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ABSTRACT Long-Range (LoRa) communication technology is considered as a promising connectivity
solutions for Internet of Things (IoT) dense applications. In particular, LoRa has drawn the interest due to its
low power consumption and wide area coverage. Despite the benefits of LoRaWAN protocol, it still suffers
from excessive random and simultaneous transmissions due to the adoption of ALOHA protocol. Therefore,
resulting in severe packet collision rate as the network scales up. This leads to continuous retransmission
attempts, which in return increase the transmission delay and energy consumption. Thus, this paper proposes
a dynamic transmission Priority Scheduling Technique (PST) based on the unsupervised learning clustering
algorithm to reduce the packet collision rate and enhance the network’s transmission delay and energy
consumption. Particularly, the LoRa gateway classifies the nodes into different transmission priority clusters.
While the dynamic PST allows the gateway to configure the transmission intervals for the nodes according
to the transmission priorities of the corresponding clusters. This work allows scaling up the network density
while maintaining low packet collision rate and significantly enhances the transmission delay & the energy
consumption. Simulation results show that the proposed work outperforms the typical LoRaWAN and recent
clustering & scheduling schemes. Therefore, the proposed work is well suited for dense applications in
LoRaWAN.

INDEX TERMS Unsupervised clustering, collision rate, energy consumption, IoT, LoRa, Naive Bayes
classifier, packet delivery rate, priority scheduling, transmission delay.

I. INTRODUCTION
The Low-Power Wide Area Networks (LPWAN) technolo-
gies have been increasingly researched and deployed as a
promising solution for serving Internet of Things (IoT) appli-
cations. Long-Range (LoRa) technology via its LoRaWAN
protocol [1], has shown a very attractive platform due to its
low energy consumption and wide area coverage. However,
one main drawback associated with LoRaWAN is the vul-
nerability to high packet collision rate. This is due to the
adaption of ALOHA communication protocol, where LoRa
nodes initiate packet transmissions without the presence of
Listen Before Talk (LBT) protocol [2], [3]. As a result,
LoRaWAN efficiency suffers a depreciation, particularly
on network’s energy consumption and transmission delay.
In order to compensate for the absence of LBT protocol,
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LoRaWAN provides different Spreading Factors (SF) based
on the LoRa physical layer Chirp Spread Spectrum (CSS)
technique to allow simultaneous packet transmissions. Alter-
nating between different SF comes at the expense of higher
transmission power and time-on-air, which can be ideal
solution for small-scale networks [4]–[7]. However, adapt-
ing LoRaWAN to serve dense applications remains an open
challenge.

LoRa physical layer modulations relies on the CSS tech-
nique [8], which quantifies how many chirps are pulsed
per second. Using CSS technique, LoRa provides a wide area
communication coverage for a range of more than 10 km.
In addition, using CSS increases the robustness against
noise and external interferences. The Medium Access Con-
trol (MAC) LoRaWAN protocol exploits the CSS by pro-
viding the SF feature to further boost the communication
efficiency. The transmissions using different SF, between SF7
and SF12, vary in terms of data per chirp per second [1].
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This allows the receiver to distinguish between simulta-
neous transmissions according to the used SF [9]. The
packet transmission delay is the duration of transmitting a
packet from the sender to the receiver. In an ideal environ-
ment, the packet transmission delay is mainly effected by
the SF, the transmission power, and the packet size [10].
Given a typical IoT packet size of 250-300 bytes, an IoT
battery-powered device using LoRaWAN has an expected
lifetime of up to 6 years [11], provided infrequent daily
transmissions [12], [13]. This explains the wide interest of
adapting LoRaWAN in IoT applications. However, as for-
merly mentioned, the LoRaWAN efficiency is still an open
challenge especially in dense applications.

This led to the strive of a number of research bodies
and industrial organisations to challenge the efficiency of
LoRaWAN. For example, Rachkidy et al. [14], proposed a
collision resolution technique that allows LoRa gateway to
decode the collided and hence, corrupted received packets.
While Liao et al. [15], introduced a multi-hop based concur-
rent transmission technique in order to mitigate the proba-
bility of simultaneous packets transmissions of LoRa nodes.
In addition, Zhu et al. [16], proposed a tree based clustering
algorithm to enhance LoRaWAN capacity. Particularly, their
scheme exploits the variety in SF communication reliability
by allocating different SF to different clusters. Based on that,
clusters with less SF reliability off-load traffic to clusters with
higher SF reliability via multi-hop relay. Although, the colli-
sion rate has been enhanced in the aforementioned schemes
[14]–[16], this comes at the expense of compromising the
transmission delay or the energy consumption. Hence, in this
paper, the aim of the work is to reduce the packet collision rate
in LoRaWAN while maintaining relatively low transmission
delay and energy consumption.

In order to achieve an efficient implementation of
LoRaWAN to serve dense IoT applications, it is neces-
sary to define the target application. This work consid-
ers using LoRaWAN as wireless communication solution
for serving an early warning weather monitoring system.
Given the unlabeled data delivered by the nodes (sensors),
the limited resources for the devices (battery-powered) and
the random transmission behaviour of LoRaWAN due to
adapting ALOHA protocol, this paper introduces the use
of unsupervised learning clustering algorithm (K-Means) as
a base for the dynamic transmission Priority Scheduling
Technique (PST). Unlike other machine learning techniques,
K-Means is specifically chosen for its simplicity in partition-
ing the unlabeled data delivered by the nodes into different
clusters [17]. When applying K-Means at the gateway level,
the nodes with similar data are grouped in a cluster with-
out the need to nodes coordination in the partitioning process.
This lifts the computation burdens from the nodes level to
the gateway level. Hence, avoiding excessive computation
overhead at the nodes level that can jeopardise the energy
efficiency.

Based on K-Means clustering, the dynamic PST allows
the LoRa gateway to configure the transmission intervals

for nodes located at different clusters to prevent the vast
amount of simultaneous transmissions. Hence, achieving
lower packet collision rate. The configuration process of
transmission intervals is based on prioritising nodes in a
certain cluster according to a set of application related param-
eters (e.g. a packet containing weather temperature read-
ings) received from the node to the gateway. Also, unlike
the proposed work in [16], where nodes off-load traffic to
neighbouring clusters, the dynamic PST avoids the excessive
energy burden associated with multi-hopping techniques by
maintaining the original LoRaWAN star topology. Simula-
tions is carried out to evaluate the impact of reducing the total
collision rate on both the Total TransmissionDelay (TTD) and
the Total Energy Consumption (TEC). Furthermore, different
from the previously proposed static transmission scheduling
in [18], the dynamic PST trades-off the Packet Delivery Rate
(PDR) to achieve better TTD and TEC.

The scope of the paper is to address the feasibility of using
LoRaWAN to serve a dense application. The main challenges
are the excessive packet collision rate, inefficient TTD, TEC
and PDR. In order to address these challenges, a dense net-
work system model is designed, where up to 1000 nodes are
distributed randomly within a limited area of up to 3 km2

around one LoRa gateway. In addition, the nodes are set
to communicate with the gateway via Class A end-device
LoRaWAN1 using SF7. Note that these are the most reli-
able parameters provided by LoRaWAN in terms of energy
efficiency. An evaluation of the severe total collision rate
in a typical LoRaWAN network is obtained via simulations
analysis. Therefore, K-Means clustering algorithm is intro-
duced to reduce the probability of packet collision rate caused
by the randomness and excessive simultaneous transmissions
from the nodes. Furthermore, to obtain the optimal number
of clusters, simulations analysis is carried out to evaluate the
TTD and TEC efficiency under different number of clusters.
To prove the performance efficiency, simulations are carried
out to evaluate the impact of the proposed work against recent
clustering and scheduling techniques for LoRaWAN in terms
of TTD, TEC and PDR.

The main contributions of this work are summarised as
following:

1) Classifying the unpredicted transmissions’ nature of
LoRaWAN into an organised manner that allows bet-
ter resource management. This is achieved by exploit-
ing the unsupervised learning clustering algorithm.
In return, this reflects the magnificent reduction to
the excessive collision rate associated with typical
LoRaWAN.

1Note that LoRaWAN provides three different classes for the end-device
to join the network. First is Class A, which is the most energy efficient,
where the nodes initiate transmissions without prior sensing to the channel
status and open a temporary receive window following each transmission.
Second is Class B, where nodes listen to periodic beacons from the gateway.
Third is Class C, which is the most energy inefficient, where nodes listen
continuously to the gateway. More details of LoRaWAN end-device classes
are available in [19].

191496 VOLUME 8, 2020



M. Alenezi et al.: Unsupervised Learning Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN Networks

2) Proposing a dynamic transmission PST based on the
unsupervised learning clustering algorithm to further
enhance the network’s TTD and TEC while maintain-
ing relatively acceptable PDR in comparison to other
techniques. This is performed in two folds:
a) First, the gateway allocates unique transmission

priority to each of the clusters in the network
ranging from high to low. Based on the cluster’s
priority, the corresponding nodes are assigned
specific transmission intervals by the gateway.

b) Second, the dynamic PST provides two trans-
mission modes; conservative (con.) and non-
conservative (ncon.). In the con. mode, the PDR
is elevated at the expense of relatively higher
TTD and TEC. While the ncon. mode provides
more efficient TTD and TEC at the expense of
relatively lower PDR. The dynamic PST applies
the Naive Bayes classifier algorithm in order to
determine the probability of assigning a specific
transmission mode to each cluster.

The rest of the paper is organised as follows: Section II
reviews related work carried out for the purpose of enhanc-
ing the energy efficiency and the transmission delay in
LoRaWAN. Section III reveals the systemmodel, the problem
definition and formulation. Section IV exposes the proposed
dynamic PST. Section V discusses the simulation results.
This paper is then concluded in section VI.

II. RELATED WORK
This section sheds light on a set of studies that were carried
out to enhance the energy efficiency and the transmission
delay in low power networks. It also explores the use of
various machine learning techniques, all for the purpose of
enhancing LoRaWAN performance. The section concludes
with identifying the technical concerns that are bridged by
the proposed unsupervised learning based dynamic PST.

A. ENERGY EFFICIENCY
Energy efficiency has always beenwithin the interest scope of
researchers, especially with technologies designed for serv-
ing IoT applications. In this regard, Kavitha and Suseen-
dran in [20] propose a priority based adaptive scheduling
algorithm for IoT sensor systems where several performance
aspects were taken into consideration. One main issue the
proposed algorithm tackles is the energy consumption in
wireless sensor networks. The scheduling algorithm is based
on preset delay and energy requirements. Based on these
requirements a given packet can only transmit when there
is a free slot for transmission. In particular, the algorithm
introduces a queuing procedure where packets queue before
initiating transmissions. This procedure is mainly utilised to
reduce the amount of transmissions and hence reduce the
total energy consumption of the network. Their work is also
inspired by similar techniques presented in [21]–[24].

Rubel et al. [25] propose a clustering based priority man-
agement scheme to reduce the overall energy consumption in

a wireless sensor network. In specific the scheme classifies
data received from nodes in different delay requirements.
Based on each classification the scheme allows sensors to
initiate communication with the base station. Their scheme
trades off the quality-of-service in serving each class of
nodes.

In regards to the energy efficiency of IoT devices,
Ogundile et al. [26] investigate the energy consumption con-
straint in wireless sensor networks and propose a clustering
based routing algorithm. Their work takes into consideration
that in some scenarios the sensors tend to consume more
power attempting to initiate transmissions with the base sta-
tion. Therefore, they proposed a clustering algorithm where
each group of nodes utilise predefined nodes (cluster heads)
within their cluster to reach the base station. This multi-hop
technique showed an improvement to the energy efficiency.
However, such an approach can negatively impact the overall
performance in the case of busymulti-hops. Another common
problem associated with the rerouting approaches is that the
nodes selected for multi-hoping are vulnerable to having a
short lifetime. Hence, the reliability is still an open issue.
Similar approaches are also adapted in [27]–[29].

B. TRANSMISSION DELAY
In line of the clustering based routing algorithms, Liu and
Chang [30] propose a clustering rerouting scheme based
on the assumption that nodes are scattered unevenly. Their
assumption results on their clustering being performed based
on an unequal number of nodes in each cluster. They utilise
a probabilistic model in order to determine which node has
the energy capability to perform the tasks of multi-hoping for
other nodes in need within the same cluster. The node then
has the ability to opt out from serving as a cluster head when
the energy level reaches a specified threshold. Although the
proposed scheme outperforms those in [31]–[33], still it has
a negative impact on the total network delay.

As the functionality of LoRaWAN is highly dependent
on resource allocation the technology uses an Adaptive
Data Rate (ADR) technique. In practice, ADR aims to
achieve right first time reception between end-device and
the gateway through basic minimum SF selection. However,
Cuomo et al. [34] recognised two sophisticated SF alloca-
tion algorithms, EXPLoRa-SF and EXPLoRa-TA. The algo-
rithms show a reduction in interference between clusters of
end-devices with varying SF through improved time-on-air.
More specifically, EXPLoRa-SF attempts to equally assign
redundantly high SF groups across multiple base stations that
are restricted solely by their Received Signal Strength Indi-
cator (RSSI). Although high SF provide long-range coverage,
they increase interference and collisions through greater time-
on-air. Hence, EXPLoRa-TA works by assigning different
SF to end-device groups to ensure each group has an equal
amount of time-on-air. They coined the term ‘‘ordered water-
filing’’. It was observed that both algorithms prevailed over
ADR at improving throughput in highly loaded systems of
end-devices distributed 200 meters from the gateway.
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LoRaWAN has three classes of communication, Class A,
B and C , listed in descending order of energy consumption.
Delobel et al. [35] select Class B to study the energy effi-
ciency of downlink communication (performance) as it is
optimised for this purpose. The downlink communication is
confirmed through an acknowledgment (ACK) mechanism.
Failure to receive ACK will trigger a retransmission, which
accumulates delays. The expected delay time is analytically
computed in their proposed Markov chain model. However,
it exposes further flaws within the application of Class B. The
limitations include; the gateway duty-cycle, conflict between
Class A & B, and delay before ACK sub-band availability.
The first limitation of duty-cycle is apparent to

Delobel et al. [35], where the gateway is prevented from
sending ACK for a large number of confirmed uplinks, for
which it has delays of up to 98.13s before the use of the next
ping slot could be seen. Nonetheless, they assumed all data
frames could be acknowledged by gateways in which all ping
slots could be used.

The second limitation in LoRaWAN specifications is the
conflict between Class A and B. Since Class A devices trans-
missions are random, Delobel et al. [35] prevented other
Class B devices from transmissions during designated ping
slots from the gateway (beacons). By adapting this approach,
their scheme was using Markov chain based model increased
the data-rate which results in reduced time-on-air frames.
Moreover, the delay time was further improved by increasing
the number of sub-bands together with increasing the ping
period, which in return allow more frame transmissions and
less delays.

C. MACHINE LEARNING IN LoRaWAN
LoRaWAN is meant for serving IoT applications, where
low latency is not usually critical requirement [19]. Hence,
the simplicity in LoRaWAN protocol, which makes it suit-
able for IoT serving applications given the limited resources.
However, this results in a major drawback in LoRaWAN,
which is the severe packet collision rates especially as the
served networks scale up. In return, this results in a serious
degradation to LoRaWAN performance and thus, to its reli-
ability. The different features LoRaWAN protocol provides
e.g. SF and Coding Rate (CR), enhance its flexibility and
suitability for being adapted according to the needs of the
served application [1]. In addition, these features encouraged
number of research efforts to use them as elements to improve
LoRaWAN in different aspects using various machine learn-
ing algorithms and techniques.

For example, Cui and Joe [36] have proposed an enhanced
packet collision prediction scheme based on Long Short-
Term Memory (LSTM) model. Despite the high predic-
tion accuracy LSTM model provided, LoRaWAN random
transmission behaviour requires an online training schemes
to achieve a practical prediction process. This has moti-
vated Cui and Joe to combine LSTM with a State Space
Model (SSM) and propose an enhanced Long Short-Term
Memory Extended Kalman Filter (LSTM-EKF) scheme.

Their proposed scheme showed relatively higher prediction
accuracy in comparison to the original LSTM model. How-
ever, the prediction process is highly dependant on the input
parameters, which are chosen to include LoRaWAN protocol
features such as different SF, CR and class of end-node
communication. Hence, the prediction accuracy remains a
function of the pre-inputs selection process leading to a very
high computation overhead.

Acknowledging the randomness of LoRaWAN transmis-
sions, Cuomo et al. [37] proposed nodes profiling scheme
based on the unsupervised learning clustering algorithm
(K-Means). Considering two gateways within the proximity
of the nodes, the profiling scheme aims to predict the dupli-
cation in nodes transmissions by grouping packets that have
similar transmission characteristics. Based on the duplication
prediction, a traffic prediction is carried out via combining
the Decision Tree (DT) and LSTM models for the purpose of
enhancing the resource allocation. Although the unsupervised
learning clustering algorithm is preferable machine learning
classifying tool in low power networks due to its simplicity,
however the number of clusters could play a vital role making
it very complex to implement. Hence, analysis to the optimal
number of clusters is essential to achieve the optimal clus-
tering accuracy. This is highly dependant on the application
parameters used in the clustering process.

Exploiting the variety of LoRaWAN features as parameters
in machine learning tools, Sandoval et al. [38] proposes a
configuration update scheme to the nodes based on Rein-
forcement Learning (RL) to maximise the throughput of each
node individually. The configuration process relies on the fact
of categorising packets received from the nodes into different
importance scales. Their scheme reserves LoRaWAN param-
eters that ensure robust transmission for nodes classified as
important source of information. These nodes receive config-
uration updates from the gateway to elevate their individual
throughput, whereas, the gateway using the RL-based scheme
retains from updating nodes classified as lower importance
source of information. In other words, the gateway using
the proposed scheme learns how to intelligently elevates the
chance of allowing certain nodes to successfully transmit at
the expense of other nodes, all based on prior importance
classifications of the nodes.

Similarly, Aihara et al. [39] use RL by proposing
Q-learning model combined with Carrier-Sense Multiple
Access with Collision Avoidance (CSMA/CA) to mitigate
the collisions in LoRaWAN and enhance the network PDR.
In their proposed scheme, the number of successfully
received packets form the nodes to the gateway is defined
as a reward function that their scheme learns to maximise.
They have defined the main cause of the collisions to be
simultaneous transmissions. Hence, to mitigate the collision
rate, their schemes allows the gateway to learn which nodes
are prone to simultaneous transmissions. Hence, the gateway
allows the target nodes to transmit over different channels
using CSMA/CA. However despite the high energy consump-
tion needs when using such techniques, the PDR is still a
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function of the number of available channels. Hence, this can
cause negative impact especially when the network scales up.

D. TECHNICAL CONCERNS
The use of machine learning in LoRaWAN is attractive,
however it can be easily accompanied with severe negative
consequences especially in terms of energy consumption.
These consequences are usually due to the very high compu-
tation needs which can jeopardise the whole purpose of using
LoRaWAN as a low power solution for IoT applications. For
example, it was noticed when reviewing the aforementioned
set of studies [30]–[39] that the energy consumption was
de-prioritised if not completely neglected. The fact that IoT
devices are resource limited (e.g. battery-powered) makes it
inefficient to use machine learning algorithms that require
end nodes coordination. Taking this fact into account and
based on the random LoRaWAN transmissions behaviour,
this work implements the unsupervised learning clustering
algorithm (K-Means) together with the dynamic PST at the
gateway level. The sole motive behind using K-Means is
to partition a given number of nodes into a set of clusters
according to their associated unlabeled data, which allows
the gateway to implement the dynamic PST to configure the
nodes with different transmission priorities. These trans-
mission configurations allow the nodes to be aware of the
transmission intervals. Hence, the nodes effortlessly trans-
mit in different time intervals decided at the gateway level.
This mechanism lifts the computation burdens of finding the
transmission intervals from the nodes level to the gateway
level, assuming the gateway has sufficient resources. Hence,
the chance of packet collisions is reduced due to reducing the
number of simultaneous transmission by the nodes. In con-
trast, achieving higher PDRwhile keeping low TEC and TTD.

III. SYSTEM MODEL, PROBLEM STATEMENT AND
FORMULATION
The system model, the considered dense application sce-
nario and the impact of packet collision rate are revealed in
section III-A. This is followed by formulations of the Total
Transmission Delay (TTD) and Total Energy Consumption
(TEC) in section III-B. Where section III-C introduces the
unsupervised learning clustering algorithm (K-Means) and
reveals the optimal number of clusters analysis. The notations
used in the rest of the paper are presented in Table 1.

A. SYSTEM MODEL
The systemmodel shown in Fig. 1 resembles a forest scenario
with one gateway (GW) and randomly distributed nodes n ∈
{n1, n2, . . . ni}, where 1 ≤ i ≤ 1000. The LoRa nodes ni are
configured following LoRa SX1272model. This is to validate
ni’s performance against practical experiments carried out in
[40], [41]. The nodes are stationary and communicate with
theGW following Class A LoRaWANprotocol, while theGW
communicates back through a temporary receive window that
opens following each transmission from ni [1].

TABLE 1. List of notations.

Note that this work is based on applying a clustering algo-
rithm, which usually incorporates the conventional solution
of deploying multiple GW in order to provide transmission
alternatives for the nodes in different clusters. However,
this is not the case in this work for number of reasons.
Firstly, deploying multiple GW introduces a set of problems,
some of which are multipath propagation, interferences, and
nodes transmission duplication just like the problem reported
in [37]. Secondly, multiple GW is usually ideal in proto-
cols where the energy efficiency is not as critical as the
low-latency and ultra-reliability requirements, for example,
cellular networks (5G). However, this is not the case in low
power protocols like LoRaWAN, where the resources are
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FIGURE 1. Dense application resembling a forest scenario using
LoRaWAN.

limited [1]. Therefore, considering more than one GW could
deviate the scope of this work away from evaluating the
feasibility of adapting LoRaWAN for severing dense IoT
applications as a worse-case scenario. Finally, thanks to the
CSS technique in LoRa modulation, a LoRa GW is reported
in several studies and experiments to be capable of serving
thousands of nodes [42]–[44]. Hence, the complexity in this
work lies in reducing the collision rate and therefore, enhanc-
ing the PDR in LoRaWAN while maintaining relatively low
TEC and TTD, all using a single GW.

For that, this work scenario considers two sets of random
values (A) and (B) that are assigned to each node ni following
random-uniform distribution.2 The node ni transmits these
values to the gateway GW, where the clustering is formed.
Based on these values the node is assigned to the correspond-
ing cluster. This is for the purpose of evaluating the wildfire
possibility within the covered area.

In [40], [41], two different experimental projects using
LoRaWANwere carried out to evaluate the channel condition
impact on the PDR. Both were carried out in urban environ-
ments where obstacles are highly deployed between the nodes
and the gateway. Both showed that the node’s distance nid
from the GW has a great impact on the PDR. Specifically,
ni located at a distance (d) more than 500 meters (d0) away
from theGW (nid ≥ d0) experiences a bad channel condition,
where the PDR ranges between 50% to 90%. On the other
hand, the PDR is guaranteed more than 90% when nid ≤ d0.
Since this work is inspired by a forest scenario and based

on the results in [40], [41], only one fifth of the nodes are
distributed within a range of d0 from theGW. These nodes are
assumed to have a good channel condition with a PDR more
than 90%. The rest of the nodes are distributed at distances
range from d0 up to 3000 meters (dmax). These nodes have
bad channel condition with PDR that can deplenish to 50%.
In other words, for a more realistic system model, only one
fifth of the nodes have good PDR of more than 90%while the
rest are vulnerable to packet loss.

In addition, the nodes communicate with the GW using
Class A of LoRaWAN protocol, spreading factor (SF7)
and coding rate of 4/5. These parameters are particularly

2These values can be adjusted according to any application. As for the
forest scenario adopted in this work, the valuesA andB represent atmospheric
humidity and weather temperature respectively.

chosen to provide the maximum data rate, lowest transmis-
sion delays, and lowest energy consumption for the network.
Although the LoRaWAN network with the most reliable SF7
provides the best performance in terms of data rate, transmis-
sion delay and energy consumption [1], [19], the LoRaWAN
network still under-performs in certain scenarios due to high
collision rate, especially when the network is dense. Hence,
given the system model is dense at a limited area (up to dmax
around the GW), the analysis in this paper is based on using
SF7.
The main objective of this work is to enhance the

TTD and TEC. This is achieved by reducing the excessive
packet collision rate associated with LoRaWAN due to the
adaption of ALOHA protocol communication in Class A
LoRaWAN [45]. Packet collisions happen when two packets
are transmitted at the same time over the same frequency
using the same SF [1], [19]. When a collision happens,
the node keeps attempting to retransmit until an acknowl-
edgement from the GW is received, which results in increas-
ing the TTD and eventually the TEC.

Since LoRaWAN adopts ALOHA protocol for communi-
cations between the nodes and the gateway, the node transmits
packets whenever there are ready to transmit data, regardless
of the channel status. Hence, following Poisson distribution,
the probability P of a packet collision to happen is given as
in equation (1):

P = e−2G (1)

where G is the rate of packet transmission attempts per node.
Hence, having more nodes transmitting at the same time
increases the probability of a packet collision. Simulations are
carried out in section V to show the proportional relationship
between the number of nodes and the total collision rate.

Given the limited resources and random transmission
behaviour of LoRaWAN nodes, it is essential to minimise the
number of simultaneous transmission. Considering the given
application scenario with the unlabeled data associated with
the nodes, an effective method to reduce the simultaneous
transmissions is to partition the nodes into different clusters.
Assuming sufficient resources for the gateway, K-Means can
be adopted to perform clustering of the nodes based on their
transmitted data. Therefore, the gateway applies the dynamic
PST to regulate the nodes transmissions without exhausting
the nodes limited resources in the transmission intervals con-
figuration process.

Since the aim is to reduce transmission delay and energy
consumption, formulations of TTD and TEC are essential
in order to evaluate the effect of applying K-Means to the
system model. The following subsection reveals TTD and
TEC as functions of K number of clusters (CK ). In addition,
the formulations show that TEC is proportional to TTD.

B. PROBLEM FORMULATION
1) TOTAL TRANSMISSION DELAY (TTD)
The transmission delay is a function of the packet’s number
of bits and the bitrate [8]. It is proportional to the number of
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bits within a packet and it is given in equation (2):

TransmissionDelay =
Number of bits

Bitrate
(2)

The bitrate is given by (3):

Bitrate =
SF × BW

2SF
×

4
4+ CR

(3)

where SF is the Spreading Factor and it is fixed to SF7,
BW = 125 kHz and CR is the Coding Rate and is set to
CR = 1. Note that CR ∈ {4/5, 4/6, 4/7, 4/8} is the ratio
of the actual data bits to the redundant bits and is represented
by CR = {1, 2, 3, 4}, respectively. Using these parameters
insures a maximum successful transmissions in LoRaWAN
given a limited area [1]. More details of the BW, SF, and CR
are given in [19].

In the proposed dynamic PST (section IV), theGW assigns
different transmission priorities Pr to K number of clus-
ters CK , where K = {1, 2, 3, . . . , k}. The nodes in a lower
Pr cluster wait until transmissions from nodes in higher Pr
clusters are satisfied. This introduces waiting times in lower
transmission priority clusters. Hence, TTD can be given as in
equation (4):

TTD(K ) =
K∑
j=1

(DC1 ,DC2 , . . . ,DCK ), (4)

where K is the number of clusters in the network, DCK is the
total transmission delay of n in a cluster of CK and is given
as in equation (5):

DCK =

nCK∑
i=1

X (i), (5)

where nCK is the total number of all ni in the correspond-
ing CK ; X (i) = (DIT + DRcolli + DRch ); DIT is the delay of
the initial transmission IT of each ni;DRcolli is the delay of the
retransmission caused by ni’s collided packet (Rcolli); DRch is
the delay of the retransmission caused by ni’s lost packet due
to bad channel condition (Rch). Note that the GW is assumed
to be able to distinguish between IT , Rcolli and Rch.

Since the transmissions from ni in the lower Pr clusters
CLPr wait until transmissions from ni in the higher Pr clus-
ters CHPr are satisfied, the delay of DCLPr is given as in
equation (6):

DCLPr = DCHPr +

nCLPr∑
i=1,i/∈CHPr

X (i), (6)

where DCHPr is the delay of all ni in higher Pr clusters and
nCLPr is ni in the corresponding CLPr clusters.

2) ENERGY CONSUMPTION
The GW using the proposed dynamic PST (detailed in
section IV) regulates the transmissions from ni in different
clusters of CK to the GW based on the corresponding trans-
mission Pr. Hence, each of CK is either at active or idle trans-
mission status. When a cluster of CK is at an active status,

the corresponding nCK are allowed transmissions. Otherwise,
the cluster is at an idle transmission status, and no transmis-
sions from the corresponding nCk . Note that only one cluster
of CK can be active at a time. Hence, TEC as a function of the
number of clusters (K) can be given as in equation (7):

TEC(K ) = Eactive +
K∑

j=1,Eactive /∈j

E (j)
idle (7)

where Eactive and Eidle are the energy consumption in Joules
of all nCK in the corresponding active and idle clusters
ofCK , respectively. Eactive and Eidle are given in equations (8)
and (9), respectively.

Eactive =

nCk∑
i=1

(PT × Dactive), (8)

Eidle =

nCk∑
i=1

(Pidle × Didle), (9)

where PT and Dactive are the transmission’s power and dura-
tion of ni in an active cluster of CK . While Pidle and Didle are
the power consumption and the duration of standby ni in the
other idle clusters of CK .

From III-B1 and III-B2, the TTD and TEC are propor-
tionally impacted by the number of ni’s initial transmissions
and retransmissions of collided or lost packets. In other
words, minimising TTD eventually results in minimising
TEC. Hence, from equations (4) and (7), the objective func-
tion of obtaining the minimum value of TTD at a given num-
ber of clusters K can then be represented as in equation (10),
subject to a number of constraints:

min
k
TTD(K ) (10)

S.T .

minTEC(K ) (11)

Pr = K (12)

0 ≤ Rcolli ≤ 1 (13)

Rch =

{
1, d0 < nid < dmax
0, else

(14)

where constraint (11) denotes the proportionality of TEC to
TTD at a given number of clusters K . Pr in constraint (12)
is the transmission priority assigned to each cluster of K.
The process of assigning Pr to each cluster is revealed in
section IV. Rcolli in constraint (13) is the retransmission of
collided packets and it is limited to one retransmission per
node. This is to retain the practicality of simulations given the
considered high number of nodes.Rch in constraint (14), is the
retransmission of lost packets due to bad channel condition
for nodes ni located at distances further than d0 from theGW.

C. UNSUPERVISED LEARNING CLUSTERING ALGORITHM
(K-MEANS)
Clustering algorithms are well-known machine learning
approaches for having more control over wireless networks
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resource allocation. LoRaWAN adopts star topology where
the nodes communicate directly to the gateway. In a dense
application, the probability of collisions to happen increases
vastly affecting the network overall performance. Hence,
for the purpose of reducing the packet collision rate within
LoRaWAN; the unsupervised learning K-Means clustering
algorithm is adopted in our system model to achieve less
collision rates via reducing the unnecessary number of simul-
taneously transmitting nodes.

In our previous work [18], the impact of adopting the unsu-
pervised clustering algorithm K-Means on the total collision
rate was evaluated. In fact it was noticed that the TTD is
a decreasing function of the number of clusters. However,
in K-Means, the number of clusters k is a predefined value.
Hence, in this work the optimal number of clusters is obtained
according to the most efficient performance of TTD and TEC
against the number of clusters k.
The partition of the nodes takes place by minimising the

within-cluster sum of square (WCSS) of the given data set
zn = {zn1 , zn2 , . . . zni}, where zni is the difference between the
values A and B, which are transmitted by ni as explained in
the system model. Since the values A and B can be measured
in different units, a normalisation is needed to obtain the
value of z. In other words, nodes with almost similar values
of z are grouped together forming one cluster. Note that the
clustering is based on the values of zn. This means that nodes
at different locations from the GW can belong to the same
cluster, see Fig. 1. The objective partitioning function can
then be represented as in equation (15):

argmin
cj

k∑
j=1

∑
zni∈Ck

‖zni − cj‖
2 (15)

where cj is an initial value of z fixed to form the center point
of the corresponding cluster Ck . Note that the clustering is
formed at the GW level. The GW is assumed to be aware of
zn from previous successful transmissions. zni is then updated
at the GW upon each successful transmission from the
corresponding ni.
K-Means is a suitable unsupervised machine learning clus-

tering tool for networks with limited resources. This is due to
the simplicity of performing the clustering process provided
unlabeled data [17]. However, since the number of clusters
play a vital role in the clustering process, implementing
K-Means can be very complex in the case of excessively
diversified data. Hence, it is very important to define objec-
tives that can be used to evaluate the optimal number of
clusters.

In order to obtain the optimal number of clusters, exten-
sive simulations were carried out to evaluate TTD and TEC
performance at a different number of clusters k , where
(0 ≤ k ≤ 30). Based on equations (4) and (7), Fig. 2 shows
that TTD and therefore TEC are generally decreasing func-
tions of k. On one hand, it is noticed that TTD and TEC
sharply decrease until (k = 5). This is mainly due to the
reduction of the number of nodes within each cluster and

FIGURE 2. Simulation analysis of the optimal number of clusters.

hence the reduction of the collision rate caused by nodes
transmitting at the same time. Note that collided packets get
retransmission attempts, which impact both TTD and TEC in
an almost symmetrical manner. On the other hand, at (5 ≤ k),
TTD and TEC start to regain their values forming convex
curves. This is due to the gradually fading impact of the
retransmissions caused by packet collisions Rcolli, and the
increasing impact of the retransmissions caused by packet
loss due to bad channel conditions Rch. Thus, from Fig. 2,
the optimal number of clusters Kopt in our scenario is at
(k = 5), where TTD and TEC at the bottom points of the
convex curves forming the lowest values.

IV. PROPOSED DYNAMIC PRIORITY SCHEDULING
TECHNIQUE
This section reveals the proposed dynamic Priority Schedul-
ing Technique (PST), where the GW schedules transmissions
from the nodes according to different transmission priori-
ties assigned to the different clusters that are obtained by
K-Means. Initially, a set of values zni transmitted to the GW
from each ni is processed to partition ni to different clusters.
Following the clustering formation, each ni is assigned to a
cluster of CK . Let zCK denote the average value of all zni
within the same cluster of CK . Based on zCK , the GW using
the dynamic PST designates different transmission priorities
(Pr) to the different CK . Since the optimal number of clusters
is Kopt = 5, the transmission priorities range between lowest,
lower-middle, middle, upper-middle and highest, wherePr =
Kopt and Pr ∈ {LP,LMP,MP,UMP,HP}, respectively.

Following the transmission priority designation process to
each cluster of CK , the dynamic PST provides two transmis-
sion modes to trade-off TTD and TEC for further PDR gain
according to each cluster transmission priority CPr . Given
the density in the network, the GW using the Naive Bayes
classifier determines the probability of each ni to transmit
using a certain transmission mode.

A. TRANSMISSION PRIORITY SCHEDULING
For better elaboration, it is necessary to explain the details
of the considered scenario in this work. The GW assigns ni

191502 VOLUME 8, 2020



M. Alenezi et al.: Unsupervised Learning Clustering and Dynamic Transmission Scheduling for Efficient Dense LoRaWAN Networks

that has highest value of zni to a highest transmission Pr
cluster. To reiterate, z is the difference between the values
A & B, where Ani & Bni represent the atmospheric humidity
and weather temperature values transmitted by ni, respec-
tively. Since A & B can be measured in different units,
a normalisation is needed to obtain the value of z. There are
a number of normalisation methods [46]–[49], which vary
in terms of the considered values. Considering the scenario
adapted in this work, A & B are given as upward and down-
ward attributes.3 Hence, the enhanced max-min normalisa-
tion method is adapted for adjusting the normalisation value
vab = f (A,B) and is given as in equation (16):

vab =



for upward attributes:

1−
|Ani − max(AnCK )|

(max(AnCK )−min(AnCK ))

for downward attributes:

1−
|Bni − min(BnCK )|

(max(BnCK )− min(BnCK ))

(16)

where AnCK and BnCK represent A and B values reported by ni
in the corresponding cluster CK .
The designation process of the Pr level to each cluster of

CK follows equation (17):

max(Pr) = max(zCK ) (17)

where zCK denotes the average value of z in the corresponding
cluster CK . Note that zCK = ACK −BCK , where ACK and BCK
denote the average values of A and B in the corresponding
cluster CK , respectively.

FIGURE 3. Transmission priority designation to the clusters of CK based
on the corresponding value zCK

.

For further illustration, the transmission cycle used in the
simulations of this work is depicted in Fig. 3 to show the

3In a forest scenario, it is less likely for a wildfire to happen when the
atmospheric humidity (A) is high, while the wildfire possibility increases
with lower values of A. Hence, the value A is considered as an upward
attribute. Vice versa, it is less likely for a wildfire to happen when the weather
temperature (B) is low and the possibility increases with higher values of B.
Hence, the value B is considered as a downward attribute.

Pr designation process. From Fig. 3, the Pr is proportional
to zCK . This means the higher value of zCK is assigned
higher Pr. Based on the cluster transmission priority CPr ,
the GW configures transmissions from the corresponding
nodes accordingly. In other words, the GW allows transmis-
sions from ni in higher Pr clusters nCHPr , where it blocks
transmissions from ni in lower Pr clusters nCLPr .
This strict condition introduces a network under-

performance for some cases. For example, given a dense
application, the transmissions from CLPr can be blocked due
to the presence of excessive and unnecessary transmissions
from CHPr that may not be desirable. In order to achieve
further performance gain, the proposed dynamic PST is
performed under two transmission modes (Tm): conservative
(con.) and non-conservative (ncon.).

Algorithm 1 Transmission Priority Scheduling Process
At the GW level
Initialize: TTD, TEC , ni, zni , niPr , Pr ∈

{LP,LMP,MP,UMP,HP},
To Achieve min TTD & min TEC ;
1: for ni do
2: if ni ∈ HP then
3: ni := niHP and niHP transmission = 1;
4: else if ni ∈ UMP and (niHP ) = 0 then
5: ni := niUMP and niUMP transmission = 1;
6: else if ni ∈ MP and (niHP , niUMP ) = 0 then
7: ni := niMP and niMP transmission = 1;
8: else if ni ∈ LMP and (niHP , niUMP , niMP ) = 0 then
9: ni := niLMP and niLMP transmission = 1;
10: else if ni ∈ LP and (niHP , niUMP , niMP , niLMP ) = 0
then
11: ni := niLP and niLP transmission = 1;
12: else
13: niPr transmission = 0;
14: end if
15: end for

Based on the following assumptions, Algorithm (1) shows
the process of the transmission initiations from each ni
according to its corresponding cluster.
Assumptions:

- GW already has zni for all the nodes from previous
successful transmissions

- zni at the GW are updated upon each successful
transmission

- Each ni transmit one packet an hour to the GW unless
configured otherwise

- Each ni is allowed only one retransmission in the case of
a collision Rcolli

- Each nid at d0 ≤ d ≤ dmax , is allowed one retransmis-
sion in the case of a packet loss Rch due to bad channel
condition
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FIGURE 4. Transmission modes control.

- The environment is idle, where there are no inter com-
munications exist and the channel duty-cycle constraint
is neglected

B. TRANSMISSION MODES OPTIONS
The two transmissionmodes Tm (con. and ncon.) are provided
by the dynamic PST to trade-off PDR with TTD and TEC.
Tm is defined based on whether or not retransmissions of
collided packets Rcolli in each CK are permitted. In other
words, the purpose is to allow the GW to assess whether
there is a need for Rcolli, hence control the PDR accordingly.
The GW decides which mode to operate for each CK based
on threshold values (Th) assumed to be provided by a third
party (e.g local authority). These Th are Thcon. for con. mode
and Thncon. for ncon. mode. Furthermore, Thcon. and Thncon.
contain a set of values of z that act as limits. The GW uses
these limits in order to determine the probability of using one
of the two Tm by each CK .

In con. mode, the GW allows retransmissions of collided
packets (Rcolli). Note that for simulation practicality the ni
with collided packet is allowed one retransmission attempt.
In the case of any further collisions, the collided packets
will be dropped. Operating the con. mode elevates PDR at
the expense of higher TTD and TEC. On the other hand,
Rcolli in ncon. mode is not allowed. Operating the ncon.
mode minimises TTD and TEC at the expense of lower PDR.
Simulations results in section V show that both transmission
modes Tm maintain acceptable PDR in comparison to other
techniques. Fig. 4 illustrates the difference between both con.
and ncon. transmission modes. While Algorithm 2 shows
the dynamic PST process of alternating between the two
transmission modes according to Th values.

C. NAIVE BAYES CLASSIFIER ALGORITHM
Considering a dense application with massive amount of
transmissions from nCK to GW, the process of classifying
CK to a certain Tm can be time inefficient. For this reason,

Algorithm 2 Dynamic PST Transmission Modes
At the GW level
Initialize: zCK , Tmcon. , Tmncon. , IT , Rcolli, Rch, nid , d0, Pr ∈
{LP,LMP,MP,UMP,HP}
1: for Tmcon. (HP,UMP) do
2: IT = 1;
3: Rcolli = 1;
4: if nid > d0 then
5: Rch = 1;
6: else
7: IT = 0;
8: Rcolli = 0;
9: Rch = 0;
10: end if
11: end for
12: for Tmncon. (MP,LMP,LP) do
13: IT = 1;
14: Rcolli = 0;
15: if nid > d0 then
16: Rch = 1;
17: else
18: IT = 0;
19: Rcolli = 0;
20: Rch = 0;
21: end if
22: end for

the GW applies the Naive Bayes classifying algorithm to
efficiently determine the probability of nCK transmissions
using either Tmcon. or Tmncon. . Where Tmcon. and Tmncon. denote
con. and ncon. transmission modes, respectively. Accord-
ing to Th values, the GW classifies each cluster of CK to
a certain Tm based on the average value of zCK following
equation (18):

P(Tmcon. |zCK ) ≥ P(Thmcon. |zCK ) (18)
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where P(Tmcon. |zCK ) is the posterior probability of a cluster of
CK to transmit using Tmcon. and is given as in equation (19):

P(Tmcon. |zCK ) =
P(zCK |Tmcon. )P(Tmcon. )

P(zCK )
(19)

where P(zCK |Tmcon. ) denote the posterior probability of zCK
conditioned on Tmcon. ; P(Tmcon. ) is the prior probability of
Tmcon. ; and P(zCK ) is the prior probability of zCK . In a similar
approach, equation (19) is applied to obtain the posterior
probability of P(Thmncon. |zCK ).
zCK is an independent value that varies in each cluster ofK ,

which can result in a high computation complexity when
obtaining P(Tmcon. |zCK ). In order to reduce the computation
complexity, the posterior probability P(zCK |Tmcon. ) can be
calculated is in equation (20):

Kopt∏
K=1

P(zCK |Tmcon. ) = P(Tmcon. )× P(zCK ) (20)

TABLE 2. Likelihood occurrence pattern table.

using equation (20), the communications data set in Fig. 3 is
utilised as a training set to construct the likelihood occurrence
pattern given in Table 2. This is to determine the probability of
classifying a cluster of CK to a certain Tm. In particular, there
are K number of clusters, where K = {1, 2, . . . ,Kopt }. Lets
assume a threshold value for the con. mode, Thcon. ≥ 0.5,
where the value 0.5 represent zCK . Hence, all clusters with
zCK ≥ 0.5 are considered as higher priority clusters that
more likely need to communicate with the GW using Tmcon. .
The rest of the clusters are more likely to communicate
with the GW using Tmncon. . Thus, based on the Bayesian
theorem, the probability of having a cluster assigned to using
Tmcon. is given as in P(Tmcon. ) and P(Tmncon. ). Note that the
classifying process is performed by the GW upon each new
transmission cycle, where the Tm probability is determined
according to the new values of zCK reported by each ni. Fig. 5
illustrates the dynamic PST using Naive Bayes classifier.

V. DISCUSSION AND SIMULATION RESULTS
The impact of the proposed dynamic PST on the network per-
formance is evaluated via simulations following the parame-
ters in Table 3.

FIGURE 5. Naive bayes classifier in the dynamic priority scheduling
technique (PST).

TABLE 3. Simulation parameters.

It is shown that LoRaWAN is vulnerable to severe collision
rate especially when serving a high number of nodes. This is
due to the fact that LoRa nodes adapt ALOHA style com-
munication in its LoRaWAN protocol of Class A [1], [19].
As shown in Fig. 6, the total collision rate in typical
LoRaWANnetwork serving up to 1000 ni is up to 91.3%. This
motivated our previous work [18] to adopt the unsupervised
learning K-Means clustering algorithm for the aim of reduc-
ing the collision rate. Having introduced the optimal number
of clusters Kopt , the total collision rate when k = 5 is vastly
reduced to an average of 38%. Note that the more clusters
introduced to the system result in less nodes simultaneously
transmitting, which in return reflect in less packet collisions.
However, this comes at the expense of inefficient TTD and
TEC (as discussed in section III-C, Fig. 2).
In regards to the TTD, TEC and PDR, a comparison of

the proposed dynamic PST is carried out against typical
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FIGURE 6. Collision rate in conventional LoRaWAN vs. collision rate in one cluster of Kopt .

FIGURE 7. Total transmission delay.

LoRaWAN network, the static PST proposed in [18], and the
tree-based clustering algorithm scheme proposed in [16].

On one hand the typical LoRaWAN shows the least effi-
cient TTD. This is due to the adaption of star topology
accompanied with the ALOHA protocol communication in
LoRaWAN.Where the nodes initiate transmissions to theGW
regardless any other transmission occupying the channel. For
this reason the collision rate is excessively high especially
when scaling up the network. As a result, retransmission
attempts are much higher, which in return increase the TTD
of the network. Note that due to the high number of nodes
considered in this scenario and for simulation practicality,
the retransmissions of collided packets are limited to one per
node. The static PST comes second after typical LoRaWAN
with slight improvement to TTD. This improvement is mainly
due to the clustering where the number of nodes in each
cluster is reduced. This results in lower number of transmis-
sion attempts and according to equation (1), the probability
of the packet collision to happen is significantly impacted
by the transmission attempts which is proportionally related
to the number of nodes transmitting at the same time.
Although the number of nodes in each cluster is significantly
decreased, there are still collisions that happens where each

collision result in another transmission attempt regardless the
necessity of the retransmission.

Therefore, the proposed dynamic PST outperformed both
typical LoRaWAN and static PST. This is due to the ability to
alternate between con. and ncon. transmission modes. Note
that in the simulation results, the dynamic PST is represented
as con. when the majority of clusters are transmitting using
Tmcon. , while it is represented as ncon. when the majority of
clusters are transmitting using Tmncon. . It can be noticed that
the TTD at con. is high in comparison to that of ncon. mode.
This is because the nodes in a cluster that is assigned a Tmcon. ,
has the chance to initiate a retransmission for each collided
packet. Vice versa, the TTD at ncon. is relatively low due
to the strict retransmission condition which results in each
collided packet to be dropped.

FIGURE 8. Total energy consumption.

The tree-based clustering algorithm proposed in [16]
shows the best TTD amongst all approaches. This is due to the
rerouting approach, which results in avoiding a packet col-
lision by utilising multi-hop technique that relay the packet
to the GW through other routes using neighbouring nodes.
However, this comes at the expense of much higher TEC as
shown in Fig. 8, which defeats the whole purpose of using
LoRaWAN as a low power technology.
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FIGURE 9. Packet delivery rate.

Referring back to section III-B2, TEC is directly effected
by the number of collisions and hence the number of retrans-
missions as a consequence. For that, it can be noticed that
TEC is generally proportional to TTD. In Fig. 8, con. mode
shows more energy consumption when comparing to ncon.
mode, however despite it consumes more TEC, adapting con.
mode provides better PDR in comparison to ncon. mode as
shown in Fig. 9. This comes as a result of allowing nodes in
clusters that are transmitting using con. to initiate retransmis-
sions of collided packets. Hence, it can be noticed that when
PDR in con. is high, the TEC and therefore TTD are high,
whereas the opposite in ncon. mode. From Fig. 9, the static
PST outperforms the proposed dynamic PST, however this
comes at the expense of more TTD and TEC. While the
dynamic PST at con. mode shows better PDR in compari-
son to the tree based clustering algorithm. Hence, given the
trade-off between TTD, TEC and PDR, the proposed dynamic
PST shows more suitability for being adapted in LoRaWAN
to serve dense IoT applications.

VI. CONCLUSION
The use of machine learning techniques can lead to inef-
ficient energy consumption when applied to low power
networks with limited resources. This is because machine
learning techniques usually require coordination between the
end-nodes and the gateway. However, the use of the unsu-
pervised clustering algorithm K-Means in LoRaWAN net-
work has shown a great impact in reducing the collision rate
and therefore, higher PDR, while maintaining low energy
consumption and transmission delay. This is mainly due to
partitioning the nodes into different clusters, which in return
reduces simultaneous transmissions as a result of using the
dynamic PST to configure the nodes with different transmis-
sion intervals based on the clusters transmission priorities.
Given the same network density, the static PST reduced TTD
and TEC by 11.9% and 16.6% from the typical LoRaWAN,
respectively. Despite the slight improvement to TTD and
TEC, the static PST significantly enhanced the PDR when
compared to typical LoRaWAN. Although the tree-based
clustering approach sharply reduced TTD by almost 94%,

this comes at expense of an extravagant increase to TEC
by more than 116% in comparison to typical LoRaWAN.
Such an increase to the TEC may defeat the core purpose of
using LoRaWAN as a low power technology. Hence, the fair
trade-off between TTD, TEC and PDR provided by the pro-
posed dynamic PST due to its ability to alternate between two
transmission modes, makes it the most convenient amongst
the other considered approaches especially when serving
dense IoT applications.
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