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ABSTRACT In the field of intrusion detection, there is often a problem of data imbalance, and more and more
unknown types of attacks make detection difficult. To resolve above issues, this article proposes a network
intrusion detection model called CWGAN-CSSAE, which combines improved conditional Wasserstein
Generative Adversarial Network (CWGAN) and cost-sensitive stacked autoencoders (CSSAE). First of
all, the CWGAN network that introduces gradient penalty and L2 regularization is used to generate
specified minority attack samples to reduce the class imbalance of the training dataset. Secondly, the stacked
autoencoder is used to intelligently extract the deep abstract features of the network data. Finally, a cost-
sensitive loss function is constructed to give a large misclassification cost to a minority of attack samples.
Thus, effective detection of network intrusion attacks can be realized. The experimental results based on
KDDTestt, KDDTest-21, and UNSW-NB15 datasets show that the CWGAN-CSSAE network intrusion
detection model improves the detection accuracy of minority attacks and unknown attacks. In addition,
the method in this article is compared with other existing intrusion detection methods, excellent results have
been achieved in performance indicators such as accuracy and F1 score. The accuracy on the above datasets
reached 90.34%, 80.78% and 93.27% respectively. The accuracy of U2R on the KDDTest™ and KDDTest-
21 datasets both reached 42.50%. The accuracy of R2L on the KDDTest™ and KDDTest-21 datasets reached
54.39% and 52.51%, respectively. And the F1 score on the above datasets reached 91.01%, 87.18% and
93.99% respectively.

INDEX TERMS Intrusion detection, conditional Wasserstein GAN, stacked autoencoder, imbalanced

classification, cost-sensitive, regularization, deep learning.

I. INTRODUCTION

Based on the rapid development of emerging technologies
such as cloud computing, big data, and the Internet of Things,
cyberspace has become the fifth-largest space besides land,
sea, air and sky [1]. However, hundreds of millions of net-
work access points and user equipment access networks
have brought huge difficulties and challenges to cyberspace
security. Recently, various network security incidents and
network attacks have occurred frequently. For example,
the Portuguese multinational energy giant Energias de
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Portugal (EDP) was attacked by RagnarLocker ransomware
in April 2020. The attacker claimed to have obtained 10TB
of sensitive data files from the EDP Company and demanded
a ransom of 1,580 bitcoins [2]. In addition, in June 2020,
Honda’s car server was attacked by EKANS (snake spelled
backwards) ransomware, which caused part of the production
system to be interrupted [3]. In summary, it is of great strate-
gic significance to detect and respond to network intrusions
into a timely and accurate manner to ensure the security of
cyberspace.

Intrusion detection technology uses an active defense
method. Through continuous monitoring and analysis of net-
work activities, it detects intrusions and responds promptly.
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Now, this technology has become an important means of
maintaining cyberspace security. Due to the different exe-
cution locations of intrusion detection, intrusion detection
systems (IDS) can be divided into network-based intrusion
detection systems (NIDS) and host-based intrusion detec-
tion systems (HIDS). This article studies the network-based
intrusion detection system. Currently, the scale of network
data is gradually increasing and network attack technologies
are rapidly updated. Intrusion detection models based on
shallow machine learning algorithms exhibit problems such
as difficulty in processing large-scale network intrusion data,
poor recognition of various new types of attacks, high false
alarm rates, and excessive reliance on researchers for feature
design and feature selection [4], [5].

In recent years, deep learning technologies such as GAN
(Generate Adversarial Network) [6], SAE (Stacked Autoen-
coder) [7], DBN (Deep Belief Network) [8], DNN (Deep
Neural Network) [9], LSTM (Long-Term Short-Term Mem-
ory) [4] are widely used in the field of intrusion detec-
tion. Deep learning technologies can automatically extract
high-level abstract features of network data and realize accu-
rate identification of network attacks, which can overcome
the limitations of shallow learning algorithms. Although the
application of deep learning in the field of intrusion detection
has achieved the expected research results, there are still
many problems to be solved. On the one hand, a good dataset
plays a vital role in model training. However, the network
intrusion detection data obtained in the real network envi-
ronment often contains a large amount of normal behavior
data onto minority attacks behavior data. Also, the number
of different types of attacks is imbalanced. It results in the
model’s poor recognition of minority intrusions [10]. On the
other hand, as the rapid development of network technol-
ogy, network attack methods are changing rapidly and more
unknown attacks are threatening the security of cyberspace,
which bring new challenges to the research of deep learning
on intrusion detection [11].

So far, the methods to solve the problem of class imbalance
can be divided into two categories: data level and algorithm
level. The data-level method is mainly to reduce the degree
of class imbalance by changing the original sample distribu-
tion. The general methods are to increase minority samples,
i.e., oversampling techniques. For example, Random Over
Sampler (ROS) [12], Synthetic Minority Oversampling Tech-
nique (SMOTE) [13], Adaptive Synthetic (ADASYN) [14].
However, excessive sampling of minority classes is likely to
cause overfitting problems [6]. From the algorithm, consid-
ering the difference in the cost of different misclassification
situations, introducing cost-sensitive factors and designing a
cost-sensitive classification algorithm is one of the methods
to solve the problem of class imbalance. At present, the
use of cost-sensitive algorithms to solve the class imbalance
problem in the field of intrusion detection is also involved,
such as the literature [15], [16].

Regarding solving the problem of data imbalance and
unknown attack detection in intrusion detection, this article
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proposes a novel network intrusion detection model called
CWGAN-CSSAE, which combines improved CWGAN and
a cost-sensitive stacked autoencoder. CWGAN-CSSAE uses
a combination of data and algorithms to solve the problems of
imbalanced class distribution, which improves the accuracy
of the model’s detection of minority attacks and unknown
attacks. The advantages of the network intrusion detection
model proposed in this article are as follows:

1) CWGAN can capture the real data distribution, and
further, generate specified types of attack samples based on
preset labels, which reduces the imbalance of the training
set. Also, the newly generated samples simulate the unknown
network attack. It is helpful to improve the accuracy of the
model’s detection of minority attacks and unknown attacks.

2) CWGAN introduces a gradient penalty term and L2 reg-
ularization. It overcomes the problems of mode collapse and
gradient convergence. Thus, it effectively enhances the stabil-
ity of network training. Besides, it can alleviate the problem
of overfitting efficiently.

3) This article proposes a cost-sensitive loss function to
improve stacked autoencoder (SAE) based on the number of
different attacks. Give a larger misclassification cost to the
minority attacks, and give a smaller misclassification cost
to the majority attacks. It can not only improve the overall
performance of the model but also improve the accuracy of
the model’s detection of minority attacks.

4) CSSAE can extract high-level abstract features of net-
work data by extracting features layer by layer, as well as
fine-tune network parameters to obtain the optimal model,
which can better deal with large-scale and complex network
attacks.

5) CWGAN-CSSAE uses a combination of data level and
algorithm level to solve the problem of data imbalance. On the
one hand, it avoids the overfitting problem caused by only
using CWGAN to over-generate minority samples. On the
other hand, it overcomes the disadvantage of giving too
large misclassification cost to very few classes when only
using cost-sensitive classification algorithms. Compared with
the existing intrusion detection models, better results have
been achieved on the NSL-KDD (KDDTest-21), NSL-KDD
(KDDTest™) and UNSW-NB15 datasets.

The remainder of this article is structured as follows.
Section II introduces the research of deep learning in the
field of intrusion detection and related research to solve the
problem of class imbalance. Section III introduces relevant
background knowledge and proposes an improved model.
Besides, Section IV describes the proposed intrusion detec-
tion model in detail. Section V describes the experimental
results and performance analysis. Finally, Section VI presents
some conclusions and further work.

Il. RELATED WEORKS

A. RELATED RESEARCH ON DEEP LEARNING IN NIDS
With the further development of research in deep learn-
ing, many researchers apply deep learning to network intru-
sion detection. Its advantage of automatically extracting
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high-level abstract features helps to complete the classifica-
tion of large-scale and complex network data. The application
of deep learning in network intrusion detection has made
some remarkable research results [17]-[22].

Li et al. [17] proposed a network intrusion detection
method based on deep learning. First of all, an image conver-
sion method is proposed to process NSL-KDD data, as well
as convolutional neural networks ResNet and GoogLeNet are
used to learn and recognize the features of the converted
graphics. Experimental results show that the CNN model is
pretty sensitive to the images transferred from the attack data.

Tama et al. [18] proposed a two-stage classifier ensem-
ble for intelligent anomaly-based Iintrusion detection system
(TSE-IDS). First, the hybrid feature selection technique is
used to reduce the feature amount of the training dataset,
and then the two-level classifier is used for classification.
TSE-IDS has achieved good classification accuracy on
KDDTest™, KDDTest-21 and UNSW-NB15 datasets.

Yin et al. [19] proposed a network intrusion detection
method based on recurrent neural network RNN-IDS. They
have studied the binary classification performance and multi-
variate classification performance of RNN-IDS. Experiments
based on the NSL-KDD dataset show that RNN-IDS is an
intrusion detection model with excellent performance and
high accuracy. It has achieved 83.28% and 68.55% detec-
tion precision on the KDDTestt and KDDTest-21 test sets,
respectively.

Aygun and Yavuz [20] proposed an anomaly detection
attack model based on autoencoder and an anomaly detection
attack model based on denoising autoencoder. The experi-
ment was conducted on the NSL-KDD (KDDTest") dataset,
as well as the recognition accuracy rates reached 88.28% and
88.65% respectively, which effectively improved the detec-
tion accuracy of zero-day attacks.

Ma et al. [21] proposed an intrusion detection method for
detecting malicious network traffic based on the combination
of spectral clustering (SC) and deep neural network algo-
rithm, called SCDNN. First of all, according to the sample
similarity, the dataset is divided into k subsets using cluster-
ing centers. Then, the similarity feature is used to measure
the distance between the data points in the test set and the
training set, as well as it is used as the input of the deep neural
network algorithm. The recognition accuracy of this method
on the KDDTest™ and KDDTest-21 datasets reached 72.64%
and 44.55%, respectively.

Khan et al. [22] proposed a new network intrusion detec-
tion method based on two-stage deep learning (TSDL) model.
The model includes two decision-making stages: the first
stage is to use a probability score value to classify network
traffic as normal or abnormal traffic, and the second stage is to
use the probability score value as an additional feature in the
testing phase. Experimental results show that the recognition
rate of the model on the KDD99 and UNSW-NB15 datasets
reached 99.996% and 89.134%, respectively.

The recognition accuracy, detection rate, and F1 score
of the above methods on the benchmark NSL-KDD

VOLUME 8, 2020

TABLE 1. The recognition accuracy, detection rate, and F1 score (%) of
the methods on NSL-KDD (KDDTest*), NSL-KDD (KDDTest-21) and
UNSW-NB15 datasets.

Datasets Models Acc DR F1
SAVA[?E'DNN 89.36 95.98 90.08
ResNet [17] 79.14 69.41 79.12
GoogLeNet [17] 77.04 65.64 76.50
NSL-KDD TSE-IDS [18] 85.79 86.80 /
(KDDTest+) RNN-IDS [19] 8328 7312 8322
AE [20] 88.28 87.68 89.51
DAE [20] 88.65 83.08 89.28
SCDNN [21] 72.64 57.48 /
SAVA[II:E'D NN 80.30 95.19 86.92
NSL-KDD
(KDDTest-21) TSE-IDS [18] 72.52 72.50 /
RNN-IDS [19] 68.55 / /
SAVAER-DNN 93.01 91.94 93.54
[11]
UNSW-NBIS TSE-IDS [18] 9127 9130 /
TSDL [22] 89.13 / /
(KDDTest™), NSL-KDD (KDDTest-21) and UNSW-

NB15 datasets is summarized in Table 1.

The above-mentioned deep learning methods have
achieved satisfactory results in the network intrusion detec-
tion system.

However, they pay too little attention to the problem of data
imbalance and unknown attack detection, resulting in poor
detection of minority attacks and unknown attacks.

B. RELATED RESEARCH ON IMBALANCED DATA
The intrusion detection model trained with the imbalanced
training set has serious biases, which means that the model
will pay too much attention to normal behaviors, which will
reduce the recognition effect of attack behaviors with a small
number of samples. Thus, how to achieve excellent results on
imbalanced datasets is a major challenge in the application
of deep learning to the field of intrusion detection. In recent
years, domestic and foreign scholars have researched the
problem of class imbalance in network intrusion detection.

To solve the problem of data imbalance, Lee and Park [6]
proposed an intrusion detection method GAN-RF based on
generative adversarial network and random forest algorithm.
GAN successfully solves the problems of over-fitting and
class overlap in traditional over-sampling technology. Exper-
imental results also show that the model shows good perfor-
mance on imbalanced intrusion detection data.

In order to improve the detection accuracy of low-frequency
attacks and unknown attacks, Yang et al. [11] proposed
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a new network intrusion detection model SAVAER-DNN.
The model uses SAVAER’s decoder to synthesize new
low-frequency and unknown attack samples, as well as uses
SAVAER’s encoder to extract high-level abstract features of
the original sample to initialize DNN. DNN is used as a
classifier to complete the classification of intrusion detec-
tion data. Through multi-classification experiments on the
benchmark NSL-KDD (KDDTest™), NSL-KDD (KDDTest-
21) and UNSW-NB15 datasets, it is concluded that compared
with other state-of-the-art intrusion detection models, the
SAVAER-DNN algorithm has a better detection effect on
low-frequency attacks and unknown attacks.

Kim et al. [23] proposed a zero-day attack detection model
based on Transfer Generative Adversarial Network (tGAN).
At the same time, they creatively use the autoencoder struc-
ture to pre-train GAN, which enhances the stability of GAN
in the training process. And use the t-SNE algorithm to visu-
alize the clustering mode of malware. From the experimental
results, we can know that the model has better performance
than machine learning algorithms.

Long et al. [24] proposed an active cost-sensitive learn-
ing method for intrusion detection. A cost-sensitive learning
method is a basic classifier and the sampling criterion of the
maximum misclassification cost. The experimental results
based on the KDDCUP 99 intrusion detection dataset show
that the method is effective.

To solve the problem of the class imbalance that is common
in industrial intrusion detection systems, Li et al. [15] pro-
posed a cost-sensitive online learning algorithm. Experiments
conducted on the two test data of the natural gas pipeline
system and power system have proved that the algorithm can
effectively improve the detection rate of network attacks in
industrial control systems.

Zhang et al. [25] proposed an intrusion detection model,
named parallel cross convolutional neural network (PCCN).
PCCN extracts flow features by fusing two branched con-
volutional neural networks, thereby improving the detection
performance of unbalanced data. Based on the experimental
results on the CICIDS2017 dataset, the model not only has
a good detection performance on unbalanced data, but also
reduces the detection time.

It can be seen that the above method has achieved
satisfactory results on network intrusion datasets with imbal-
anced categories. Inspired by previous research, this arti-
cle proposes a new hybrid intrusion detection model called
CWGAN-CSSAE. The model solves the problem of class
imbalance from the data level and algorithm level at the
same time. Firstly, CWGAN that introduces gradient penalty
and L2 regularization is used to generate specified minority
attacks, as well as merge the generated attacks into the origi-
nal training set to construct a new training dataset. It increases
the diversity of samples and reduces the imbalance of the
dataset. Secondly, based on the new training dataset, the mis-
classification cost is set according to the imbalanced propor-
tion of samples and a cost-sensitive SAE network is proposed.
On the one hand, CSSAE can extract high-level abstract
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features to process large-scale network data. On the other
hand, it can improve the detection of minority attacks. Finally,
the AdaBound [26] algorithm is used to optimize the training
process of CSSAE.

lIl. METHODOLOGY

This section mainly introduces two parts, one part is an
introduction to GAN and its improved versions CGAN and
WGAN. This article puts forward the improved CWGAN
based on it. The other part introduces SAE and the proposed
CSSAE based on the number of samples.

A. REVIEW OF GANs

The Generative Adversarial Network (GAN) is a new type of
generative model proposed by Goodfellow et al. in 2014 [27].
Inspired by the zero-sum game, GAN is composed of a
generator and a discriminator. Its network structure is shown
in Figure 1. The objective function of the GAN is:

minmax V(G, D) = min max Ey~,, [log D(x)]
G D G D
+Ez~p, [log(1 — D(G@)N] (1)

In the above equation, z is random noise, p;, is the distribution
of noise samples z, p, is the distribution of real data x, pg is
the distribution of attack samples generated by G, G(z) is the
pseudo data generated by generator G, as well as E(-) is the
expected value. The two networks confront each other and
iteratively optimize, optimize D to maximize the accuracy of
discriminating data sources, and optimize G to generate more
realistic fake samples to deceive the discriminator D.

CGAN is a conditional version of GAN, and its network
structure is shown in Figure 2. In CGAN, both the generator G
and the discriminator D are added with an implicit label y, and
through y can generate samples of the specified label (type).
Therefore, according to equation (1), the objective function
of CGAN is:

i V(G, D) = mi Ex~p [logD
%My( ) %myxmwgww

+Ez~p [log(l — D(Gzly)]  (2)
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In the equation, y is the one-hot code of the specified attack
type. The optimization of CGAN is similar to that of GAN.
Due to the use of Jensen-Shannon (JS) divergence as the
metric for generating samples, both GAN and CGAN have
problems such as mode collapse and training instability (gra-
dient disappearance) [28].

In2017, Arjovsky et al. [29] proposed WGAN that theoret-
ically solved the problems of gradient disappearance during
the training of GAN and CGAN. In addition, experiment
results showed that WGAN effectively solved the problems
of mode collapse. The core idea of WGAN is to change the JS
divergence when calculating the loss function to Wasserstein
distance (also called Earth-Mover (EM) distance), which is
defined as follows:

Wpr.pg) = _inf

Eeyy~y [llx =yl (3)
Vel_[(Prng) e~y

In the equation, [[(p,, pg) is the set of all possible joint
distributions of p, and p,. W(p,,pg) can be regarded as
the “minimum consumption” of transforming distribution
py into distribution p, under “‘optimal path planning”. The
objective function of WGAN is given by

m(;n mgx V(G, D)= m(%n mgx Exp, [DX)]—E;~p, [D(G(2))]
4)

B. STACKED AUTO-ENCODER

Autoencoder (AE) is a fully connected unsupervised neural
network that extracts features by reconstructing unlabeled
data [30]. AE network is composed of two parts: encoder and
decoder, its network structure is shown in Figure 3.

1) The encoder uses a deterministic mapping function to
map input x to hidden layer representation k. Usually, this
mapping function f is non-linear. The encoding process is as
follows:

h =f(Wx +b) 5)

In the equation, W is the weight between the input and the
hidden layer representation, and b is the bias.

2) The decoder reconstructs the hidden layer representation
h to obtain output x. The decoding process is:

¥=f(Wh+b (6)

In the equation, W’ is the weight between the hidden layer
representation and the output, and b’ is the deviation. X is the
reconstruction output of y.
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The autoencoder is trained by minimizing the reconstruc-
tion error. Assuming the training set D = {x(l)}f.V: 1> the loss
function of AE is:

- 1 Z2
L, ®) =5 ) lx =%l ™
xeD
The autoencoder adjusts the network parameters through
the backpropagation algorithm of the error, and makes the
loss function reach the minimum through iterative training,
thereby extracting the abstract features in the data.

Stacked Autoencoder (SAE) is a deep neural network com-
posed of multi-layer autoencoders. SAE is a deep learning
model, which has powerful feature extraction capabilities,
that is why it can better handle large-scale and complex data
classification problems. SAE uses a greedy layered training
method for network training, and uses the hidden layer output
of the previous layer of AE as the input of the next layer of
AE. And the AdaBound algorithm is used to fine-tune the
entire network.

C. PROPOSED METHODOLOGY

1) CWGAN

This article makes full use of the advantages of CGAN
and WGAN to propose a conditional Wasserstein Genera-
tive Adversarial Network (CWGAN), which can improve the
quality of newly generated minority attack samples. It can
solve the problems of model collapse and training instabil-
ity during training. Also, it generates data for the specified
model. The objective function of CWGAN is:

LewGan = Ex~p, [D(x|y)] — Ez~p. [D(G(z]y))] ®

However, due to the use of weight clipping to force the Lip-
schitz constraint to be satisfied, CWGAN still produces poor
samples or does not converge in some cases. Therefore, this
article add a gradient penalty term to its input to replace the
original weight reduction method [31]. Its objective function
is:

Lop = Ezp, (| VD@, — 1] ©)

In the equation, ||-||, represents the 2-norm; X is obtained by
random interpolation sampling on the line between the real
sample x and the generated sample G(z|y). The calculation
equation is ¥ = ex + (1 — €)G(z|y). ¢ obeys a uniform
distribution on [0, 1].

In order to enable generator G to generate data closer to
the real sample and prevent overfitting, this article introduce
a traditional loss L2 distance into CWGAN. The equation is:

Li, = Exzp, [Ix — GGY)l] (10)

Finally, the objective function is a combination of CWGAN’s
original objective function, gradient penalty term and L2
regularization.

Liotal = mGin max Lewean + A1Lgp + ALy, (11)

In the equation, A1 is the coefficient of gradient penalty; A; is
the coefficient of L2 regularization.
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During the training process, the discriminator D and the
generator G perform alternating confrontation training, and
the Adam [32] algorithm is used to optimize the parameter
update of the entire network.

2) CSSAE

Since SAE defaults that the cost of misclassification for
each class is the same without considering the problem of
data imbalance, it has a low recognition rate for minority
classes. To solve the above problem, this article gives a larger
misclassification cost to minority samples and a smaller
misclassification cost to most samples during the training
process of SAE. As a result, a cost-sensitive stacked autoen-
coder (CSSAE) is proposed. Its network structure is shown
in Figure 4.

The stacked three-layer AE is mainly used for feature
extraction. The following Softmax classifier is mainly used
for classification. Also, a cost-sensitive loss function was
introduced to improve the detection accuracy of minority
samples.

According to the proportion of the sample size, the misclas-
sification cost of different types of samples are as follows:

C
V. — max {n.}_, (12)
ne
0
ne =y lyi=c) (13)
i=1

In the equation: Q is the total number of samples; n. is the
number of samples of different classes, which reflects the
imbalanced distribution of the dataset. The misclassification
cost of each type of sample is adaptively calculated by equa-
tion (12). When the samples of each category are balanced
in the dataset, V. = 1. According to equation (12), the cost-
sensitive loss function is defined as:

C
Les(0) = — Z Vel(yi = ¢)log(s)) (14)
j=1
el
5 = (15)

chzl etk
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In the equation, x; is the j-th output value of the output layer;
s; is the probability of the j-th output value of the output layer;
C is the number of neurons in the output layer; ¢ is the actual
category; y; is the predicted category of the network output.
If the equation in the /(-) brackets is true, the function value
is 1, otherwise it is 0.

During the model training process, the AdaBound algo-
rithm is used to optimize the model parameters. Besides the
parameter 6 is updated layer by layer to minimize Lcs(6) so
that the model has the highest recognition rate.

IV. PROPOSED NETWORK INTRUSION DETECTION
FRAMEWORK

This section introduces the proposed CWGAN-CSSAE net-
work intrusion detection model in details. The model mainly
includes 4 steps: 1) data preprocessing; 2) training CWGAN
network, discriminator network and generator network for
alternating training; 3) the generation of minority attack sam-
ples and construction of a new training dataset; 4) training
of CSSAE Network to classify the test set. The framework
of CWGAN-CSSAE network intrusion detection model is
shown in Figure 5.

A. DATA PREPROCESSING

The NSL-KDD and UNSW-NB15 datasets contain two types
of features, numeric and string type. Since CWGAN-CSSAE
cannot train string type data, it is necessary to convert string
type features into numeric type. Here, one-hot encoding is
used to map character attributes to binary values. For exam-
ple, the protocol types TCP, UDP, and ICMP in the NSL-KDD
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dataset are represented as [1, 0, 0], [0, 1, O], [0, O, 1] after
feature mapping.

After numerical processing, the data in the dataset is con-
verted to numerical data. However, the numerical difference
in the numerical data is large. For example, the range of
the feature attribute duration (connection duration) in the
NSL-KDD dataset is 0~58329. Large differences in values
are likely to cause problems such as slower network conver-
gence and saturation of neuron output. Thus, it’s vital to nor-
malize the data. Here, the maximum-minimum normalization
method is used to limit the data to [0, 1]. The equation is as
follows:

X = Min

Miax — Min
In the equation, x is the value to be normalized; My, is
the minimum value of the dimension; Mp,,x is the maximum
value of the dimension.

X (16)

B. TRAINING CWGAN

In order to further improve the stability of training and the
generalization performance of the model, this article adopts a
small batch training method in the game process of discrimi-
nator D and generator G. The training process of CWGAN is
as follows:

(1) The random noise vector z that obeys the Gaussian
distribution and the category label y are spliced as the input
of the generator G. And the output is new attack samples G(z)
generated by training G. At this time, the similarity between
the new attack samples and the real samples is very low.

(2) Fix the generator G and train the discriminator D. The
real samples and the new attack samples generated by G are
mixed as the input of the discriminator. The output is the
classification probability value of the samples belonging to
the real samples x and the pseudo samples G(z). Then the
probability value is converted into a predicted label through
the activation function. The objective function of the discrim-
inator D is m[a)lx Lewgan + AiLgp + AaLyg,.

(3) The generator G is trained through the concatenation
of G — D. After the training in step (2), the discriminating
ability of the discriminator D is improved. At this time,
the generator G is trained to generate pseudo samples with
higher simulation. The objective function of generator G is
ngn Lewgan + ALgp + AoLy,.

(4) Before the set number of cycles or the loss value reaches
the threshold, the steps (2) and (3) are executed cyclically.
The discriminator D and the generator G are trained alter-
nately to make the generated pseudo samples are getting
closer to the real samples. Also, the Adam algorithm is used
to optimize the gradient update process to continuously opti-
mize the loss value L;yzq;.

C. BUILDING NEW TRAINING DATASETS

After the training, CWGAN is used to generate new attack
samples of specified categories according to the number
of attack samples of different types in the original dataset.
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Then, the new attack samples are merged into the original
training dataset to construct a new training dataset, so as
to alleviate the problem of imbalanced training datasets and
increase the diversity of training samples. Furthermore, the
accuracy of CWGAN-CSSAE’s detection of minority attacks
and unknown attacks is improved.

D. DETECTING ATTACKS
In the attacks detection stage, this article introduces a cost-
sensitive loss function based on stacked autoencoder to con-
struct CSSAE as a classifier of the intrusion detection model.
The CSSAE network uses a small batch training mode. In the
pre-training phase, the three AEs in CSSAE are trained sep-
arately, and then the three single-layer AEs are stacked in
the manner shown in Figure 4, and then the cost-sensitive
Softmax is pre-trained. After the pre-training phase, the three
autoencoders in CSSAE and the cost-sensitive Softmax are
introduced as a whole to fine-tune their free parameters.
The AdaBound algorithm is used to optimize the parameter
update process in the training process. Use the new training
dataset as the input of CSSAE for model training. After
CSSAE training is completed, the test set is input into the
trained CSSAE for classification to realize network attacks
detection.

The proposed CWGAN-CSSAE intrusion detection model
is detailed in Algorithm 1:

V. EXPERIMENTS

A. PERFORMANCE EVALUATION METRICS

In order to effectively evaluate the performance of the pro-
posed network intrusion detection model, this article selects
6 common indicators to evaluate the classification perfor-
mance of the proposed CWGAN-CSSAE intrusion detection
system: accuracy, precision, recall, DR (detection rate), FPR
(false positive rate), F1 score, and G-mean.

Accuracy is the proportion of test samples correctly pre-
dicted to all test samples. The value is in the range of [0, 1],
and the larger the value, the better the classification perfor-
mance of the model. The definition of Accuracy is:

B TP + TN
" TP+ TN + FP+ FN

Acc (17)
Precision is the proportion of all predicted attack samples
that are actually attack samples. The value is in the range of
[0, 1], and the larger the value, the better the classification
performance of the model. The definition of Precision is:
. TP
Precision = —— (18)
TP + FP
DR (also known as Recall) is the proportion of attack samples
predicted by the model to the total number of actual attack
samples. If the DR is larger, the classification performance of
the model is better (DR € [0, 1]). DR is defined as:
TP

DR = Recall = —— 19)
TP + FN
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Algorithm 1 CWGAN-CSSAE Network Intrusion Detection
Model

TABLE 2. Confusion matrix.

Input: Training dataset (x, ¢); random noise z; specified
generation category y; number of generated samples n;
CWGAN’s learning rate o9, number of training cycles
epochy and batch size batchsizeyg; CSSAE’s learning rate
o1, number of training cycles epoch; and batch size
batchsize|.

Output: The final network attack recognition result

1: Data preprocessing. The character features and classi-
fication labels are coded by one-hot, and all features are
normalized.

2: Parameters setting. CWGAN: Learning rate oq is
0.0001. The coefficient of gradient penalty A; is 10; the
coefficient of L2 regularization Ay is 100. The num-
ber of training cycles epochy is 6000. The batch size
batch sizeg is 500. The Generator of network structure is
400-200-100-122. The Discriminator of network structure
is 400-100-20-1. CSSAE: Learning rate o1 is 0.001. Train-
ing cycle number epoch; is 200. Batch size batch size;
is 200. The network structure is 500-200-100-X (X rep-
resents the number of categories).

3: CWGAN is trained on the original training set. The
random noise z and the minority class label y are input
into CWGAN. And the discriminator D and generator G
are trained in alternating confrontation.

4: Random noise z and minority class label y are input
to generate new minority class attack samples, which are
merged into the original training set to form new training
dataset (X;ep s Enew)-

5: CSSAE training. The new training dataset (X, £pew) 1S
used as input. Firstly, 3 AEs will be trained individually.
Then the trained 3 AEs are stacked according to Figure 4.
And Softmax is trained. Then the entire network will be
fine-tuned to optimize the parameters of each AE and
Softmax classifier in CSSAE to obtain the final training
model.

6: The test dataset is input into the trained CSSAE to detect
the attack.

7: Return the final network attack recognotion result.

FPR is the proportion of all normal samples that are incor-
rectly classified as attack samples. The smaller the FPR value,
the better the classification performance of the model (FPR €
[0, 1]). FPR is defined as:

FP

FPR= —
IN + FP

(20)

F1 score is the harmonic average of Precision and detection
rate. The value is in the range of [0, 1], and the larger the
value, the better the classification performance of the model.
Compared with accuracy, F1 score is more suitable for perfor-
mance evaluation of the classification results of imbalanced
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Predicted normal Predicted attack
Actual normal TN FP
Actual attack FN TP

datasets. The definition of F1 score is:

Precision x Recall
Fl1=2x

Precision + Recall
2xTP
= (2D
2x TP+ FP+FN
G-mean is a comprehensive index of the accuracy of the pos-
itive class and the accuracy of the negative class. The larger
the G-mean value, the better the classification performance

of the model (G—mean € [0, 1]). The definition of G-mean

is:
P TN
G — mean = \/ X (22)
TP+ FN TN + FP

These performance evaluation indicators are calculated on
the basis of the confusion matrix [33], as shown in Table 2.
Among them, TP (True Positive) is the number of samples
that are correctly classified as attacks, FP (False Positive) is
the number of normal samples that are incorrectly classified
as attacks, TN (True Negative) is the number of samples that
are correctly classified as normal, FN (False Negative) is to
incorrectly classify the attack sample as a normal number.

B. THE BENCHMARK DATASETS

1) NSL-KDD DATASET

Tavallaee et al. [34] proposed an improved version of the
NSL-KDD dataset on the basis of the KDDCUP99 dataset,
which not only eliminated a large amount of redundant data
in KDDCUP99, but also adjusted the training set and test
set so that the NSL-KDD dataset can be more suitable for
network intrusion detection experiments. Its attack behavior
includes four types: denial of service (Dos), port scanning and
detection (Probe), illegal access to local super users (U2R),
at the same time, illegal access to remote machines (R2L).
The normal access data is Normal. Each piece of data includes
41 features and 1 label. We use the KDDTrain™_20 dataset as
the training set, as well as KDDTest and KDDTest-21 [35]
as the test sets. The detailed information of the NSL-KDD
dataset is shown in Table 3.

The data in Table 3 shows that the NSL-KDD training set
KDDTrain_20percent has a serious imbalance in the category
distribution, as well as the number of U2R and R2L attack
samples is seriously low. In addition, in the test datasets
KDDTestt and KDDTest-21, there are a large number of
attack types that did not appear in KDDTrain_20percent.

2) UNSW-NB15 DATASET
UNSW-NBI15 dataset [36] is a comprehensive network attack
traffic dataset created by ACCS, which is more suitable
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TABLE 3. Class distribution of the NSL-KDD dataset.

Training set Testing set

Class Attack KDDTrain+ 20 KDDTest+  KDDTest-21
Normal normal 13449 9711 2152
neptune 8282 4657 1579
smurf 529 665 627
back 196 359 359
teardrop 188 12 12
pod 38 41 41
Dos land 1 7 7
apache2 0 737 737
mailbomb 0 293 293
processtable 0 685 685
udpstorm 0 2 2
sum 9234 7458 4342
ipsweep 710 141 141
satan 691 735 727
portsweep 587 157 156
Probe
nmap 301 73 73
saint 0 319 309
mscan 0 996 996
sum 2289 2421 2402
buffer_overflow 6 20 20
rootkit 4 13 13
loadmodule 1 2 2
perl 0 2 2
U2R
httptunnel 0 133 133
ps 0 15 15
sqlattack 0 2 2
xterm 0 13 13
sum 11 200 200
guess_passwd 10 1231 1231
warezmaster 7 944 944
imap 5 1 1
multihop 2 18 18
phf 2 2 2
ftp_write 1 3 3
spy 1 0 0
R2L warezclient 181 0 0
named 0 17 17
sendmail 0 14 14
xlock 0 9 9
Xsnoop 0 4 4
worm 0 2 2
snmpgetattack 0 178 178
snmpguess 0 331 331
sum 209 2754 2754
total 25192 22544 11850

for the research of intrusion detection system. UNSW-
NB15 dataset is divided into training set (175,341 records)
and test set (82,332 records). And it contains one nor-
mal and nine attacks. Attack records are less than nor-
mal records, especially Worms and Shellcode. The detailed
information of the UNSW-NBI5 dataset is shown in
Table 4.
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TABLE 4. Class distribution of the UNSW-NB15 dataset.

Class Training set Testing set
Normal 56000 37000
Generic 40000 18871
Exploits 33393 11132
Fuzzers 18184 6062
DoS 12264 4089
Reconnaissance 10491 3496
Analysis 2000 677
Backdoor 1746 583
Shellcode 1133 378
Worms 130 44
Sum 175341 82332
TABLE 5. CWGAN-CSSAE parameter settings.
epoch, 6000 epoch, 200
batch size, 500 batch size, 200
a, 0.0001 a, 0.001
CWGAN B 0.5 CSSAE a, 0.1
Adam B 0.9 Adabound B, 0.9
[32] £, 10 [26] B 0.999
£ 107
7 10°

C. EXPERIMENTAL SETUP

1) PARAMETERS SETTING

Since there is no automated parameter optimization algorithm
currently, we have to rely on researchers to conduct a large
number of parameter tuning experiments. Then, the perfor-
mance of models under different parameters are compared
and analyzed. The final parameters of the model can be deter-
mined by adjusting the parameters repeatedly. All hidden
layer activation functions of the proposed CWGAN-CSSAE
model are ReLU [37], and the activation function of the
CSSAE output layer is Softmax. The network structures
of generator and discriminator are 400-200-100-122 and
400-100-20-1, respectively. The network structure of CSSAE
is 500-200-100-X (X represents the number of categories).
The specific training parameter settings are shown in Table 5.

2) EXPERIMENTALS SETTING

The experimental environment in this article is Tensorflow
with a 64-bit Windows 10 operating system, and the computer
is configured with Intel(R) Core(TM) 17-4790 CPU 3.60GHz,
64GB RAM, and RTX 2080Ti GPU.

In order to verify the performance of the proposed
CWGAN-CSSAE network intrusion detection model, the fol-
lowing experiments are designed:

Experiment 1: Model training experiment. Figure 6(a)
shows the loss curves of the discriminator and the generator
of CWGAN on the NSL-KDD dataset. Figures 6(b) and 6(c)
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respectively show the loss curve and detection accuracy curve
of CSSAE on the KDDTest™ dataset. Figures 6(d) and 6(e)
respectively show the loss curve and detection accuracy curve
of CSSAE on the KDDTest-21 dataset. Figure 7(a) show
the loss curves of the discriminator and the generator on
the UNSW-NB 15 dataset, respectively. Figures 7(b) and 7(c)
respectively show the loss curve and detection accuracy curve
of CSSAE on the UNSW-NB15 dataset. Figure 8 shows the
confusion matrix of CWGAN-CSSAE on the KDDTestt,
KDDTest-21 and UNSW-NB15 datasets.

Experiment 2: Experiment with generating minority
samples. Table 6 and 7 respectively describe the category
distribution of the new training dataset on the NSL-KDD and
UNSW-NBI15 datasets. Figure 9 and 10 shows the original
training dataset and the new training dataset enhanced with
newly generated minority samples on the NSL-KDD and
UNSW-NB15 datasets, respectively.

Experiment 3: Comparative experiment of different data
enhancement algorithms. Figures 11 to 15 show the compar-
ison results of the proposed CWGAN-CSSAE and other data
enhancement algorithms.

Experiment 4: Comparative experiment of different clas-
sification algorithms. Figures 16 to 20 show the comparison
results of the proposed CWGAN-CSSAE and other classifi-
cation algorithms.

Experiment 5: The performance comparison experiment
with the intrusion detection model reported in the exist-
ing intrusion detection literature. Tables 8, 9 and 10 com-
pare the accuracy, precision, DR, F1 score, G-mean, FPR
of the proposed CWGAN-CSSAE and previous intrusion
detection methods on the KDDTestt, KDDTest-21 and
UNSW-NBIS5 datasets.

D. EXPERIMENT RESULTS AND ANALYSIS

1) MODEL TRAINING

CWGAN-CSSAE intrusion detection model training is
divided into two parts. The first part is to start training the
CWGAN network. Discriminator D and generator G conduct
separate alternating iterative training. Discriminator D deter-
mines the true and false of the sample by minimizing the
loss function. Generator G enhances the simulation degree
of generated sample by minimizing the loss function. The
training loss curves of the discriminator D and the generator
G are shown in Figures 6(a) and 7(a).

After the training of the CWGAN network is completed,
the generated attack samples are mixed with the original
training dataset to form a new training dataset as the input
of the CSSAE network. CSSAE training is divided into two
stages: the pre-training stage and the fine-tuning stage. In the
pre-training stage, the three layers of AE in CSSAE are stud-
ied individually in an unsupervised way, then the three layers
of AE are stacked up and the Softmax is pretrained. In the
fine-tuning stage, 3 layer of AE and the introduction of the
cost-sensitive Softmax classifier are regarded as a whole to
adjust the free parameters. The process of parameter tuning is
intuitively manifested as the process of loss reduction, which

190440

(e) CSSAE accuracy (KDDTest-21)

FIGURE 6. Training graphs of CWGAN-CSSAE on the NSL-KDD dataset.

means that the parameters obtained when the loss converges
are the most excellent. The loss curves of CSSAE are shown
in Figures 6(b), 6(d) and 7(b), and the recognition accuracy
curves of CSSAE are shown in Figures 6(c), 6(e) and 7(c).

The data in Figures 6(a) and 7(a) shows that during network
training, the loss of CWGAN discriminator and generator
gradually decrease and tend to be minimal. It can be seen
that the loss curve of the two fluctuates greatly, because the
discriminator and generator are constantly fighting against
each other during the training process. After game training,
CWGAN reaches the Nash equilibrium point, which means
that at this time, the CWGAN generator can generate highly
simulated attack samples.

The data in Figures 6(b),6(d) and 7(b) shows that in the
initial training stage, the training loss of CSSAE decreases
rapidly with the increase of the number of iterations, as well
as in the later stage of training it tends to stabilize and the
training error is low. It can be seen from Figures 6(c) and 6(e)
that the accuracy of the NSL-KDD training set has risen
rapidly and stabilized to reach about 98.00%. The data in Fig-
ure 7(c) shows that the accuracy of UNSW-NB15 training set
reaches about 93.00%. It shows that the CSSAE network has
fast convergence speed, small training error and high accu-
racy. However, the classification accuracy on the KDDTestt,
KDDTest-21 and UNSW-NBI1S5 test sets are only 84.61%,
70.07% and 85.90%, respectively. The reason may be that the
model cannot detect the unknown types of attacks in the test
set well.
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FIGURE 7. Training graphs of CWGAN-CSSAE on the UNSW-NB15 dataset.
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FIGURE 8. Confusion matrix on the KDDTest*, KDDTest-21 and
UNSW-NB15 datasets.

The confusion matrix of CWGAN-CSSAE intrusion detec-
tion model is shown in Figure 8.

It can be seen from Figure 8 that CWGAN-CSSAE has a
good recognition effect on normal traffic and various attack
behaviors, and can well identify normal and attacks. How-
ever, the recognition effect of minority attacks needs to be
further improved.

2) MINORITY CLASS DATA GENERATION

The data in Tables 3 and 4 shows that both the NSL-KDD
training set and the UNSW-NBIS5 training set have a
serious category distribution imbalance. For example, the
number of samples for U2R and R2L attacks is seriously low.

VOLUME 8, 2020

TABLE 6. The newly generated training set on the NSL-KDD dataset.

number of Number of

Class original samples samples generated Sum
Normal 13449 0 13449
DoS 9234 4215 13449

Probe 2289 3000 5289

U2R 11 1000 1011

R2L 209 2000 2209
Sum 25192 10215 35407

TABLE 7. The newly generated training set on the UNSW-NB15 dataset.

number of Number of

Class original samples samples generated Sum
Normal 56000 0 56000
Generic 40000 0 40000
Exploits 33393 0 33393
Fuzzers 18184 0 18184

DoS 12264 0 12264
Reconnaissance 10491 0 10491
Analysis 2000 8000 10000
Backdoor 1746 8000 9746
Shellcode 1133 8000 9133
Worms 130 4000 4130

Sum 175341 124423 203341

Because the imbalanced category distribution tends to make
the classifier learn too much from the samples of the majority
class, the detection accuracy of the minority class attack
is very low. In addition, a large number of unknown types
of attacks appeared in the NSL-KDD test sets. The train-
ing set KDDTrain™_20 contained 22 attack types, while the
test sets KDDTest™ and KDDTest-21 appeared 17 unknown
types of attacks. Data enhancement algorithm is an important
method to solve the problem of class imbalance. On this basis,
we propose an improved CWGAN to generate designated
minority attack samples. The generated samples are added to
the original training dataset to construct a new training dataset
to reduce the imbalance of the training set and increase the
diversity of training samples.

If the number of new samples generated by CWGAN
far exceeds the number of samples in the original dataset,
the quality of the new samples will decrease and the
over-fitting phenomenon will be serious. For example, a large
number of U2R attack samples are generated. Therefore,
comprehensively consider the quality of the newly generated
samples and the degree of imbalance in the categories of the
dataset to determine the number of samples generated for
each type. Then the newly generated attack samples are mixed
with the original training set to get a new training set. The new
NSL-KDD training set and the new UNSW-NB15 training set
are shown in Tables 6 and 7, respectively.
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(a) Original training data (b) New training data

FIGURE 9. t-SNE visualization of original and newly generated training
data based on the NSL-KDD Dataset.

(a) Original training data (b) New training data

FIGURE 10. t-SNE visualization of original and newly generated training
data based on the UNSW-NB15 Dataset.

In order to observe the newly generated minority samples
more intuitively, the t-SNE (t Distributed Random Neighbor
Embedding) [38] method is used to visualize the original
dataset and the new training dataset. The results are shown
in Figures 9 and 10.

The data in Figures 9(a) and 10(a) shows that the original
training dataset is non-linearly separable. The data in Fig-
ures 9(b) and 10(b) shows that the newly generated minority
attack samples have high similarities with the corresponding
minority attack samples in the original dataset, such as U2R,
R2L and Worms. However, some categories overlap. The
reason is that t-SNE visualization is two-dimensional and
cannot completely represent the real spatial distribution of
the sample. Therefore, samples that seem to overlap may
not overlap in real space. The classification results verify the
separability of different attacks. It means that it is feasible
and effective to use improved CWGAN to generate minority
attacks to reduce the problem of class imbalance.

3) COMPARISON OF DATA AUGMENTATION ALGORITHMS

In order to balance the training dataset, the CWGAN-CSSAE
model is proposed, which can improve the detection accu-
racy of minority attacks and unknown attacks. In order to
verify the superiority of the CWGAN data enhancement algo-
rithm, comparative experiments were designed. The selected
comparison algorithms include classic data enhancement
algorithms, such as ROS (Random Over Sampler) [12],
SMOTE (Synthetic Minority Oversampling Technique) [13],
and ADASYN (Adaptive Synthetic) [14], as well as the
currently popular WGAN (Wassertein GAN) [29]. Based
on the above data enhancement algorithm, four classifica-
tion models are constructed: ROS-CSSAE, SMOTE-CSSAE,
ADASYN-CSSAE, and WGAN-CSSAE. Note that the types
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FIGURE 11. Comparison of detection accuracy of different data
augmentation methods on the KDDTest* dataset (%).

DoS U2R R2L

Probe

100.00
90.00

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00
Normal

B ROS-CSSAE 77.18 66.90 67.86 10.50 9.77
SMOTE-CSSAE 79.55 64.42 63.07 15.00 14.85
ADASYN-CSSAE 80.81 69.30 66.57 18.00 19.93

= WGAN-CSSAE 83.69 73.93 69.82 33.50 42.70

u CWGAN-CSSAE 84.94 74.85 70.52 42.50 52.51

®ROS-CSSAE = SMOTE-CSSAE = ADASYN-CSSAE = WGAN-CSSAE ® CWGAN-CSSAE

FIGURE 12. Comparison of detection accuracy of different data
augmentation methods on the KDDTest-21 dataset (%).

and numbers of attacks generated by WGAN are consistent
with those generated by CWGAN. The experimental results
are shown in Figures 11 to 15.

Figures 11 and 12 respectively show the detection accuracy
of different data enhancement methods on the KDDTest™
and KDDTest-21 datasets for five types of attacks. It can be
concluded that, compared with the other four data enhance-
ment methods, CWGAN-CSSAE has the highest detection
accuracy of the five types of attacks, especially the detec-
tion accuracy of U2R and R2L. The comparison exper-
iment results show that the proposed CWGAN-CSSAE
improves the detection accuracy of minority attacks. The data
in Table 3 shows that there are a large number of attack types
in the KDDTest™ and KDDTest-21 datasets that do not appear
in the training set, but the detection accuracy is still high.
To a certain extent, it shows that CWGAN-CSSAE has a good
ability to identify unknown attacks.

Figures 13, 14 and 15 show the overall classification
performance of different data enhancement methods on the
KDDTest™, KDDTest-21 and UNSW-NB15 datasets, respec-
tively. It can be seen that CWGAN-CSSAE has achieved the
best results in accuracy, precision, DR, FPR, F1 score and
G-mean. The experimental results show that CWGAN is an
effective data enhancement method.

From this point of view, the proposed CWGAN-CSSAE
performs better than ROS-CSSAE, SMOTE-CSSAE, and
ADASYN-CSSAE. The reason is that ROS-CSSAE is only
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FIGURE 13. Comparison of detection performance of different data
augmentation methods on the KDDTest* dataset (%).
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FIGURE 14. Comparison of detection performance of different data
augmentation methods on the KDDTest-21 dataset (%).
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FIGURE 15. Comparison of detection performance of different data
augmentation methods on the UNSW-NB15 dataset (%).

an over-sampling of the original data, while SMOTE-CSSAE
and ADASYN-CSSAE are based on the k-nearest neighbor
principle to randomly synthesize the original data, which
means that it lacks to learn the deep nature of the orig-
inal data. CWGAN-CSSAE belongs to the category of
deep learning. It can obtain the potential distribution of the
original data. The detection performance of the proposed
CWGAN-CSSAE is better than that of WGAN-CSSAE.
Because CWGAN-CSSAE introduces a gradient penalty
item, it solves the problems of model collapse and training
instability during training. At the same time, the addition of
L2 distance loss effectively alleviates overfitting, enabling
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CWGAN-SAE 94.49 82.26 69.76 30.00 37.15
CWGAN-SDAE 95.54 83.47 71.05 31.50 41.79
= CWGAN-DNN 95.07 83.49 70.92 32.50 39.07
= CWGAN-CSSAE 96.17 84.80 75.55 42.50 54.39

®CWGAN-ELM  ®CWGAN-SAE ®CWGAN-SDAE ®CWGAN-DNN ® CWGAN-CSSAE

FIGURE 16. Comparison of detection accuracy of different classification
models on the KDDTest* dataset (%).
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= CWGAN-ELM 82.67 68.89 65.74 21.50 28.29
CWGAN-SAE 82.16 70.47 67.82 27.00 35.88
CWGAN-SDAE 83.97 7227 68.44 28.50 37.15
=CWGAN-DNN 85.13 75.22 69.11 27.50 36.60
BCWGAN-CSSAE 84.94 74.85 70.52 42.50 52.51

BCWGAN-ELM 5 CWGAN-SAE 5 CWGAN-SDAE HCWGAN-DNN BCWGAN-CSSAE

FIGURE 17. Comparison of detection accuracy of different classification
models on the KDDTest-21 dataset (%).

CWGAN-CSSAE to generate attacks with better quality and
higher similarity.

4) COMPARISON OF CLASSIFICATION ALGORITHMS

In order to improve the detection accuracy of minor-
ity attacks, at the algorithm level, this article introduces
the cost-sensitive loss function into SAE to construct the
CWGAN-CSSAE model. In order to verify that the pro-
posed CSSAE classifier can better classify imbalanced
datasets and improve the detection rate of minority attacks,
comparative experiments are designed. According to ELM
(Extreme Learning Machine) [39], SAE (Stacked Autoen-
coder) [40], SDAE (Stacked Denoising Autoencoder) [41],
DNN (Deep Neural Networks), four classification mod-
els have been established: CWGAN-ELM, CWGAN-SAE,
CWGAN-SDAE, CWGAN-DNN. The comparative experi-
mental results are shown in Figures 16 to 20.

The data in Figure 16 shows that the detection accuracy
of CWGAN-CSSAE on the KDDTest™ for the five types of
attacks is higher than that of CWGAN-ELM, CWGAN-SAE,
CWGAN-SDAE and CWGAN-DNN. Figure 17 shows that
CWGAN-CSSAE’s detection accuracy of Normal and DoS
on the KDDTest-21 dataset is slightly lower than CWGAN-
DNN, but it has a higher detection accuracy for U2R and R2L.
attacks. From this point of view, CSSAE has a better classi-
fication effect on the imbalanced datasets. The reason is that
ELM, SAE, SDAE, and DNN do not consider the problem of
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B CWGAN-ELM 84.20 92.86 78.26 84.94 84.88 7.95
CWGAN-SAE 87.71 95.19 82.58 88.44 88.33 5.51
CWGAN-SDAE 89.25 96.16 84.49 89.95 89.85 4.46
= CWGAN-DNN 89.02 95.77 84.44 89.75 89.60 4.93
= CWGAN-CSSAE 90.33 96.74 85.92 91.01 90.90 3.83

HCWGAN-ELM = CWGAN-SAE = CWGAN-SDAE ®=CWGAN-DNN ®CWGAN-CSSAE

FIGURE 18. Comparison of detection performance of different
classification models on the KDDTest™ dataset (%).
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CWGAN-SAE 77.69 95.09 76.70 8491 79.38 17.84
CWGAN-SDAE 78.97 95.63 77.86 85.84 80.86 16.03
" CWGAN-DNN 78.79 95.91 77.39 85.66 81.17 14.87
B CWGAN-CSSAE 80.78 95.98 79.86 87.18 82.36 15.06
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FIGURE 19. Comparison of detection performance of different
classification models on the KDDTest-21 dataset (%).
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Accuracy ~ Precision F1 score G-mean
# CWGAN-ELM 8731 84.15 94.81 89.16 86.06 21.88
u CWGAN-SAE 89.41 86.90 95.10 90.82 88.54 17.56
= CWGAN-SDAE 90.38 88.17 95.32 91.60 89.65 15.66
= CWGAN-DNN 90.02 87.66 95.29 91.32 89.24 16.43
B CWGAN-CSSAE 93.27 92.59 95.43 93.99 93.01 9.36

BCWGAN-ELM ®CWGAN-SAE ®CWGAN-SDAE ®CWGAN-DNN ®CWGAN-CSSAE

FIGURE 20. Comparison of detection performance of different
classification models on the UNSW-NB15 dataset (%).

class imbalance. The misclassification cost of each category
is the same, which is why they have a low recognition rate
for the minority samples in the imbalanced dataset. CSSAE
introduces a cost-sensitive loss function, which gives a larger
misclassification cost to minority samples during the training
process, thereby improving the detection accuracy of minor-
ity attacks.

The data in Figures 18, 19 and 20 shows that on the
KDDTest™, KDDTest-21 and UNSW-NB15 datasets, the
accuracy, precision, DR, F1 score and G-mean of CWGAN-
CSSAE are higher than other classification models. It can
be seen that the CSSAE proposed from the perspective of
the algorithm is very effective for the classification of the
imbalanced datasets.
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TABLE 8. Comparison results (%) of different detection models on the
NSL-KDD (KDDTest*) dataset.

Models Acc Precision DR F1 mSz-m FPR
SCDNN[21]  72.64 / 57.48 / / /
RBM([43] 73.23 95.09 7530 7530 7348 /
ﬁ‘;‘]’gLENe‘ 77.04 91.66 6564 7650 / /
ResNetS0[17]  79.14 91.97 6941 79.12 / /
ﬁ;\gﬁ o 83.28 73.06 7312 8322 84.09 344
}gg\[’j;] 84.45 / / 84.17 / /
géf'F orest 506 87.5 85.1 / / 122
TSE-IDS[18]  85.79 88.0 86.80 / / 1.7
SWSNM[48] 864 / / 87.6 / 185
AE[20] 88.28 9123 87.68** 8951 / /
DAE[20] 88.65  9648%* 8308  89.28 / /
E’?\Xﬁ?ﬁ' 89.36** / 95.98%  90.08%*  / 470
o 9034%  9674% 8592  9L0I*  90.90%  3.83*

5) PERFORMANCE COMPARISON WITH EXISTING
INSTRUSION DETECTION MODELS

To verify the superiority of the proposed CWGAN-CSSAE
network intrusion detection model, the experiment in this
section compares CWGAN-CSSAE with the latest models in
the existing literature. The performance indicators for com-
parison include accuracy, Precision, DR, F1 score, G-mean
and FPR. The intrusion detection models selected as exper-
imental comparison objects include SAVAER-DNN [11],
ResNet50 [17], GoogLeNet [17], TSE-IDS(Two-Stage Clas-
sifier Ensemble for IDS) [18], RNN-IDS (recurrent neu-
ral network) [19], DAE [20], AE [20], SCDNN [21],
GAR-Forest [42], Gaussian—Bernoulli RBM [43], CGANs-
DNN [44], GFBLS [45], LSTMy4 [45], DAE-DFFNN [46],
DT[47], SWSNM[48], IGAN-IDS[49]. To enhance the per-
suasiveness of the experimental results, all intrusion detection
models use the same test set. The experimental results of dif-
ferent network intrusion detection models on the KDDTest™
test set are shown in Table 8. Table 9 shows the experimental
results on the KDDTest-21 test set. The experimental results
on the UNSW-NB 15 test set are shown in Table 10. (* randed
first, ** randed second).

According to Table 8, for the NSL-KDD (KDDTest™) test
set, the accuracy of the CWGAN-CSSAE network intru-
sion detection model reached 90.34%, the precision reached
96.74%, F1 score reached 91.01%, and G-mean reached
90.90 %, which are higher than other intrusion detection mod-
els. The FPR value is 3.83%, which is slightly higher than the
RNN-IDS model in the literature [19]. Overall, the CWGAN-
CSSAE network intrusion detection model has a better classi-
fication performance on the NSL-KDD (KDDTest™) test set.

Table 9 shows that the accuracy of the CWGAN-CSSAE
network intrusion detection model on the NSL-KDD
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TABLE 9. Comparison results (%) of different detection models on the
NSL-KDD (KDDTest-21) dataset.

Models Acc Precision DR F1 mean FPR
LSTM[45] 66.74 / / 7621 / /
GFBLS[45] 6747 / / 76.29 / /
E;\TSTI' 9 68.55 / / / / /
ITDSSE['IS] 72.52 85.00 72.50 / / 18.00
ggﬁ?ﬁ] 7314 9720 7686 84.92 / 12.66*
]S)mlfﬁ' 80.30%* / 95.19%  86.92%% | 1822
CaaaAN: 80.78%  9598%*  79.86**  §.I8%  8236*  15.06**

TABLE 10. Comparison results (%) of different detection models on the
UNSW-NB15 dataset.

Models Acc Precision DR F1 m(:;n FPR
}gg[ﬁ;] 82.53 / / 8286  / /
DT[47] 85.56 / / / / 15.78
TSDL[22] 89.13 / / / / 0.75%
ITDS;:['I ] 91.27 / 91.30 / / 8.90
g’gf&N[ o 240 93.00  / / 820
Is)m}fﬁ' 93.01 / 91.94 93.54 / 5,67+
g;‘;i‘;N' 9327+  92.59% 95.43%  93.99%  93.01* 936

(KDDTest-21) test set reached 80.78%, F1 score reached
87.18%, and G-mean reached 82.36%, which are higher than
other intrusion detection models. The DR value is 79.86%,
the Precision is 95.98%, and the FPR is 15.06%, both rank-
ing second. CWGAN-CSSAE has a good classification effect
on the NSL-KDD (KDDTest-21) test set.

Table 10 shows that on the UNSW-NB15 dataset, the accu-
racy of the CWGAN-CSSAE network intrusion detec-
tion model reached 93.27%, Precision reached 92.59%,
DR reached 95.43%, F1 score reached 93.99%, and G-mean
reached 93.01%, which are higher than other intrusion detec-
tion models. The FPR value is 9.36%, which needs to be
further improved. In general, CWGAN-CSSAE has a good
classification effect on the UNSW-NB15 dataset.

Generally, the above comparative experimental results can
fully prove that the proposed CWGAN-CSSAE algorithm
is effective for network intrusion detection. In particular,
the Accuracy, F1 score and G-mean achieved the best results,
indicating that CWGAN-CSSAE can better deal with imbal-
anced datasets and improve the detection accuracy of minor-
ity attacks and unknown attacks.

VI. CONCLUSION

In order to improve the detection accuracy of minority
attacks and unknown attacks in intrusion detection, as well
as overcome the defects of imbalance of data categories, this

VOLUME 8, 2020

article proposes a novel network intrusion detection model
CWGAN-CSSAE from the perspective of data and algo-
rithm. In terms of data, an improved CWGAN is proposed
to generate new attack samples of specified classes, so as
to reduce the imbalance of training dataset and increase the
diversity of training samples. Improved CWGAN fully com-
bines the advantages of CGAN and WGAN, and introduces
gradient penalty and L2 regularization to enhance the stabil-
ity of network training. In terms of algorithm, the CSSAE
network is proposed, which sets different misclassification
costs for different types of samples based on the number of
various types of samples, in order to improve the model’s
detection accuracy of minority attacks. The detection perfor-
mance of CWGAN-CSSAE was evaluated on the benchmark
NSL-KDD and UNSW-NB15 datasets, which achieved the
expected results. The experimental results show that the pro-
posed CWGAN-CSSAE not only has a good detection effect
on the minority types of attacks in the imbalanced dataset, but
also can detect unknown types of attacks well.

Further improving the data enhancement algorithm and
improving the detection performance of the model are prob-
lems that need to be explored and solved in future work.
In addition, the current standard intrusion detection dataset
is obtained through manual processing in advance. In future
research, we will try to directly use the original network
traffic as the training dataset to improve the applicability of
the network intrusion detection model.
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