∣C→2 . EXβ (titer )− EX (titer )∣∣∣ (22)

EDδ =
∣∣∣C→3 . EXδ(titer )− EX (titer )∣∣∣ (23)

The vector positions of the prey be able to be determined
established on the alpha (α), beta(β) as well as delta(δ)

TABLE 1. Control bound restraints of IEEE30 BUS (13, 19 variables).

positions consuming the following equations:

EXp,1 =
∣∣∣X→α (titer )− EA1.D→α

∣∣∣ (24)

EXp,2 =
∣∣∣ EXβ (titer )− EA2. EDβ ∣∣∣ (25)

EXp,3 =
∣∣∣ EXδ(titer )− EA3.D→δ ∣∣∣ (26)

The exploration in addition to exploitation of the grey wolf
agents depend proceeding the parameter A, through decreas-
ing A half of the iterations remain devoted towards explo-
ration (|A| ≥ 1). In the meantime, while the (|A| < 1) the
other half of the iterations are dedicated towards exploitation.

X→(titer + 1) =
X→p,1 + X

→

p,2 + X
→

p,3

3
(27)

IV. RESULTS AND DISCUSSION
A MATLAB programmed for traditional GWO was devel-
oped and tested upon different test cases on IEEE30 standards
with 13 and 19 variables. The best fitness can possible be
achieved by settings of control variables. In this research,
the minimum transmission line losses (F1), minimum voltage
deviation (F2), voltage stability index (F3) and cost of energy
(F4) are the four objectives to find and discussed while keep-
ing the equality and inequality constraints keep in their limits
to avoid get penalties. The details of the study cases are given
as follows:

Case A: The GWO optimizer will be tested for
IEEE30 standard with 13 variables to minimize different
objective functions such as; transmission line losses (Plosses,
MW), voltage deviation (VD), voltage stability index (VSI)
and cost of energy ($) respectively.

Case B: The fitness objective in the second study case,
theGWOwill be tested for IEEE30 standardwith 19 variables
to get the same fitness objectives.

The Table 2 describes the function parameters using by
GWO for ORPD problems. The comparative analysis will be
conducted and discussed in the section for all given fitness
objectives with its statistical analysis. The Fig. 3 illustrates
the single line diagram of IEEE30 standard system using for
both cases (A, B) by using MATPOWER software.

TABLE 2. GWO selection parameters For IEEE30 (13, 19 variables).
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Algorithm 1 Pseudo Code of GWO Optimizer for ORPD Problems
Inputs: Set no. of iterations, population, set limits of control variable and load case data of IEEE 30 bus for 13 and 19 Control
Variables.
Output:Minimization of power losses, Voltage deviation, Voltage Stability Index and Cost of Energy.
Start GWO
Step-1 Swarm (Swarm) with set of all possible solutions, known as search agents in nth dimension given as:

Swarm = [VGE,1,VGE,2, . . . ,VGE,n, Tc,1,Tc,2, . . . ,Tc,n Qc,1,Qc,1, . . . ,Qc,n]

Step-2 Initialize Optimizer by maximum number of iterations with Swarm of search agents for given control variables with
upper and lower limits.

S ij (0) = SLj + rand(0, 1) ∗ (S
u
j − S

u
j )

Step-3 Start with random Alpha, Beta and Delta positions of three populations.

EXp,1, EXp,2, EXp,3

Step-4 Run Load flow for each population and obtain active power losses, voltage deviation, voltage stability index and cost
of energy.
Step-5 Update positions of population by using alpha, beta and delta positions and best results stored in three positions.

X→(titer + 1) =
X→p,1 + X

→

p,2 + X
→

p,3

3
Step-6 Check for all limits. Reject constrained violated values.
Step-7 Repeat from Step-4 till max number of iterations is reached.
Step-8 Print results for Best Solutions.
End GWO

A. CASE A (IEEE30 WITH 13 VARIABLES)
The number of control variables are taken for IEEE30 stan-
dard bus case are 13. The system contains six generator units
(VGE ), which is connected to buses 1, 2, 5, 8, 11 and 13;
four transformers are connected on lines between 6–9, 6–10,
4–12 and 27–28 while three shunt compensators are con-
nected to the bus numbers 10, 20 and 24. The IEEE30 Stan-
dard bus system also contains 41 number of branches. The
generator voltages, transformer tap settings and VAR injec-
tion of the shunt capacitors are considered as the control
variables. These restraints of variables are given with the
base of 100 MVA. The voltage magnitudes limits of all
bus ranges are given between 0.95-1.1p.u, transformer tap
settings range from 0.9-1.1 p.u while shunt capacitor limits
are in between the interval of 0 to 30 MVAR. Furthermore,
the load demand set for this case is S = P + jQ = 2.834 +
j1.262p.u [40].

In the initial step, the proposed algorithm is run at different
search agents for 200 iterations with 10 autonomous trails
to optimize and get the best solution of GWO optimizer for
given ORPD problems. The convergence characteristic curve
of GWO for different search agents are given in Fig. 4 for
fitness objective F1.
Comparative Analysis. In this section, the simula-

tion of results getting from 1EEE30 bus system for
13 variables are compared with the different approaches
given in Table 3. The GWO results are compared with
C-PSO [41], DE [46], MFO [12], MICA-IWO [23],

FODPSO [42] and FODPSO-EE [47] algorithms for the opti-
mal reactive power dispatch problems. The limits of control
variables are given in Table 1, while the results of GWO
optimizer gives the best outcomes with satisfying the control
limits.

The results are compared to the base case which is taken
here 5.663 MW while the outcomes getting from GWO is
reported 4.5538 MW which is 19.59% reduced from the
base case. The outcomes getting from GWO optimizer is
further compared to other algorithms given in Table 3. The
percentage in reduction of losses from different techniques
are given such as; C-PSO is 17.36%, DE is 13.68%, MFO
is 19.01%, MICA-IWO is 14.43%, FODPSO is 18.66% and
FODPSO-EE is 18.82%while the GWOoptimizer is reported
to 19.59% respectively.

The Fig. 6(a) illustrates the convergence characteristic
curve for minimization of transmission line losses attained
by GWO optimizer for ORPD problem. For such purpose,
the GWO parameters are set to 50 autonomous runs and
50 search agents with 200 iterations given in Table 2,
the transmission line losses attained by optimization of GWO
reported as 4.5538 MW for Case A. The outcomes of com-
parative analysis indicated towards the best performance of
GWO in case of transmission losses.

The Fig. 6(b) deliberates the mean average, best and worst
conditions in cases of transmission line losses minimization
in case of power line losses. The best worst and mean val-
ues in this case are reported to 4.5538MW, 4.5972MW and
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FIGURE 2. Graphical abstract of GWO optimizer scheme using for solving ORPD problems based on 13 and 19 variables in IEEE30 standards
bus system.
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FIGURE 3. Single line diagram of IEEE30 standard bus system.

FIGURE 4. GWO convergence curve on different search agents for
objective (F1) IEEE30 (13 variables)–CASE A.

4.5732MW respectively. Here, it is mentioned that the worst
case reported in this case.

While, the fitness objective (F2) in case study A, is to
find the voltage deviation (VD), for which GWO has run for
50 search agents with 200 iterations, the detail of function
parameters for GWO are given in Table 2.

The Fig. 5 illustrates the characteristic curve in case of
voltage deviation, the GWO outcomes is reported to min-
imum value 0.1037p.u. While, the worst and mean values
are reported to 0.1427p.u and 0.1254p.u respectively. The
outcomes attained by the GWO optimizer in case of mini-
mization of voltage deviation is less reported as compared to
the other given solutions in Table 3.

The fitness objective (F3) in study case A is to find the
minimization of voltage stability index (VSI). The outcomes

FIGURE 5. Convergence curve of GWO for fitness objective (F2), IEEE30
(13 variables)–CASE A.

of GWO optimizer is reported to 0.1172p.u. While the mean
and the worst cases are reported 0.1203p.u and 0.1186p.u
respectively. The convergence characteristics of GWO opti-
mizer for this objective is shown in Fig. 7(a) and the detail of
comparison given in Table 3.

To find the cost of energy minimization is another objec-
tive (F4) of this study Case A. This cost of energy is related
to the power losses minimization objective and their values
are calculated in. For this cost objective, the GWO param-
eters selected by Table. 2 and calculate this objective by
given Eq. (14-15). The Fig. 7(b) demonstrated the minimum
cost of energy curve computed by the GWO optimizer. The
minimum cost of the energy is reported to 2.3867E+06 in
dollars ($).

B. CASE B (IEEE30 WITH 19 VARIABLES)
For the second Case B, the GWO optimizer is been tested
on IEEE30 standard for 19 variables to solve the ORPD
problems for four different objective functions. For this case,
the IEEE30 standard system considered the same data as
previous discussed in Case A for VGE and Tc. But there
are 9 shunt reactive compensators considered which are con-
nected to 10, 12, 15,17, 20, 21, 23, 24 and 29 buses while
their control limits range interval between 0 to 30 MVAr. The
restraints of control variables are taken from Table 1. While,
the loads and transmission line data are taken from [31].

The grey wolf optimizer (GWO) has been tested on differ-
ent trials according to changing in number of search agents
from 10 to 50 runs with 200 iteration for 10 independent trails
given in Fig. 8. The aim of this act, is to get the finest global
solution from GWO optimizer. After getting over these trails,
the best outcomes are taken from the search agents 50 which
is further run for 200 iterations and 50 autonomous trails.
Comparative Analysis.The first fitness objective in Case B

is to minimize the transmission line losses (Plosses, MW). The
outcomes getting from GWO optimizer is further compared
to the base case 5.811MW and other optimization techniques
given in Table 4.
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FIGURE 6. (a) Convergence curve of GWO (b) mean, worst and average values for fitness objective (F1) IEEE30 (13 variables)–CASE A.

FIGURE 7. (a) Convergence curve of GWO for fitness objective (F3), (b) convergence curve of GWO for fitness objective (F4)–CASE A.

FIGURE 8. GWO convergence curve on different search agents for fitness
objective (F1), IEEE30 (19 variables)–CASE B.

By applying the grey wolf optimization (GWO) strategy,
the fitness objective F1 is reduced from the based case

FIGURE 9. Convergence curve of GWO for fitness objective (F2), IEEE30
(19 variables)–CASE B.

5.811 MW to 4.5185 MW and reduction in losses reported to
22.24%. The GWO optimizer outcomes is further compared
to different techniques which are reported such as; GSA [43]
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TABLE 3. Best control variable settings for fitness objectives for Case A.

FIGURE 10. (a) Convergence curve of GWO (b) mean, worst and average values for objective (F1) IEEE30 (19 variables)–CASE B.

FIGURE 11. (a) Convergence curve of GWO for fitness objective (F3), (b) convergence curve of GWO for fitness objective (F4).

is 14.381%, TLBO [45] is 6.85%, FA [36] is 17.92%, GSA-
SQP [44] is 21.82%, MFO [12] is 21.86 and DE [46] is
21.61% respectively.

The convergence curve of GWO tested for the transmission
line losses is given in Fig. 10(a). The GWO has run on
its best trail of 50 search agents with 200 iterations for its
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TABLE 4. Best control variable settings for minimization of fitness objective Case B.

FIGURE 12. Statistical analysis of GWO for transmission losses minimization on IEEE30 bus with
13 variables-CASE A.

better performance, the outcomes of GWO has been reported
to 4.5185 MW. The overall results demonstrate towards the
better performance of GWO optimizer for ORPD problems
in this case. It can also be concluded that the GWO technique
is able to determine the near global solution. The results

given in Table 4 also showed that the bound limits of control
variables were in the limits.

The outcomes of learning curve in Fig. 10(b) are given in
form of average, worst and best. These values are reported
4.5552MW, 4.6284MW and 4.5185MW respectively.
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FIGURE 13. Statistical analysis of GWO for transmission losses minimization on IEEE30 bus for
19 variables–CASE B.

FIGURE 14. Statistical analysis of GWO for voltage deviation on IEEE-30 bus with 13 control
variables–CASE A.

FIGURE 15. Statistical analysis of GWO for voltage deviation on IEEE-30 bus for 19 control variables–CASE B.

The worst value in this case are reported less to the base case
which endorse towards the best performance and solution
achieved by GWO optimizer.

The second fitness objective in Case B, is to find the
voltage deviation (VD). For this purpose, the parameter
selection for GWO optimizer is attained from Table 2.
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FIGURE 16. Statistical analysis of GWO for voltage stability index on IEEE30 bus with 13 variables–CASE A.

FIGURE 17. Statistical analysis of GWO, voltage stability index on IEEE30 with 19 variables–CASE B.

FIGURE 18. Statistical analysis of GWO for cost minimization on IEEE30 bus with 13 variables–CASE A.

The Fig. 9 is demonstrated the convergence curve for the
best outcome achieved by GWO in case of voltage devia-
tion. The results attained by the GWO optimizer in case of

minimization of voltage deviation is reported to 0.1325p.u
which is less to the base case 1.1501p.u. The outcomes
attained by the GWO optimizer in case of minimization of
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FIGURE 19. Statistical analysis of GWO for cost minimization on IEEE30 bus for 19 variables–CASE B.

voltage deviation is less reported as compared to the other
given solution given in Table 4, which indicates the best
optimization solution achieved by the GWO optimizer.

The third objective in this study Case B is to find the
minimization of voltage stability index (VSI). The outcomes
of GWO optimizer is reported to 0.1125p.u and shown
in Fig. 11(a) while the values of the results are given
in Table 4.

The results indicated towards the best outcome attained
by the GWO optimizer in this case and the results are
better reported from GSA, TLBO and DE algorithm given
in Table 4. The fourth objective for this study Case B is to
find the minimum cost of energy.

The Fig. 11(b) describes cost of energyminimization curve
for fitness objection (F4). For, this objective the selection of
GWO parameters taken from Table 2. The minimum energy
cost is reported to 2.3997E+06 ($).

V. STATISTICAL ANALYSIS
In this segment, the performance of the proposed grey wolf
optimizer (GWO) is further studied through the comparative
analysis with its statistics considering for the two test cases of
IEEE 30 with 13 and 19 variables for optimal RPD problems.
According to the stochastic nature of the GWO, the out-
comes getting from the GWO are different from one another.
Therefore, the 50 independent runs are carried out with
50 search agents with 200 iterations to check the inference
on GWO to get the better solution for ORPD problem.

The statistical analysis is performed based on box-
plot analysis, histogram analysis, empirical CDF analy-
sis with minimum fitness. The results demonstrate in sub
Figs 6(a) and 10(a) are for minimization of transmission
line losses (Plosses, MW), Figs. 5 and 9 demonstrates the
voltage deviation (VD)minimization, sub Figs. 7(a) and 11(a)
illustrates the minimization of voltage stability index (VSI),

while sub Figs. 7(b) and 11(b) are for the cost of energy
minimization. The minimum fitness in sub Figs. 12(a)-19(a)
indicates the minimum difference in all test cases determined
the substantial precision of the GWO optimizer. The sub
Figs. 12(b)-19(b) histogram plots demonstrated towards the
best outcomes taken from the GWO which is recorded less
as compared to the based case for given test cases. The
sub Figs. 12(c)-19(c) probability empirical CDF curve indi-
cated that almost hundred percent of the autonomous runs
gives the fitness less than the base case. While, the sub
Figs. 12(d)-19(d) demonstrated the dispersal of data where
values and outliers are much closer to the average gauge
consist the precise optimization getting from the GWO. For
discussing all this statistical analysis and studies, it is depicted
that the results demonstrate the robustness consistency and
stability of GWO optimizer and also is been observed for the
better solution to ORPD problems.

VI. CONCLUSION
In the research, the nature inspired metaheuristic approach
of GWO is successfully employed to solved ORPD prob-
lems for two given Cases A, B. The numerical results of
GWO are tested with other existingmethods, namely, C-PSO,
DE, MFO, FODPSO, MICA-IWO, MFO, DE, FA, GSA,
GSA-SQP and TLBO, to validate the performance of the
proposed GWO optimizer. The simulation results showed
that GWO optimizer is effective and efficient approach for
solving the ORPD problems. When compared with the best
results of other techniques, GWO optimizer is observed to be
more effective as the total transmission line losses, voltage
deviation and cost are the minimum relative to others.

The best outcomes attained by GWO optimizer for
both A and B cases are reported such as; minimization of
transmission line losses 4.5324 MW and 4.5185 MW with
19.59% and 22.24% reduction in power losses to the base
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case, voltage deviation values are reported to 0.1037p.u.
and 0.1325p.u, voltage stability index values are reported to
0.1175p.u and 0.1125p.u while the cost of energy are reported
to 2.3867E+06$ and 2.3997E+06$ respectively.

To summarizes the overall statistical analysis indicates
towards the robustness, effectiveness and efficacy of the
GWO optimizer. In future, by utilization of GWO optimizer,
it could be more possible to solve the complex and non-linear
problems in the field of science and technology.
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