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ABSTRACT In this study, an adaptive online data-driven tracking controller for a highly flexible air-
craft (HFA) was developed. This control design innovatively combines integral reinforcement learning (IRL)
and the optimal control theory to ensure asymptotic tracking performance, even when system dynamics
information is difficult to obtain. As online data collection may cause partially observable control problems,
this study also incorporates a class of state parameterization method in the proposed controller in order
to deal with partial observability. Finally, the proposed controller is demonstrated via a simulation of the
longitudinal dynamics of a HFA model.

INDEX TERMS Integral reinforcement learning, optimal control theory, highly flexible aircraft, optimal
tracking control.

I. INTRODUCTION
Some modern airplanes feature higher aspect ratios of the
wings; these modern designs employ composite materials
to reduce the weight of the fuselage, which helps improve
aerodynamic efficiency, reduce fuel consumption, and ensure
long-term operation. Such aircrafts are called highly flexible
aircrafts (HFAs) due to their aforementioned characteristics.
However, the special structure of HFAs typically leads to
coupling effects between the structural and rigid dynamics.
Moreover, large elastic deformations during flight result in
unexpected difficulties when modeling aircraft dynamics,
which, in turn, complicates the design of the control sys-
tem [1]. In recent years, however, there have been significant
developments in the modeling of HFAs. [2]–[4]. Integrated
controllers capable of both rigid-body motion control and
aeroelastic mode suppression, such as gust load alleviation
and maneuver load alleviation, have been designed for HFAs
[5]–[9]. Shearer and Cesnik [2] studied the trajectory track-
ing control of a very flexible aircraft, based on a dynamic
model developed in UM/NAST. They separated the tracking
problem into a bi-level control architecture including an inner
loop and an outer loop. Considering the previous work by
Shearer, Dillsaver [10] addressed the longitudinal trajectory
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tracking control problem in the presence of gust disturbance.
Gibson [11] constructed a simplified aircraft model with three
rigid wings in order to approximate the complex nonlinear
characteristics of an HFA. Subsequently, a linear LQR/LTR
controller was compared with an adaptive LQR/LTR con-
troller for the stabilization of longitudinal flight dynamics
[12]; the simulation results indicated that the linear LQR/LTR
could not return the aircraft to the initial trim state, whereas
the adaptive LQR/LTR controller could [13], [14]. Qu [15]
developed an adaptive output-feedback controller for a class
of multi-input multi-output linear plant models with a relative
degree of three or higher and applied the controller to Gib-
son’s HFA model. Furthermore, the work in [16] considered
the combination of a linear quadratic regulator-proportional
integral (LQR-PI) controller and an explicit reference gover-
nor in order to realize trajectory control with state and input
constraints for the HFA. Apart from these previous methods,
several adaptive tracking control methods have also been
suggested recently for different situations such as switched
systems, nonlinear networked systems, etc [17]–[23]. The
work in [17] focused on solving some of the challenges
faced by a class of uncertain switched nonlinear systems
including arbitrary switchings, unmodeled dynamics, input
saturation, unknown dead-zone output, etc. Then Ma in [18]
continued to extend the adaptive fuzzy tracking control tech-
nology to a class of completely non-affine uncertain switched
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pure-feedback nonlinear systems with unmeasurable states.
Wang [24] developed a reliable fuzzy tracking control for
Near-space hypersonic vehicle under aperiodic measurement
information and stochastic actuator failures, and the track-
ing control problem was regarded as an optimization prob-
lem. Otherwise, the work in [25] concerned with the path
following control for a robotic airship subject to sensor
faults according to the developed detection and isolation
mechanism.

It is also worth noting that the above-mentioned control
schemes are essentially based on accurate dynamic mod-
els. However, designing accurate models for HFAs is highly
challenging owing to the greater structural deformations and
higher complex dynamics involved. Therefore, it is neces-
sary to design an HFA controller that does not require the
use of dynamic models. In recent years, the combination of
reinforcement learning (RL) and optimal theory has gained
extensive attention for the design of controllers for both linear
and nonlinear systems. In control-related fields, RL is also
referred as adaptive dynamic programming (ADP), which
can be used to solve optimal control problems involving
large or continuous state spaces [26]–[29]. RL is a machine
learning technique developed in the field of computer sci-
ence and engineering. It is closely related to optimal con-
trol and adaptive control. In [30], Sutton reported that RL
is inherently a direct adaptive optimal control method. The
primary concept in RL is to approximately solve theHamilton
Jacobi Bellman (HJB) equation through an iterative method,
such as policy iteration (PI) and value iteration (VI) [31].
Furthermore, optimal control solutions can be derived by
solving the HJB equation, where the HJB equation is con-
verted to an algebraic Riccati equation (ARE) when con-
sidering linear systems. Based on this concept, Kleinman
developed an offline PI algorithm for linear continuous-time
(CT) systems, with a guaranteed convergence of the optimal
solution [32]. Subsequently, Vrabie proposed integral rein-
forcement learning (IRL) for linear CT systems in order to
obviate the requirement of drift dynamics [27]. Furthermore,
Jiang et al. employed this IRL concept to propose an online
model-free RL algorithm for completely unknown CT linear
systems [33]. Qin extended the IRL technique to solve the
optimal tracking control problem in CT linear systems [34].
Zhu et al. [35] introduced the IRL approach to develop an
online solution for the suboptimal output feedback control
of partially unknown linear CT systems. For solving the
output feedback control problem, Rizvi proposed a state
parametrization scheme to reconstruct the system state based
on the input and output signals [36].

Inspired by these previous studies, this study proposes
an online data-driven learning control scheme for track-
ing desired flight commands based on the aircraft model
described by Gibson [11].

The major contributions of this paper include:
1) In order to solve the tracking problem with IRL tech-

nique, different from the existing results in [37], the
integral of tracking error as a new state to construct an

augmented system without requiring a discount factor
in cost function. Then a full-state data-driven LQR-PI
controller can be developed by employing IRL tech-
nique in order to iteratively solve the ARE without
requiring a priori knowledge of the system.

2) The research in [35] deal with output tracking problem
by introducing the recursive equation of L, but what
obtained finally is sub-optimal solution. Herein, a state
parameterization method is applied to combine the pro-
posed model-free controller to get a optimal feedback
gain of output tracking problem.

3) Aiming at the challenge that the dynamic knowledge of
HFA systemmodel with partial observability cannot be
obtained, we apply the proposed model-free adaptive
tracking controller to track the velocity of the aircraft.

The remainder of this paper is organized as follows.
Section II provides an overview of the dynamics of an HFA
and details the problem formulation. Section III presents the
IRL-based model-free control for an HFA model with full
state observations and partial observability. Extensive simu-
lations of the control algorithm are presented in Section IV
in order to demonstrate the effectiveness of the proposed
method. Finally, conclusions of this study are highlighted in
Section V.

II. PROBLEM FORMULATION AND PRELIMINARIES
A. AIRCRAFT DYNAMICS
The simplified HFA model proposed in [11] comprises three
identical rigid-body wings, as shown in Fig. 1. Two adjacent
wings are connected via hinges, while ailerons are connected
behind each wing. Each rigid panel is equipped with a pro-
peller for thrust, an aileron that runs along the aft of the main
wing, and an elevator attached at the end of the boom.

A schematic of this aircraft, including the appropriate axes
and points, is presented in Fig. 2. The control-oriented model
considering the longitudinal dynamics of anHFA is expressed
as follows:

V̇ = (T cosα −D)/m− g sin γ
α̇ = −(T sinα + L)/(mV )+ q+ g cos(γ /V )
ḣ = V sin γ
θ̇ = q

q̇ =
M− 2c2 sin(η) cos(η)η̇q

c1 + c2 sin2(η)

η̈ =
H− κcη̇ − κkη + d1 − d2

d3

(1)

where V is the velocity, γ is the flight path angle, h is the
altitude, α is the attack angle, θ is the pitch angle with γ =
θ − α, q is the pitch rate, T is the total thrust, and D is the
drag force. M and H denote the total moment and angular
moment, respectively, which are related to the control input.
The parameters c1, c2, d1, d2 and d3 are as follows:

c1 = 3I∗yy

c2 = 2I∗zz − 2I∗yy + m
∗
s2

6
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FIGURE 1. Rendering of HFA model.

FIGURE 2. Coordinate frames.

d1 =
s
2
m∗
(
(V̇ sin(α)+ V cos(α)α̇) cos(η)

−V sin(α) sin(η)η̇ − 2
s
3
cos(η) sin(η)η̇2

)
d2 =

(
I∗yy − I

∗
zz − m

∗
s2

12

)
sin(η) cos(η)q2

−
s
2
m∗ cos(η)V cos(α)q

d3 = I∗x3x3 + m
∗

(
s2

4
+
s2

6
cos2(η)

)
The nonlinear dynamics in (1) can be concisely expressed

as

Ẋ = f (X ,U ) (2)

where X =
[
V , α, h, θ, q, η, η̇

]T and U =[
δt , δa,c, δa,o, δe,c, δe,o

]T denote the state vector and the
input vector, respectively.
Remark 1: From (1), it is evident that this simplified

three-wing aircraft model concentrates the large deformation
characteristics at the hinges, which is reflected in the mathe-
matical model as a change in the dihedral angle. The control-
lability analysis in [11] indicates that, when the control design
does not employ an external control surface, the HFA is in
the worst controllable state. As the dihedral angle is highly
nonlinear with respect to the other states, it is necessary to
guarantee the observability of this dihedral angle, in order
to ensure quick and stable determination of the dihedral
angles. Therefore, the observability of the dihedral angle is
maintained in the subsequent controller design.

B. PRELIMINARIES
This section presents the definitions, lemmas, and proposi-
tions used in this study. Hereinafter, R is denoted by sets of

real numbers; ‖·‖ denotes the Euclidean norm for vectors,
or the induced matrix norm for matrices; the optimal value
of M is denoted by N ∗; the ith iteration of M is denoted by
Mi; and the ith dimension component of vectorM is denoted
by M i. For the matrix A = [a1 a2 · · · an] ∈ Rm× n, vec(A) is
defined as the new m× n vector formed by the columns of A,
that is vec(A) = [aT1 a

T
2 · · · a

T
n ]
T [38].

Definition 1: For the real symmetric matrix P ∈ Rn×n, the
new vector P̃ ∈ R

1
2 n(n+1)×1 is defined as

P̃ =
[
p11, 2p12, . . . , 2p1n, p22, 2p23, . . . , 2pn−1,n, pnn

]T (3)

where P =


p11 p12 · · · p1n
p21 p22 · · · p2n
...

...
. . .

...

pn1 pn2 · · · pnn

 .
Definition 2: For vector x = [x1 x2 · · · xn] ∈ Rn×1, the

new vector x̂ ∈ R
1
2 n(n+1)×1 is defined as

x̂ =
[
x21 , x1x2, . . . , x1xn, x

2
2 , x2x3, . . . , xn−1xn, x

2
n

]T
(4)

It should be noted that the mappings defined in Definition 1
and Definition 2 have a one-to-one correspondence with each
other.
Definition 3: [39] Kronecker product: For matrices

A ∈ Rm×n and B ∈ Rp×q, the Kronecker product M for A
and B is defined as follows:

M = A⊗ B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 (5)

According to the above-mentioned definitions, an impor-
tant identity required for subsequent analyses is proposed as
follows:

vec(ADB) = (BT ⊗ A) vec(D) (6)

Remark 2: In order to make the least square calcula-
tion in IRL technology more convenient, it is necessary to
give the above three definitions. Through these definitions,
we transform the calculation between matrices into calcula-
tion between vectors, which will contribute to the next work.
Lemma 1: Consider the following linear time invariant CT

plant.

ẋ = Ax + Bu

y = Cx (7)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and x ∈ Rn×1

is the system state; u ∈ Rm×1 is the system control input,
and y ∈ Rp×1 is the system output state. Initializing K0 ∈

Rm×n as any stabilizing feedback gain matrix and assuming
Pi as the symmetric positive definite solution of the Lyapunov
equation, we obtain

(A− BKi)T Pi + Pi (A− BKi)+ Q+ KT
i RKi = 0 (8)
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where Kk = R−1BTPk−1, with k = 1, 2, . . . , n. Thereafter,
the following properties hold: (i)A−BKi is Hurwitz; (ii)P∗ ≤
Pi+1 ≤ Pi; and (iii) lim

k→∞
Ki = K∗, lim

k→∞
Pi = P∗.

Proof: See [32] for the proof.
Remark 3: As reported in [32], on repeatedly calculating

the Lyapunov equation 8 and iterating the feedback gainK ,K
converges to the optimal feedback gainK∗. This is the earliest
idea of iterative integration in optimal control. Subsequent
analyses are based on this concept.
Lemma 2: Consider the linear CT system described in (7).

The state parametrization is defined as

x̄(t) = Muζu(t)+Myζy(t) (9)

where ζu(t) =
[(
ζ 1u
)T

(t)
(
ζ 2u
)T

(t) · · ·
(
ζmu
)T (t)

]T
and

ζy(t) =
[(
ζ 1y

)T
(t)

(
ζ 2y

)T
(t) · · ·

(
ζ
p
y
)T (t)

]T
. Moreover,

ζu(t) and ζy(t) are constructed as follows:

ζ̇ iu(t) = Aζ iu(t)+ bui(t), ∀i = 1, 2, . . . ,m

ζ̇ iy(t) = Aζ iy(t)+ byi(t), ∀i = 1, 2, . . . , p (10)

Subsequently, for any desired Hurwitz matrix A and b =
[0 0 · · · 1]T1×n, ζ

i
u(0) = 0 and ζ iy(0) = 0. Thus, we obtain

limt→∞‖x (t)− x (t)‖ = 0.
Proof: See [36] for the proof.

Remark 4: In [36], a filtering-based observer was pro-
posed for parameterizing the state vector in terms of filtered
inputs and outputs. Therefore, when the system state cannot
be measured precisely, it can instead be decomposed into
a linear weighted sum of the filtered inputs and outputs,
by means of state parameterization.

III. CONTROL DESIGN
This section discusses the control design to illustrate the
primary concept of the proposed controller. First, we perform
linearization analyses for different shapes of the HFA non-
linear model. Subsequently, we propose a model-free data-
driven optimal tracking controller based on the linear time
invariant CT plant. Finally, we integrate a state parameteriza-
tion method in the proposed controller to address the issue of
incomplete state acquisition.

A. HFA SYSTEM ANALYSIS AND CONTROL STRUCTURE
This section discusses the trim analysis for the HFA model.
Assuming that small deviations occur at higher altitudes and
using the deflection angles δa,o and δe,c as the control inputs,
the other control surfaces, i.e., δt , δa,c, and δe,o, should be
set as a constant based on their steady-state value. Thus, the
linear plant can be expressed as

ẋp = Apx + Bpu

yp = Cpx (11)

where the state vector and input vector can be rewritten as

xp = [V α θ q η η̇]T

FIGURE 3. Control inputs at different trim points of the linearized plant.

FIGURE 4. (a) Poles at different trim points of the linearized system.
(b) Dominant poles at different trim points of the linearized system.

up = [δa,o δe,c]T

yp = V (12)

The HFA model in (2) is linearized at V = 68ft/s and h =
40, 000ft , with the dihedral angle ranging from 0◦ to 40◦ in
increments of 1◦. The variations in the trajectory curve of the
control input with respect to the dihedral angle are depicted in
Fig. 3, and the evolution of the poles is shown in Fig. 4. Based
on these figures, it is evident that the stability of the system
gradually decreases as the dihedral angle increases and that
an unstable pole begins to appear at η = 11◦.

B. DATA-DRIVEN OPTIMAL TRACKING CONTROL WITH
COMPLETELY UNKNOWN DYNAMICS
First, the control objective is defined as ‘‘the system output yp
asymptotically tracks the reference signal ycmd .’’ The tracking
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error is defined as

e(t) = y(t)− ycmd (t) (13)

The integral of the tracking error can be calculated as

eI (t) =
∫
e(t) =

∫
(y(t)− ycmd (t)) (14)

Then, the augmented system can be expressed as[
ẋp(t)
ėI (t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
Ap 0
Cp 0

]
︸ ︷︷ ︸

A

[
xp(t)
eI (t)

]
︸ ︷︷ ︸

x(t)

+

[
Bp
0

]
︸ ︷︷ ︸

B

u(t)+
[

0
−I

]
︸ ︷︷ ︸
Bref

ycmd

y = (Cp 0)
(
xp(t)
eI (t)

)
(15)

The linear quadratic method can be used with the
proportional-integral feedback connection to obtain the opti-
mal control law. First, we define the following LTI plant:

ż = Az+ Bv (16)

where z = ẋ =
(
ẋp(t)
ėI (t)

)
∈ R(n+p)×1 and v = u̇.

In order to derive the primary results of this study, the
following assumptions need to be employed. Considering the
linear plant described in (11) and that the reference command
is denoted by ycmd , we have

Assumption 1. (A,B) is controllable and A can be stabi-
lized.

Assumption 2. (A,C) is observable.
Assumption 3. The tracking commands ycmd are bounded

and constant.

Remark 5: Assumption 1 is universally accepted, and
Assumption 2 is ubiquitous for a majority of the practical
systems in aerospace and other similar industries, where the
outputs (sensors) can be defined by vehicle designers and
are placed at specific locations on the vehicle to achieve
the desired input–output characteristics [40]. In Assump-
tion 3, a bounded constant signal can generally be selected
as the reference command. Therefore, the above-mentioned
assumptions for control design are necessary, while also
being reasonable.
Thus, the value function or cost function J is given as

J =
∫
∞

0
(zTQz+ uTRu)dt (17)

where Q = QT ≥ 0 and R = RT > 0, with (A,Q1/2) being
observable. Clearly, the optimal LQR solution in the feedback
form is

v = u̇ = −R−1BTPz = −(KP KI )
(
ẋp(t)
ėI (t)

)
(18)

where P, which is termed as the cost matrix, is a unique,
symmetric positive definite solution of the following ARE:

ATP+ PA+ Q− PBR−1BTP = 0 (19)

(18) is integrated to obtain the LQR-PI controller:

u = −(KP KI )
(
xp(t)
eI (t)

)
= −KPxp − KI eI = −KPxp −

KI (y− ycmd )
s

(20)

Remark 6: From (20), it is evident that the control input
consists of a linear feedback term related with the state as well
as an additional feedforward term related with the integral
of tracking error. The gain matrices KP and KI depend on
the solution of the ARE from (19). However, it is necessary
to possess accurate knowledge regarding dynamics in order
to determine the solution of (19), which can be considerably
challenging in practical scenarios. Therefore, subsequent sec-
tions discuss measures to circumvent this problem.
Lemma 1 proposes an iterative method to approximately
solve P; however, the algorithm is implemented offline and
requires knowledge regarding the system drift matrix Ap and
the control matrix Bp. Inspired by [27] and [33], we construct
a novel data-driven tracking controller, without requiring
internal system information (Ap,Bp). For this purpose, the
following value function was used:

V (t) =
∫
∞

t

(
zTτ Qzτ + u

TRu
)
dτ

=

∫
∞

t

(
zTτ (Q+ K

TRK )zτ
)
dτ

= zTt Pzt (21)

Substituting V (t) = zTt Pkzt and V (t + δT ) = zTt+δTPkzt+δT
in the above-mentioned equation, we obtain

zTt Pkzt − z
T
t+δTPkzt+δT =

∫ t+δT

t

(
zTτ Qzτ + u

TRu
)
dτ

=

∫ t+δT

t

(
zTτ (Q+ K

TRK )zτ
)
dτ

(22)

First, we assume that the initial stabilizing feedback matrix
K0 is known. Based on Lemma 1, the iterative feedback gain
matrix Ki+1 = R−1BTPi. Thus, the plant in (16) can be
rewritten as

ż = Akz+ B(Kix + v) (23)

where Ak = A− BKk .
Subsequently, according to Lemma 1, we have

zTt Pizt − z
T
t+δTPizt+δT

=

∫ t+δT

t

[
zTτ (A

T
k Pi + PiAk )zτ + 2(v+ Kix)TBTPix

]
dτ

= −

∫ t+δT

t
zTτ Qizτdτ + 2

∫ t+δT

t
(v+ Kix)TRKi+1xdτ

(24)

where Qi = Q+KT
i RKi. (24) shows that the matrices Pi and

Ki can be iteratively solved, without requiring information
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regarding (Ap,Bp). Using the Kronecker product representa-
tion and the previous definitions, we obtain

zTt Pizt = ẑTt P̃i
zTQiz = (zT ⊗ zT ) vec(Qi)

(v+ Kiz)TRKi+1z = [(zT ⊗ zT )(In ⊗ KT
i R)

+ (zT ⊗ vT )(In ⊗ R)] vec(Ki+1) (25)

For t ∈ [t1, tl], we divide it into several small time intervals
t ∈ [t1, t1+δT ]∪[t1+δT , t1+2δT ]∪· · ·∪[tl−δT , tl], with 0 ≤
t1 < t2 < · · · < tl , and tl = t1 + NδT . Therefore, we define
data matrices δzz ∈ Rl× 1

2 (n+p)(n+p+1), Izz ∈ Rl×(n+p)2 , and
Izv ∈ Rl× 1

2m(n+p) as follows:

δzz = [ẑ (t1 + δT )− ẑ (t1) , ẑ (t1 + 2δT )− ẑ (t1 + δT ) ,

. . . , ẑ (t1)− ẑ (t1 − δT )]T ,

Izz = [
∫ t1+δT

t1
z⊗zdτ,

∫ t1+2δT

t1+δT
z⊗zdτ, . . . ,

∫ tl

tl−δT
z⊗zdτ ]T ,

Izv = [
∫ t1+δT

t1
z⊗vdτ,

∫ t1+2δT

t1+δT
z⊗vdτ, . . . ,

∫ tl

tl−δT
z⊗vdτ ]T ,

Substituting (25) and δzz, Izz, and Izv in (24), we obtain

Ψi

[
P̃i

vec(Ki+1)

]
= Φi (26)

where Ψi = [δzz,−2Izz(In ⊗ KT
i R) − 2Izv(In ⊗ R)] ∈

Rl×[ 12 (n+p)(n+p+1)+m(n+p)], and Φi = −Izz vec(Qi) ∈ Rl .
Thus, the iterative matrices Pi and Ki can be calculated from
(26). We can summarize the above-mentioned discussion as
Algorithm 1.

Algorithm 1 Online Model-Free Tracking Control With Full
State Feedback
Require:

Initialize the stable control gain K0, exploration noise e,
reference signal ycmd , and expected error ε
Consider the plant described in (15)
Let v = −K0z+ e, t ∈ [t1, tl], and compute δzz, Izz, and Izv
if∥∥∥P̃i+1 − P̃i∥∥∥ ≥ ε then
(Policy evaluation) Calculate P̃i and vec(Ki+1) from (26)
until

∥∥∥P̃i+1 − P̃i∥∥∥ ≤ ε
end if
Calculate Ki from vec(Ki)
Calculate optimal feedback control law v = −Kz = −Kiz
Calculate optimal feedback control law u =

∫
−Kz =

−K
(
xp(t)
eI (t)

)

Remark 7: To ensure that (26) has a suitable solution, the
rank condition of [Izz Izv] should satisfy rank([Izz Izv]) =
(n+p)(n+p+1)

2 +m(n+ p). The core of Algorithm 1 is aimed at
collecting data during the time interval t ∈ [t1, tl]; the choice
of exploration noise plays a vital role during this process.
The exploration noise affects the convergence speed of the

calculation process and also determines whether the rank
conditions are met. Typically used noises include sinusoidal
signals with random amplitudes and frequencies.

The following theorem proves that Algorithm 1 converges
to the optimal feedback gain K∗:
Theorem 1: For the linear differential system in (16), ini-

tialize the feedback gain matrix K0, when the rank condition
of [Izz Izv] satisfies rank([Izz Izv]) =

(n+p)(n+p+1)
2 +m(n+p).

By iteratively calculating (26), we have
limi→∞ ‖Pi − P∗‖ = 0, and limi→∞ ‖Ki − K∗‖ = 0.
Proof: First, we prove that, when the rank condition is

satisfied, Ψi possesses a full column rank for i = 1, 2, 3, · · · .
In (26), Ψi has a full column rank and is equivalent to the
following equation, which has the unique solution x:

Ψix = Φi (27)

Therefore, we assume that the solution
x = [P̃Ti vec(Ki+1)T ], where P̃i ∈ R

(n+p)(n+p+1)
2 and

vec(Ki+1) ∈ Rm(n+p). According to Definitions 1 and 2, there
exists a symmetric matrix Pi ∈ R(n+p)(n+p) and a matrix
Ki+1 ∈ Rm×(n+p). Substituting Ψi, we obtain

[δzz,−2Izz(In ⊗ KT
i R)− 2Izv(In ⊗ R)]x

= [δzz,−2Izz(In ⊗ KT
i R)− 2Izv(In ⊗ R)]

[P̃Ti vec(Ki+1)T ] = Φi (28)

According to the Kronecker product representation and
(24), zTt Pizt − z

T
t+δTPizt+δT can be rewritten as

zTt Pizt − z
T
t+δTPizt+δT

= (zTt+δT ⊗ z
T
t+δT )vec(Pi)− (zTt ⊗ z

T
t )vec(Pi) (29)

Considering that the time interval δT is considerably small,
the above equation can be approximately extended as follows:

(zTt+δT ⊗ z
T
t+δT )vec(Pi)− (zTt ⊗ z

T
t )vec(Pi)

= δT

∫ t+δT

t
z⊗ zdτ vec(Pi) (30)

Thus, equation (27) can be rewritten as

[δzz,−2Izz(In ⊗ KT
i R)− 2Izv(In ⊗ R)][P̃Ti vec(Ki+1)T ]

= [δT Izz,−2Izz(In ⊗ KT
i R)− 2Izv(In ⊗ R)]

[vec(Pi)T vec(Ki+1)T ] = Φi (31)

As rank([Izz Izv]) = rank([Izz,−2Izz(In⊗KT
i R)−2Izv(In⊗

R)]), rank(Ψi) has a full column rank. Therefore, (28) has a
unique solution. Second, we prove that, for the initial stable
K0, the iterative equation (26) is equivalent to (8) in Lemma 1.
For a stabilized feedback gain matrixKi, when Pi = PTi is the
solution of (8), we obtain Ki+1R−BTPi, which also satisfies
(26). On the contrary, assuming Pi = PTi ∈ R(n+p)(n+p) and
Ki+1 ∈ Rm(n+p), the following equation has a unique solution:

Ψi

[
P̃i

vec(Ki+1)

]
= Φi

Hence, for the initial stable K0 and Ki+1 = R−1BTPi, the
iterative equation (26) is equivalent to (8) in Lemma 1.
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Based on the conclusion of Lemma 1, we obtain
limi→∞ ‖Pi − P∗‖ = 0 and limi→∞ ‖Ki − K∗‖ = 0.
Remark 8: The optimal feedback gain matrix of the aug-

mented system in (15) can be applied to the controlled system,
and the LQR-PI controller can be realized after integrating
(20). Unlike previous optimal controller designs, the pro-
posed optimal tracking controller does not require any system
information.
A schematic of the proposed closed-loop framework in Algo-
rithm 1 is presented in Fig. 5. After initializing with a stable
control policy, the online full state information of the HFA
model subjected to exploration noise can be obtained within
t ∈ [t0, tl]. Thereafter, the state gain matrix of the system in
(16) is determined via policy evaluation and policy improve-
ment using (26). When the final requirements are satisfied,
the iterations are ceased. Subsequently, we apply the gain to
the HFA. It is evident that the gain matrix is divided into two
components: the state feedback term Kp and the feedforward
term for the tracking error KI .

FIGURE 5. Closed-loop control structure of the system in Algorithm1.

C. DATA-DRIVEN OPTIMAL OUTPUT-FEEDBACK TRACKING
CONTROL WITH STATE PARAMETRIZATION
Inspired by [36], we consider embedding a method of state
parameterization into the controller designed using Algo-
rithm 1, in order to ensure that the system can asymptotically
track reference signals under output feedback. For the linear
CT plant, we define the new state x̄p as

x̄p(t) = Muζu(t)+Myζy(t) (32)

Thus, we have xp(t) = x̄p(t) + σ (t), where σ (t) < ‖σ‖
is a small constant. Thereafter, the new integral state z̄ ∈
R(mn+pn+p)×1 is defined as

z̄(t) =

 ζ̇u(t)ζ̇y(t)
ėI (t)

 (33)

z(t) =
(
ẋp(t)
ėI (t)

)
=

[
Mu My 0
0 0 I

] ζ̇u(t)ζ̇y(t)
ėI (t)

+ [ σ
0

]
(34)

Neglecting σ , the cost function in (21) can be described as

V = zTPz

=

 ζ̇u(t)ζ̇y(t)
ėI (t)

T [Mu My 0
0 0 I

]T
P
[
Mu My 0
0 0 I

] ζ̇u(t)ζ̇y(t)
ėI (t)


= z̄T P̄z̄ (35)

where P̄ = P̄T =

[
Mu My 0
0 0 I

]T
P
[
Mu My 0
0 0 I

]
∈

R(mn+pn+p)×(mn+pn+p). For simplicity, we denote[
Mu My 0
0 0 I

]T
by M̄ .

Thus, the control law of the augmented system in (15) is
expressed as

v̄ = −K̄ z̄ (36)

where K̄ = KM̄ ∈ Rm×(mn+pn+p).
Substituting K̄ , P̄, and z̄ into the ADP equation in (24),
we obtain

z̄Tt P̄iz̄t − z̄
T
t+δT P̄iz̄t+δT

= −

∫ t+δT

t
z̄Tτ Q̄iz̄τdτ + 2

∫ t+δT

t
(v+ K̄ix)TRK̄i+1xdτ

(37)

where Q̄i = M̄TQiM̄ ∈ R(mn+pn+p)×(mn+pn+p). (37) shows
that the subsequent optimal feedback matrix can be also be
designed according to the numerical method in Algorithm 1;
this is not repeated here. Thus far, the complete design of
the data-driven optimal output-feedback tracking controller
has been discussed. This design process is summarized in
Algorithm 2.

Algorithm 2 Online Data-Driven Optimal Output-Feedback
Tracking Control With IRL
Require:

Initialize the stable control gain K0, exploration noise e,
reference signal ycmd , and expected error ε.
Calculate offline state parameterization matrices Mu and
My. Considering the plant described in (15), let v̄ =
−K̄0z̄+ e, t ∈ [t0, t1] and compute δz̄z̄, Iz̄z̄, and Iz̄v̄.
if∥∥∥P̃i+1 − P̃i∥∥∥ ≥ ε then
(Policy evaluation) Calculate P̃i and vec(K̄i+1) from (26)
until

∥∥∥P̃i+1 − P̃i∥∥∥ ≤ ε
end if
Calculate K̄i+1 from vec(K̄i+1)
Calculate optimal feedback control law v = −K̄ z̄ =
−K̄i−+1z̄

Theorem 2: On the basis of above assumptions and an
appropriate exploration noise e, for the system described in
Eq. 16, a stable gain matrix K0 is initialized, and the new gain
matrix Ki is updated using Algorithm 2. Thus, one can obtain
lim
i→∞
‖Pi − P∗‖ = 0 and lim

i→∞
‖Ki − K∗‖ = 0.

Proof: From Lemma 2, the convergence of the pro-
posed state parametrization, which is based on filtered input
and output signals, has been proved. The estimated state x̄p
quickly tracks xp with an exponential convergence rate.More-
over, Theorem 1 completes the proof of the proposed online
data-driven tracking controller with full state measurement
which is depicted in Algorithm 1. Therefore, the proposed
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ADP equation in Algorithm 2 converges to the equation in
Algorithm 1, under sufficient excitation and the appropriate
exploration noise e. In this manner, the problem to be solved
is transformed into the problem in Theorem 1. Thus, the proof
is completed.
Remark 9: Unlike Algorithm 1, for Algorithm 2, we use

filtered input and output data information (δz̄z̄, Iz̄z̄ and
Iz̄v̄) to calculate the required parameters within the time
interval t ∈ [t0, tl]. Thereafter, we calculate the opti-
mal feedback gain K of the differential system by solving
the least squares problem corresponding to (37). Finally,
the obtained gain is employed in the augmented system
along with the tracking error term; the controller ensures
that the system output asymptotically tracks the reference
signal.
Remark 10: It is worthy to note that some literatures have

recently provided theoretical analysis on the robustness of
such adaptive data-driven algorithms based on IRL methods,
such as [41]. This paper pointed out that this type of algorithm
has a good ability to deal with small interference, but it
is difficult to guarantee its performance for large external
interference. Therefore, the proposed online controller in our
research based on the IRL technique can also show good
robustness.
In-line with the previous discussions, we also present the
block diagram of the closed-loop control system obtained
using Algorithm 2 in Fig. 6.

FIGURE 6. Closed-loop control structure of the system in Algorithm2.

Remark 11: Both Algorithm 1 and Algorithm 2 are con-
structed with PI algorithm, therefore, there is a restrictive
assumption that an initial stable control strategy is required.
If the system is known to be initially stable, the initial control
policy can be selected as 0. For the initial instability of
the system, this problem can be overcome through the VI
algorithm, although this method requires a large number of
iterations.
Remark 12: Note that the proposed adaptive tracking con-

troller does not rely on dynamic knowledge, which is different
from the previous controller. It can be seen that both two algo-
rithms contain two main phases. In the first place, an initial
stabilizing control strategy under proper exploration noise is
injected into the defined augmented system and then the sys-
tem information is recorded in matrices in δzz, Izz and Izv (δz̄z̄,
Iz̄z̄ and Iz̄v̄). Hereafter, the obtainedmatrices are applied to cal-
culate the approximate optimal control policy by (26). In the
overall control system, the choice of exploration noise has a

TABLE 1. Model parameters of the HFA.

great influence on the control effect. Therefore, choosing a
suitable exploration noise is also one of the difficulties of the
control design, especially for high-dimensional systems with
more complicated situations. For different systems, we usu-
ally need to use different types of exploration noise such
as sinusoidal noise, random noise, or exponential noise, etc.
In this research, we choose the sum of sinusoidal noises of
different frequencies as the exploration noise of the control
input.

IV. NUMERICAL EXPERIMENTS AND RESULTS
The overall tracking performance of the proposed controller
is applied to the three-wing HFA model. HFAs suffer from
highly undesirable, and even unknown, internal dynamics.
Although several studies have focused on HFAs, accurate
and precise knowledge regarding aircraft dynamics remains
elusive. Therefore, this study focuses on a model-free control
design based on the online acquisition of data information.
Details of the HFA model presented in Section II are listed
in Table 1. Although the HFA model is nonlinear under
normal operating conditions, a linear model can be employed
to develop optimal controllers. The aircraft is linearized at
V = 68ft/s, h = 40, 000ft , α = 2.8◦, θ = 2.8◦,
η = 5◦, and η̇ = 0. Refer to Appendix A for detailed
explanations regarding the matrix. First, the proposed online
data-driven adaptive optimal controller employing IRL is
applied to the HFA model under full state measurements.
The calculation of the gain matrix is divided into two tasks.
The first task involves collecting online data by applying
exploration noise to the system within a certain time period
to calculate the optimal feedback gain; thereafter, the gain
matrix is calculated iteratively using (26), and this continues
until the error between two iterations is within the expected
range. The second task involves conducting a second sim-
ulation to validate the state parameterization in order to
address the problem that the system state cannot be pre-
cisely measured. Finally, a baseline LQR-PI controller is
employed for a comparison of tracking performances and to
verify the effectiveness of the proposed controller. Through-
out the simulation, the choice of exploration noise e is highly
critical. Thus, after several trials, we reasonably selected e
as

e = 1000
200∑
i=1

sin(wit) (38)

where wi are randomly selected from [−200, 200].
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TABLE 2. Control parameters.

FIGURE 7. Derivative of system state using (16) in Algorithm 1.

A. ONLINE DATA-DRIVEN TRACKING CONTROLLER WITH
FULL STATE MEASUREMENTS
The framework’s capability of online learning without a pri-
ori knowledge of the controller is demonstrated herein. The
parameters required for the simulation of Algorithm 1 are
listed in Table 2. The weight matrices are denoted byQ and R,
respectively. The learning time is denoted by N , which is set
to 200. The iterations continue until the maximum number of
iterations satisfies σ ≥ σmax or until the difference in Pi for
two iterations satisfies ‖Pi − Pi−1‖ ≤ ε.

The control object is to ensure that the system velocity
V tracks the reference signal r under the application of the
controller. The initial velocity is chosen as V = 1, and the
reference signal is chosen as ycmd = 5. The state input
information of the differential system in (16) is collected
during the learning time at t ∈ [0, 2], where each time interval
δT = 0.01 s. The control parameters are initialized to zero.
Figs. 7 to 9 illustrate the process of the online collection of
data for (16) and the calculation of the optimal gain matrices
K∗ and P∗. Fig. 7 shows that the data matrices δzz, Izz, and
Izv are collected in t ∈ [0, 2]. Thereafter, Pi and Ki+1 are
iteratively updated via (26) until the desired conditions are
satisfied. The update processes of the cost matrix P and the
gain matrix K are illustrated in Fig. 9; these converge to the
steady value. Furthermore, the final matrices P∗ and K∗ are
displayed in Appendix B. Fig. 8 shows that the tracking error
converges to 0.

Once the convergence criterion of the cost matrix Pi is
met, the exploration noise e can be stopped. We apply the
feedback gain matrix Ki, obtained using (26), to the HFA
model. The tracking performance and control signals are
depicted in Fig. 11.

FIGURE 8. Tracking error in Algorithm 1.

FIGURE 9. Cost matrix Pi at each iteration in Algorithm 1.

FIGURE 10. Gain matrix Ki at each iteration in Algorithm 1.

B. ONLINE DATA-DRIVEN TRACKING CONTROLLER WITH
PARTIAL OBSERVABILITY
To validate the proposed controller in Algorithm 2 with par-
tial observability, a more extensive simulation on the velocity
tracking control problem of the HFA model is conducted.
In aerospace applications, the output tracking error is com-
monly the only measurable state. Considering this, we apply
state parametrization to filter the input and output information
and then perform weighted summation using the method in
Lemma 2. The eigenvalues of the observer matrix A are
located at −5.
The objective of this control problem is same as that in

case 1, where the initial velocity is V = 1, and the reference
signal is ycmd = 5. To reduce uncertain factors caused by
insufficient state information, the learning time parameter N
is increased to 400, and δT is set as 0.02 s. The remaining
control parameters remain unchanged, as shown in Table 2
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FIGURE 11. Final gain matrix K from Algorithm 1 applied to the HFA
model.

FIGURE 12. Derivative of the system state using (16) in Algorithm 2.

FIGURE 13. Tracking error in Algorithm 2.

Fig. 12 presents the state variables of (16). In t ∈ [0, 8],
the data information matrices δzz, Izz, and Izv are collected
under the effect of the exploration noise e. After 8s, the
main feedback matrix K , obtained using (26), is applied
to the system in (16); thus, the states quickly converge to
0. Fig. 13 depicts the online tracking performance of the
proposed controller with partial observability. Fig. 16 shows
the actual velocity and the estimated velocity obtained via
state parameterization and by tracking the reference signal,
respectively. It is evident that the estimated velocity quickly

FIGURE 14. Cost matrix P̄i at each iteration in Algorithm 2.

FIGURE 15. Gain matrix K̄i at each iteration in Algorithm 2.

FIGURE 16. Final gain matrix K̄ Obtained from Algorithm 2 applied to the
HFA model.

becomes consistent with the actual velocity and then tracks
the reference signal. Figs. 15 and 14 depict the trend of the
matrices P̄i = M̄TPM̄ ∈ R19×19 and K̄i = KM̄ ∈ R2×19

during the calculation. Due to the relatively high dimension-
ality of P̄ and K̄ , for the sake of convenience, we only list the
final values of P and K for Algorithm 2 in Appendix B.
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FIGURE 17. Calculation time per simulation of the two algorithms.

In the two proposed methods, the core is to use matrix
knowledge to calculate the approximate optimal gain through
(26). This process may take some time. To better reflect the
rationality of the algorithm, we perform 50 simulations on
Algorithms 1 and 2 respectively to obtain the average time for
calculating the approximate optimal gain process. The details
are described in Fig. 17 and the average calculation time of
the two algorithms is 0.0385s and 0.0569s respectively. From
the picture, we can see that since the value of the detection
noise is randomly selected each time, the calculation time
is slightly different for each simulation. The simulation cal-
culation time of algorithm one is kept between 0.026s and

FIGURE 18. Simulation comparison under different algorithms.

0.06, while the value of algorithm two is between 0.039s
and 0.08s. In fact, Algorithm 2 needs to collect more data
and information than Algorithm 1, so its information matrix
has a larger dimension. Therefore, the calculation time of
Algorithm 2 is longer. However, the calculation time of this
process is acceptable for the control system in general.

In the final simulation, we compare the proposed algo-
rithms with the classic LQR algorithm. Through the lqr
function in MATLAB, we can calculate the optimal feedback
gain Klqr after knowing the system matrix knowledge, which
is shown in Appendix B. From Appendix B, we can see
that the control policy obtained by algorithm 1 and 2 is very
close to the optimal gain Klqr , and the simulations described
in Fig. 18 confirm the final conclusion. In summary, the
proposed method not only does not require the knowledge
of system dynamics, but can also obtain an optimal solution
almost similar to the LQR method.

V. CONCLUSION
In this study, a novel data-driven adaptive tracking con-
troller employing IRL for a class of HFAs was developed.

PAlgorithm1 =



0.0662 0.0205 −0.431 −0.00479 0.0668 0.0161 0.147
0.0205 1.33 −0.548 −0.047 0.351 −0.0678 0.0128
−0.431 −0.548 6.38 0.0577 −3.96 −0.575 −0.635
−0.00479 −0.047 0.0577 0.011 −0.00997 0.00303 −0.00751
0.0668 0.351 −3.96 −0.00997 11.2 1.46 0.0894
0.0161 −0.0678 −0.575 0.00303 1.46 0.269 0.0253
0.147 0.0128 −0.635 −0.00751 0.0894 0.0253 0.533


KAlgorithm1 =

(
−0.319 −1.47 1.74 −0.152 0.556 0.201 −0.733
0.432 4.07 −5.07 −1.0 0.588 −0.314 0.68

)

PAlgorithm2 =



0.0662 0.0204 −0.4304 −0.0048 0.0646 0.0158 0.1468
0.0204 1.3346 −0.5432 −0.0470 0.3386 −0.0695 0.0127
−0.4304 −0.5432 6.3311 0.0575 −3.8244 −0.5575 −0.6344
−0.0048 −0.0470 0.0575 0.0110 −0.0096 0.0031 −0.0075
0.0646 0.3386 −3.8244 −0.0096 10.7982 1.4058 0.0863
0.0158 −0.0695 −0.5575 0.0031 1.4058 0.2622 0.0248
0.1468 0.0127 −0.6344 −0.0075 0.0863 0.0248 0.5331


KAlgorithm2 =

(
−0.3186 −1.47 1.745 −0.1523 0.5372 0.1988 −0.7331
0.4316 4.073 −5.067 −1.00 0.5673 −0.3165 0.6802

)
Klqr =

(
−0.3186 −1.47 1.745 −0.1523 0.5362 0.1987 −0.7331
0.4316 4.073 −5.066 −1.003 0.5663 −0.3167 0.6802

)
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To overcome the lack of system dynamics, IRLwas employed
to collect data within an expected time interval and utilize
these data to calculate the optimal feedback gain. Thereafter,
the proposed controller was combined with a state parameter-
ization method in order to overcome the partial observability
of the system. This proposed design was validated via numer-
ical simulations involving an HFA model.

In fact, almost all actual engineering systems are subject
to various uncertain factors such as actuator saturation [22],
[23], sensor faults [25], and actuator failures [24].When these
problems are not fully considered in the overall design of the
controller, it will lead to an undesirable impact on the stability
and robustness of the closed-loop system. According to the
related results on robust adaptive control [42] with consider-
ation of input saturation [43], [44] and state constraints [45],
the data-driven robust adaptive fault tolerant control will be
focused in future.

APPENDIX A
PLANT MATRICES

A =


−0.042 4.167 −32.20 0 0.08 0.18
−0.01 −9.13 0 1 0.05 0.07

0 0 0 1 0 0
0 −446.43 0 −0.18 2.24 38.46
0 0 0 0 0 1
0 0.05 0 2 −0.14 −7.46



B =


−6.25 0
−1.82 −0.18

0 0
−24.5 −91.52

0 0
0.94 −0.18


C =

(
1 0 0 0 0 0

)
APPENDIX B
CONTROL PARAMETERS OBTAINED FROM
ALGORITHM 1 AND 2
PAlgorithm1, KAlgorithm1, PAlgorithm2, KAlgorithm2, and Klqr are as
shown at the bottom of the previous page.
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