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ABSTRACT Due to the limited battery capacity and computing capability of mobile users, the resource
allocation strategy in device-to-device (D2D)-assisted edge computing systemwith hybrid energy harvesting
is investigated in this paper. By employing magnetic induction-based wireless reverse charging technology,
mobile user can supplement extra energy from nearby users when the energy harvested from ambient radio
frequency sources is about to be exhausted. Moreover, mobile user can not only perform local computation,
but also offload computing tasks to nearby users for auxiliary computation through D2D communication
links or mobile edge computing (MEC) server under base station (BS) for edge computation. Due to the
limited computing resources of MEC server, when the computing capability of the MEC server reaches
the maximum value, an adjacent user under another nearby BS can be considered as a relay node. The
computing tasks of the remaining users under the previous BS can be transferred to the MEC server with
sufficient resources under another nearby BS by establishing D2D relay links. The objective of the resource
allocation strategy is to maximize the energy efficiency under the constraints of computation delay and
energy harvesting. The resource allocation problem is formulated as a mixed-integer nonlinear programming
problem, which is not easy to obtain the optimal solution at low computational complexity. A suboptimal
solution is obtained by adopting the quantum-behaved particle swarm optimization (QPSO) algorithm.
Simulation results show that the performance of the proposed strategy is superior to other benchmark
strategies, and QPSO algorithm can achieve higher energy efficiency than the standard particle swarm
optimization algorithm.

INDEX TERMS Hybrid energy harvesting, device-to-device communication, mobile edge computing,
resource allocation.

I. INTRODUCTION
Radio frequency (RF) energy harvesting is an emerging tech-
nology to provide power for smart mobile devices (SMD).
The limited battery capacity [2] and computing capability
[3], [4] are two shortcomings of SMD. When the battery
energy of SMD is exhausted, the service of the SMD will
be terminated. For the traditional battery-powered equip-
ment, this can possibly be overcome by using larger bat-
teries or charging the batteries repeatedly. However, using
larger batteries at SMDs means not only increasing the
cost of hardware, but also inconvenient to carry. Moreover,
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repeated wired charging is not conducive to the user’s expe-
rience [5]. SMDs can constantly harvest energy from the
received electromagnetic waves to resolve above issues. The
SMD offload computing tasks to edge server by exploiting
mobile edge computing (MEC) technology [6]–[8], which
can significantly reduce the energy consumption of SMD.
Meanwhile, the harvested energy can be efficiently utilized
by designing resource allocation strategy. Therefore, it is of
great significance to study the resource allocation strategy
of energy harvesting communication system combined with
MEC technology.

The resource allocation problem of energy harvesting com-
munication system combined with MEC has attracted great
attention. In [9], wireless power transmitter (WPT) and MEC
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technology were taken into account in the access point (AP)
in order to maximize the computational energy efficiency of
low power SMDs. The WPT was used for energy transfer to
low power SMDs in the first phase, and in the second phase
these SMDs can offload computing tasks to MEC server for
edge computation. The WPT-MEC with partial offloading
scheme was first time introduced and analyzed to overcome
the computational capability and battery limitation problems.
Wang et al. [10] discussed the total transmission energy
consumption at the energy transmitter (ET) over a particular
finite horizon in a single-user wireless poweredMEC system.
By jointly optimizing the transmission energy allocation at
the ET and tasks allocation at SMD to ensure the SMD’s suc-
cessful tasks execution. Under the energy and tasks causality
constraints, the energy minimization problem was solved
through convex optimization techniques. In [11], a reinforce-
ment learning based offloading scheme was studied for an
Internet of Things device with energy harvesting. According
to the current battery level, the previous radio transmission
rate to each edge device, and the predicted amount of the
harvested energy, SMDs were able to select the edge device
and the offloading rate in order to optimize the offloading
policy. A framework for wireless powered cognitive radio
(CR)-based MEC-enabled networks was considered in [12].
The objectivewas tomaximize the average calculated number
of bits of SMD. The established non-convex optimization
problem was solved by using Lagrangian dual decomposi-
tion and successive pseudo-convex approximation methods.
From the perspective of tasks offloading, there are two main
methods of tasks offloading. For the binary offloading [13],
[14], computing tasks can be totally remained for local com-
putation or totally offloaded. For the partial offloading [15],
[16], computing tasks can be split into several parts, some
tasks are remained for local computation and the rest are
offloaded.

Although the above studies have demonstrated the effec-
tiveness of the resource allocation strategy of RF energy
harvesting combined with MEC to improve the computation
performance of communication system, the limited com-
puting resources of MEC server is not always adequate to
support all SMDs under the coverage range of base station
(BS). To improve this situation, there have been also sev-
eral works [17]–[19] that investigate the device-to-device
(D2D)-assisted MEC system. In [17], the D2D-assisted and
non-orthogonal multiple access (NOMA)-based MEC sys-
tem was investigated to minimize the weighted sum of the
energy consumption and delay of all SMDs. A novel D2D-
enabled multi-helper MEC system was developed in [18],
where the local user could offload its computing tasks to
multiple helpers and download the results from them over an
orthogonal pre-scheduled time slot. Wen et al. [19] attempted
to further improve the energy-efficient communication in
MEC by proposing a D2D offloading architecture. The afore-
mentioned studies mainly focus on the communication sys-
tem with energy harvesting from ambient or dedicated RF
sources. However, due to the low receiving power based on

RF energy harvesting, less energy is harvested in a short
period of time. Once the battery energy is exhausted, the
system performance will be seriously affected. The wireless
energy transfer technology based on magnetic induction (MI)
[20]–[22] has much higher receiving power and can obtain
more energy in a short time. Motivated by the above observa-
tion, we integrate the MI-based wireless energy transfer and
the D2D communication into the MEC system. Therefore,
we propose a resource allocation strategy for D2D-assisted
edge computing system with hybrid energy harvesting to
improve the total energy efficiency of communication sys-
tem. The main contributions of this work are summarized as
follows.

• A hybrid energy harvesting method (i.e., RF energy
harvesting and MI-based wireless energy trans-
fer) is developed to provide electrical energy for
SMDs. By leveraging MI-based wireless energy trans-
fer technology, the SMD can supplement energy
from nearby other SMDs (i.e., MI-based wire-
less reverse charging) when this SMD is about to
run out of the energy harvested from ambient RF
sources.

• By adopting partial offloading method, computing tasks
are split into three parts for computation. One part
is remained for local computation. Another part is
offloaded to nearby SMDs for auxiliary computation
through establishing D2D communication links. The
rest part is offloaded to MEC server for edge compu-
tation. Moreover, when the computing capability of the
MEC server under BS achieves the maximum number
of SMDs that can be served, the remainder SMDs can
consider an adjacent SMD under another nearby BS as a
relay node. This relay node can transfer the rest tasks to
the nearby MEC server with sufficient resources under
another nearby BS for edge computation by establishing
D2D relay links.

• A resource allocation strategy for D2D-assisted
edge computing system with hybrid energy har-
vesting is proposed to maximize the energy effi-
ciency under the constraints of computation delay
and energy harvesting. A quantum-behaved parti-
cle swarm optimization (QPSO) algorithm is used
to obtain a suboptimal solution to the formu-
lated mixed-integer nonlinear programming (MINLP)
problem.

The rest of this paper is organized as follows. In Section II,
the system model is presented. The problem formulation
and solution are shown in Section III. Simulation results and
discussions are given in Section IV. Finally, the whole paper
is concluded in Section V.

II. SYSTEM MODEL
In this section, the network structure of D2D-assisted edge
computing system is presented. Then, the hybrid energy har-
vesting model of mobile user is given.
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FIGURE 1. Network structure of D2D-assisted edge computing system.

A. NETWORK STRUCTURE
As depicted in Fig. 1, we consider a D2D-assisted edge
computing system that consists of two BSs and multiple
mobile users. MEC server is deployed near the BS. In order
to improve the performance of the whole communication
system, except for local computation, mobile users can also
offload their computing tasks to the MEC server for edge
computation, or offload to nearby users for auxiliary com-
putation through establishing D2D communication links.
Mobile users in D2D communication are still controlled by
BS [23], [24]. However, offloading computing tasks will
consume a certain amount of battery energy. Due to the
limited battery capacity of mobile users, if the battery energy
of mobile user is about to be exhausted when this user is
offloading a computing task, this user can get a timely energy
supplement from nearby users through MI-based wireless
reverse charging to avoid the interruption of the task offload-
ing. We call these mobile users as common users (CU),
denoted as CU i (i = 1, 2, · · · , I ), and call these nearby users
as common auxiliary users (CAU), denoted as CAU k (k =
1, 2, · · · ,K = I − 1). These CAUs actually belong to
CUs as well. Auxiliary computation means that when CU i
performs computation, these nearby other idle common users
can assist CU i for auxiliary computation. Therefore, these
idle common users are called CAUs. Assuming that there
are (I + S) users under BS 1 that need to offload their
computing tasks to MEC server for edge computation. Due
to the limited computing resources of MEC server, the com-
puting resources of the MEC server under BS 1 hold only I
users to offload their computing tasks for edge computation.
In other words, when the computing capability of the MEC
server under BS 1 has achieved the maximum number of
users that the MEC server can serve (i.e., I users), the rest
S users are unable to offload their computing tasks to the
MEC server under BS 1 for edge computation. At this point,
the number of users under BS 2 that close to BS 1 is small,
and the computing resources of MEC server under BS 2 are
sufficient. Therefore, these S users under BS 1 can utilize
an adjacent user under BS 2 as a relay node, and these S
users can transfer their computing tasks to the MEC server
under BS 2 for edge computation by establishing D2D relay
links. We call this adjacent user as relay user (RU). These
S users under BS 1 are called transfer users (TU), denoted

as TU s (s = 1, 2, · · · , S). Moreover, TU s can also perform
local computation or offload its computing tasks to nearby
users for auxiliary computation. We call these nearby users
as transfer auxiliary users (TAU), and denoted as TAU q (q =
1, 2, · · · ,Q = S − 1).

FIGURE 2. Hybrid energy harvesting mode of mobile user.

B. HYBRID ENERGY HARVESTING MODEL OF MOBILE
USER
In this subsection, the hybrid energy harvesting model of
mobile user is shown. As shown in Fig. 2, mobile user can
harvest energy from ambient RF sources, such as televi-
sion (TV) towers and BSs.When the battery energy of mobile
user is about to exhausted, this user can supplement energy
from nearby users by leveraging MI-based wireless reverse
charging. Take CU i as an example, the energy harvested by
CU i from the ambient RF sources and CAUs is denoted as
ECH1
i and ECH2

i . We define PCH1i,l as the power received by
CU i from the l-th ambient RF source. According to the Friis
equation [25], PCH1i,l can be obtained by

PCH1i,l =
PTl G

T
l G

R
i c2(

4πdi,l f Tl
)2 , (1)

where PTl and GT
l denote the transmitting power and the

transmitting antenna gain of the l-th (l = 1, 2, · · · ,L) ambi-
ent RF source, L is the number of ambient RF sources, GR

i
represents the receiving antenna gain of CU i, c indicates the
propagation speed of electromagnetic wave in free space, di,l
denotes the distance between the l-th ambient RF source and
CU i, and f Tl is transmitting frequency of the l-th ambient RF
source. In order to ensure a zero-input/zero-output response
for energy harvesting, the constant �i is shown as

�i =
1

1+ exp (aibi)
, (2)

where ai and bi are constants depending on the practical
circuit specifications. According to [26], [27], the practical
power harvested by CU i from the l-th ambient RF source is
given as

8CH1
i,l =

[
9CH1
i,l −Mi�i

]
1−�i

, (3)

where Mi indicates the maximal harvested power at CU i
when the energy harvesting circuit is driven to saturation.
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9CH1
i,l represents the traditional logistic function with respect

to received power PCH1i,l , and its expression is

9CH1
i,l =

Mi

1+ exp
(
−ai

(
PCH1i,l − bi

)) . (4)

Therefore, the energy harvesting model of ECH1
i is shown as

ECH1
i =

L∑
l=1

8CH1
i,l TRF, (5)

where TRF indicates the duration of harvesting energy from
ambient RF sources.

The energy harvesting model of ECH2
i is analyzed as fol-

lows. Because CU i and CAU k are equipped with magnetic
induction coil, there exist mutual inductance between the
receiving coil in CU i and the transmitting coil in CAU k ,
which is calculated as [28]

Mi,k =
µπN t

kN
r
i (a

t
k )

2(ari)
2

2

√(
(atk )

2
+ (dcoili,k )

2
)3 , (6)

where µ represents the permeability of free space, N t
k and N

r
i

denote the turns of transmitting and receiving coils, atk and
ari are the radii of transmitting and receiving coils. Moreover,
dcoili,k is the distance between transmitting and receiving coils.

According to the material and the practical implementation
of coil, the transmitting coil resistance Rtk and the receiving
coil resistance Rri should be designed to a low value to avoid
considerable energy waste, which can be obtained by{

Rtk = 2πN t
ka

t
kR0

Rri = 2πN r
i a

r
iR0,

(7)

where R0 is the resistance per unit length of the coil. More-
over, the self-induction of transmitting and receiving coils can
be derived by 

L tk ≈
1
2
µπ (N t

k )
2atk

Lri ≈
1
2
µπ (N r

i )
2ari .

(8)

In order to maximize the received power, the load
impedance is expressed as the complex conjugate of the
output impedance of the secondary loop [29]

ZL
i,k = Rri +

ω2M2
i,kR

t
k

Rtk + ω
2(L tk )

2

+ j

(
ω3M2

i,kL
t
k

(Rtk )
2
+ 2ω2(L tk )

2 − ωL
r
i

)
, (9)

whereω represents the angular frequency that can be obtained
by ω = 2π f . Here, f indicates the system operating
frequency.

Furthermore, the induced voltage of receiving coilUM
i,k can

be derived by

UM
i,k = −jωMi,k

US
k

Rtk + jωL
t
k
, (10)

where US
k is the power supply voltage of CAU k . According

to the principle of equivalent circuit, the received power is
equal to the power consumption of ZL

i,k , i.e.,

PCRi,k = Re


ZL
i,k

(
UM
i,k

)2
[
Re
(
ZL
i,k

)]2
 . (11)

Therefore, ECH2
i can be expressed as

ECH2
i =

K∑
k=1

ui,kPCRi,k TMI, (12)

where ui,k in energy harvesting case represents that the dis-
tance decision that whether CU i can harvest energy from
CAU k . When ui,k = 1, CU i can harvest energy from CAU k
throughMI-based wireless reverse charging. On the contrary,
ui,k = 0 denotes that CU i is too far away from CAU k to
harvest energy from CAU k . TMI indicates the duration of
charging. As a result, according to the expressions of ECH1

i
and ECH2

i , the total energy harvesting model of CU i can be
depicted as ECH

i = ECH1
i + ECH2

i .
Similarly, TU s can also harvest energy from ambient RF

sources and TAUs. The energy harvested by TU s from ambi-
ent RF sources is expressed as

ETH1
s =

L∑
l=1

8TH1
s,l TRF. (13)

Moreover, the energy harvested by TU s from TAUs is
denoted as

ETH2
s =

Q∑
q=1

εs,qPTRs,qTMI. (14)

As a result, the total energy harvesting model of TU s can
be shown as ETH

s = ETH1
s + ETH2

s .

III. PROBLEM FORMULATION AND SUBOPTIMAL
SOLUTION
In this section, the specific resource allocation strategy is
analyzed. The optimization model of resource allocation is
given first. Then, the suboptimal solution is obtained by using
QPSO algorithm.

A. PROBLEM FORMULATION
In this subsection, the problem formulation is presented.
As mentioned earlier, mobile users under BS 1 are mainly
classified as CUs and TUs. We define Cw as the number
of central processing unit (CPU) cycles required for user
w (w = 1, 2, · · · , I + S) to perform 1-bit computation data.
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By adopting partial offloading method, we assume that com-
puting tasks of user w are split into three parts. One part is
remained for local computation, another part is offloaded to
nearby users for auxiliary computation through establishing
D2D communication links. The rest part is offloaded to MEC
server for edge computation. The time and energy consump-
tion models of CU and TU are analyzed in detail as follows.

1) LOCAL COMPUTATION MODEL
We suppose DCL

i and f CLi as the computation data and the
computation capability of CU i for local computation. There-
fore, the time required for CU i to perform this computation
data DCL

i is

TCL
i =

CiDCL
i

f CLi

. (15)

At the same time, the energy consumption of CU i is

ECL
i = κ

(
f CLi

)2
CiDCL

i , (16)

where κ is the effective switched capacitance depending on
the chip architecture. In this paper, we set κ = 10−26 [30].
Similarly, the time and energy consumption of TU s for local
computation are given as follows

T TL
s =

CsDTL
s

f TLs
, (17)

ETL
s = κ

(
f TLs

)2
CsDTL

s , (18)

where DTL
s and f TLs indicate the computation data and the

computation capability of TU s for local computation.

2) AUXILIARY COMPUTATION MODEL
The time division duplex (TDD) scheme [31] is employed to
collect the channel state information. The collection of uplink
channel state information is mainly divided into three parts:
First, the user transmits uplink pilot signal to the BS. The
time required for this period is TO. Then, the BS estimates
the channel state information based on the received signal.
Finally, the BS feeds back the channel state information to
the user. The time required for this period is also TO [32].
For the TDD system, due to channel reciprocity, the downlink
has the same channel state information as the uplink. After the
computing tasks are finished at the edge server, the computing
results will be fed back to the user by downlink. Because the
computing process takes some time, the downlink channel
state information will be different from the previous uplink
channel state information. Therefore, downlink channel esti-
mation is also needed. Similarly, the collection of downlink
channel state information is also mainly divided into three
parts. The BS first transmits downlink pilot signal to the
user. The time required for this period is 3TO. Then the
user estimates the channel state information based on the
received signal, and finally the user feeds back the channel
state information to the BS. The time required for feedback
process is TO [32]. Therefore, the energy consumption for

collecting uplink and downlink channel state information are
shown as

EUC
= PDTO

+ EC
+ PBTO, (19)

EDC
= PB3TO

+ EC
+ PDTO, (20)

where PD represents the transmitting power of users. EC

denotes the energy required to perform the channel estimation
process. PB indicates the transmitting power of BS. TO is
each orthogonal frequency division multiplexing (OFDM)
symbol interval.

Moreover, we adopt orthogonal frequency division mul-
tiple access method for data transmission whether auxil-
iary computation or edge computation. It is assumed that
the total channel bandwidth B1 is divided into I × K
sub-channels when CUs offload their computing tasks to
CAUs for auxiliary computation through D2D communica-
tion links. We define α1i,k as the sub-channel ratio coefficient
of the total channel bandwidth occupied by the data transmis-
sion from CU i to CAU k . According to [33], the achievable
uplink data rate from CU i to CAU k is expressed as

RCUi,k = α
1
i,kB1 log2

1+
PCUi,k (h

1
i,k )

2

N0

 , (21)

where PCUi,k represents the transmitting power of CU i offload-
ing computing tasks to CAU k . h1i,k denotes the channel gain
from CU i to CAU k . N0 indicates the Gaussian white noise
power. We suppose DCA

i,k as the computation data of CU i
offloading to CAU k for auxiliary computation. Therefore,
the time of data transmission from CU i to CAU k can be
obtained by

TCT
i,k =

ui,kDCA
i,k

RCUi,k
, (22)

where ui,k in offloading case denotes that the distance deci-
sion that whether CU i can offload computing tasks to CAU k
for auxiliary computation. When ui,k = 1, CU i can offload
computing tasks to CAU k . On the contrary, ui,k = 0
indicates that CU i is too far away from CAU k to offload
computing tasks to CAU k for auxiliary computation.
The actual uplink time required from CU i to CAU k

depends on the greater one between the time of local com-
putation of CAU k and the time of data transmission from
CU i to CAU k [34]. In other words, CAU k can help other
users for auxiliary computation only when its own local
computing tasks has completed. We suppose DCL

k and f CLk
as the computation data and the computation capability of
CAU k for local computation. Therefore, the actual uplink
time can be given by

TCU
i,k = max

(
TCT
i,k ,T

CL
k =

CkDCL
k

f CLk

)
. (23)

We suppose PCIR as the circuit power consumption. There-
fore, the energy consumption of CU i transmitting compu-
tation data to CAU k through D2D communication link is
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shown as

ECU
i,k =

(
ui,kPCUi,k + P

CIR
) ui,kDCA

i,k

RCUi,k
. (24)

After receiving the computation data of CU i offloading to
CAU k for auxiliary computation, CAU k begins to perform
this computation data. The time and energy consumption of
CAU k performing this computation data are obtained as

TCP
i,k =

ui,kCiDCA
i,k

f CLk

, (25)

ECP
i,k = κ

(
f CLk

)2
ui,kCiDCA

i,k . (26)

After finishing computing tasks of CU i offloading to
CAU k for auxiliary computation, CAU k outputs a computa-
tion result. CAU k must transmit this result to CU i.We define
α2k,i as the sub-channel ratio coefficient of the total channel
bandwidth occupied by the computation result feedback from
CAU k to CU i. Therefore, the achievable downlink data rate
from CAU k to CU i is expressed as

RCDk,i = α
2
k,iB1 log2

1+
PCDk,i (h

2
k,i)

2

N0

 , (27)

where PCDk,i represents the transmitting power of CAU k trans-
mitting computation result to CU i. h2k,i denotes the channel
gain fromCAU k to CU i.We defineφ as the conversion coef-
ficient between the output computation result and the input
computation data. Therefore, the downlink time required
from CAU k to CU i can be given by

TCD
k,i =

φui,kDCA
i,k

RCDk,i
. (28)

Moreover, the energy consumption of CAU k transmitting
computation result to CU i is shown as

ECD
k,i =

(
ui,kPCDk,i + P

CIR
) φui,kDCA

i,k

RCDk,i
. (29)

According to the above analysis, the time and energy
required of CU i offloading computing tasks to CAU k for
auxiliary computation are given by

TCA
i,k = TCU

i,k + T
CP
i,k + T

CD
k,i , (30)

ECA
i,k = ECU

i,k + E
CP
i,k + E

CD
k,i . (31)

We suppose DCA
i as the total computation data of CU i

offloading to CAUs that can be used for auxiliary computa-
tion. Therefore, the total computation data can be shown as

DCA
i =

K∑
k=1

ui,kDCA
i,k . (32)

Because of the time and energy consumption of CU i offload-
ing computing tasks to each CAU for auxiliary computation
are different, for the time consumption, we only need to take
the maximum time of each computation result arrival as the

total time consumption of auxiliary computation. Therefore,
the total time consumption of CU i for auxiliary computation
is given as

TCA
i = max

(
ui,kTCA

i,k

)
. (33)

For the energy consumption, the total energy consumption
of CU i for auxiliary computation is equal to the sum of
the energy consumption of CU i offloading computing tasks
to each CAU for auxiliary computation. Therefore, the total
energy consumption of CU i for auxiliary computation is
expressed as

ECA
i =

K∑
k=1

(
ECA
i,k

)
. (34)

For TU, it can also offload computing tasks to nearby
TAUs for auxiliary computation. We suppose B3 as the total
channel bandwidth of TUs offloading their computing tasks
to TAUs for auxiliary computation through D2D communica-
tion links. B3 is divided into S × Q sub-channels. We define
γ 1
s,q as the sub-channel ratio coefficient of the total channel

bandwidth occupied by the data transmission from TU s to
TAU q. Therefore, the achievable uplink data rate from TU s
to TAU q is obtained by

RTUs,q = γ
1
s,qB3 log2

1+
PTUs,q (h

5
s,q)

2

N0

 , (35)

where PTUs,q denotes the transmitting power of TU s offloading
computing tasks to TAU q. h5s,q indicates the channel gain
from TU s to TAU q. We suppose DTA

s,q as the computation
data of TU s offloading to TAU q for auxiliary computation.
Therefore, the time of data transmission from TU s to TAU q
can be obtained by

T TT
s,q =

εs,qDTA
s,q

RTUs,q
, (36)

where the meaning of εs,q is similar to that of ui,k .
The actual uplink time required from TU s to TAU q

depends on the greater one between the time of local compu-
tation of TAU q and the time of data transmission from TU s
to TAU q. We suppose DTL

q and f TLq as the computation data
and the computation capability of TAU q for local computa-
tion. Therefore, the actual uplink time is given as

T TU
s,q = max

(
T TT
s,q ,T

TL
q =

CqDTL
q

f TLq

)
. (37)

Moreover, the energy consumption of TU s transmitting com-
putation data to TAU q through D2D communication link is
shown as

ETU
s,q =

(
εs,qPTUs,q + P

CIR
) εs,qDTA

s,q

RTUs,q
. (38)

After receiving the computation data of TU s offloading
to TAU q for auxiliary computation, TAU q starts to perform
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this computation data. The time and energy consumption of
TAU q performing this computation data are obtained as

T TP
s,q =

εs,qCsDTA
s,q

f TLq
, (39)

ETP
s,q = κ

(
f TLq

)2
εs,qCsDTA

s,q. (40)

After TAU q finishes computing tasks of TU s offloading
and outputs a computation result, TAU q must transmit this
computation result to TU s. We define γ 2

q,s as the sub-channel
ratio coefficient of the total channel bandwidth occupied
by the computation result feedback from TAU q to TU s.
Therefore, the achievable downlink data rate from TAU q to
TU s is expressed as

RTDq,s = γ
2
q,sB3 log2

1+
PTDq,s (h

6
q,s)

2

N0

 , (41)

where PTDq,s is the transmitting power of TAU q transmitting
computation result to TU s. h6q,s represents the channel gain
from TAU q to TU s. Therefore, the downlink time required
from TAU q to TU s can be given by

T TD
q,s =

φεs,qDTA
s,q

RTDq,s
. (42)

Furthermore, the energy consumption of TAU q transmitting
computation result to TU s is shown as

ETD
q,s =

(
εs,qPTDq,s + P

CIR
) φεs,qDTA

s,q

RTDq,s
. (43)

Finally, the time and energy consumption of TU s offload-
ing computing tasks to TAU q for auxiliary computation can
be obtained by

T TA
s,q = T TU

s,q + T
TP
s,q + T

TD
q,s , (44)

ETA
s,q = ETU

s,q + E
TP
s,q + E

TD
q,s . (45)

We suppose DTA
s as the total computation data of TU s

offloading to TAUs that can be used for auxiliary computa-
tion. Therefore, the total computation data can be shown as

DTA
s =

Q∑
q=1

εs,qDTA
s,q. (46)

Similar to CU i, TU s can also offload its computing tasks
to multiple TAUs for auxiliary computation. Therefore, the
total time and energy consumption of TU s for auxiliary
computation are given as

T TA
s = max

(
εs,qT TA

s,q

)
, (47)

ETA
s =

Q∑
q=1

(
ETA
s,q

)
. (48)

3) EDGE COMPUTATION MODEL
Assuming that the total channel bandwidth B2 is divided into
I sub-channels when CUs offload their computing tasks to
MEC server under BS 1 for edge computation. We define
β1i as the sub-channel ratio coefficient of the total channel
bandwidth occupied by the data transmission from CU i to
BS 1. Therefore, the achievable uplink data rate from CU i to
BS 1 is expressed as

RCUi = β
1
i B2 log2

(
1+

PCUi (h3i )
2

N0

)
, (49)

where PCUi represents the transmitting power of CU i offload-
ing computing tasks to MEC server for edge computation. h3i
denotes the channel gain from CU i to BS 1. We supposeDCE

i
as the computation data of CU i offloading to MEC server for
edge computation. Therefore, the uplink transmission time
from CU i to BS 1 can be given by

TCU
i =

DCE
i

RCUi
. (50)

Because computing tasks of CU i are split into three parts, the
computation data of CU i offloading to MEC server for edge
computation can be obtained by DCE

i = DCT
i − D

CL
i − D

CA
i .

Here,DCT
i represents the total computation data of CU i need

to be performed. Therefore, the energy consumption of CU i
transmitting computation data to MEC server is expressed as

ECU
i =

(
PCUi + P

CIR
) DCE

i

RCUi
. (51)

After receiving the computation data from CU i, the MEC
server starts to perform this computation data. Let f CEi indi-
cates the computing resources assigned to CU i by the MEC
server under BS 1. Specially, the sum of the computing
resources assigned to all CUs by the MEC server under
BS 1 is exactly equal to the total computing resources FE

of the MEC server under BS 1. In other words, the total
computing resources of the MEC server under BS 1 can
only meet the requirement of I users for edge computation,
the MEC server will overload if beyond that. Therefore, the
time and energy required for the MEC server under BS 1 to
perform this computation data are obtained as

TCP
i =

CiDCE
i

f CEi

, (52)

ECP
i = δD

CE
i , (53)

where δ denotes the energy consumption per offloaded bit at
the MEC.

After finishing computing tasks of CU i offloading toMEC
server for edge computation, the MEC server outputs a com-
putation result. BS 1 must transmit the computation result
to CU i. We define β2i as the sub-channels ratio coefficient
of the total channel bandwidth occupied by the computation
result feedback from BS 1 to CU i. Therefore, the achievable
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downlink data rate from BS 1 to CU i is expressed as

RCDi = β
2
i B2 log2

(
1+

PE(h4i )
2

N0

)
, (54)

where PE is the transmitting power of BS, h4i represents the
channel gain from BS 1 to CU i. The downlink time required
from BS 1 to CU i can be given by

TCD
i =

φDCE
i

RCDi
. (55)

Moreover, the energy consumption of BS 1 transmitting the
computation result to CU i is shown as

ECD
i =

(
PE + PCIR

) φDCE
i

RCDi
. (56)

According to the above analysis, the total time and energy
consumption of CU i for edge computation are given by

TCE
i = TCU

i + T
CP
i + T

CD
i , (57)

ECE
i = ECU

i + E
CP
i + E

CD
i . (58)

Because TU s cannot offload its computing tasks to the
MEC server under BS 1 for edge computation, TU s must to
utilize RU as a relay node, and transfer its computing tasks
to the MEC server under BS 2 for edge computation through
establishing D2D relay link. We consider RU to be a relay
node of decoded and forwarding type [35]. Therefore, the
actual achievable uplink data rate from TU s to BS 2 depends
on the smaller one between TU s to RU and RU to BS 2, its
expression is

RTUs = minimum
{
RTU1s ,RTU2s

}
, (59)

where RTU1s and RTU2s represent the achievable uplink data
rate from TU s to RU and from RU to BS 2, respectively.
Assuming that the total channel bandwidth B4 from TU s to
RU and from RU to BS 2 are divided into S sub-channels,
respectively.We define λ1s as the sub-channel ratio coefficient
of the total channel bandwidth occupied by the data transmis-
sion from TU s to RU. Therefore, the achievable uplink data
rate from TU s to RU is obtained by

RTU1s = λ1sB4 log2

(
1+

PTUs (h7s )
2

N0

)
, (60)

where PTUs indicates the transmitting power of TU s trans-
ferring computing tasks to RU. h7s represents the channel
gain from TU s to RU. Meanwhile, we define λ2s as the
sub-channel ratio coefficient of the total channel bandwidth
occupied by the data transmission from RU to BS 2. There-
fore, the achievable uplink data rate from RU to BS 2 is given
by

RTU2s = λ2sB4 log2

(
1+

PR(h8s )
2

N0

)
, (61)

where PR is the forwarding power of RU. h8s denotes the
channel gain from RU to BS 2. We suppose DTE

s as the
computation data of TU s offloading to MEC server under
BS 2 for edge computation. Similar to CU i, the computation
data of TU s offloading to MEC server for edge computation
can be obtained by DTE

s = DTT
s − DTL

s − DTA
s . Here, DTT

s
indicates the total computation data of TU s need to be per-
formed. Therefore, the time and energy consumption of TU s
transmitting computing data to MEC server are expressed as

T TU
s =

DTE
s

RTUs
, (62)

ETU
s =

(
PTUs + P

CIR
) DTE

s

RTUs
. (63)

After the transmission of the computation data that TU s
offloading to the MEC server under BS 2 has completed,
the MEC server begins to perform. Let f TEs indicates the
computing resources assigned to TU s by the MEC server
under BS 2. Therefore, the time and energy required for the
MEC server under BS 2 to perform this computation data are
obtained as

T TP
s =

CsDTE
s

f TEs
, (64)

ETP
s = δD

TE
s . (65)

Similarly, the MEC server under BS 2 outputs a computa-
tion result, and BS 2 must transmit this computation result to
TU s throughD2D relay link. Therefore, the actual achievable
downlink data rate from BS 2 to TU s depends on the smaller
one between BS 2 to RU and RU to TU s, its expression is

RTDs = minimum
{
RTD1s ,RTD2s

}
, (66)

where RTD1s and RTD2s represent the achievable downlink data
rate from BS 2 to RU and from RU to TU s, respectively.
We define λ3s and λ4s as the sub-channel ratio coefficient of
the total channel bandwidth B4 occupied by the data trans-
mission from BS 2 to RU and from RU to TU s, respectively.
Therefore, the achievable downlink data rate fromBS 2 to RU
and from RU to TU s can be obtained by

RTD1s = λ3sB4 log2

(
1+

PE(h9s )
2

N0

)
, (67)

RTD2s = λ4sB4 log2

(
1+

PR(h10s )
2

N0

)
, (68)

where h9s and h
10
s are the channel gain from BS 2 to RU and

fromRU to TU s. Therefore, the downlink time required from
BS 2 to TU s can be given by

T TD
s =

φDTE
s

RTDs
. (69)

Moreover, the energy consumption of BS 2 transmitting the
computation result to TU s is shown as

ETD
s =

(
PE + PCIR

) φDTE
s

RTDs
. (70)
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According to the above analysis, the total time and energy
consumption of TU s for edge computation are given by

T TE
s = T TU

s + T
TP
s + T

TD
s , (71)

ETE
s = ETU

s + E
TP
s + E

TD
s . (72)

The optimization objective of the resource allocation strat-
egy is to maximize the energy efficiency [36], [37] while
satisfying several constraints. Therefore, the optimization
problem can be formulated as

maximize
ui,k ,PCUi,k ,P

CD
k,i ,P

CU
i ,

εs,q,PTUs,q ,P
TD
q,s ,P

TU
s

I∑
i=1

(
DCL
i

ECL
i

+
DCA
i

ECA
i

+
DCE
i

ECE
i

)

+

S∑
s=1

(
DTL
s

ETL
s
+
DTA
s

ETA
s
+
DTE
s

ETE
s

)
, (73a)

subject to C1 : max
[
TCL
i ,TCA

i ,TCE
i

]
≤ TD, ∀i, (73b)

C2 : max
[
T TL
s ,T TA

s ,T TE
s

]
≤ TD, ∀s, (73c)

C3 : ECL
i +

K∑
k=1

(
ECU
i,k

)
+ ECU

i ≤ E
CH
i , ∀i,

(73d)

C4 : ETL
s +

Q∑
q=1

(
ETU
s,q

)
+ ETU

s ≤ E
TH
s , ∀s,

(73e)

C5 : PCUi,k ,P
CD
k,i ,P

CU
i ≤ P

MAX, ∀i, k, (73f)

C6 : PTUs,q ,P
TD
q,s ,P

TU
s ≤ P

MAX, ∀s, q, (73g)

C7 : ui,k ∈ (0, 1), ∀i, k, (73h)

C8 : εs,q ∈ (0, 1), ∀s, q. (73i)

In the above, the first and second constraints indicate that
the time consumption of CU i and TU s offloading their com-
puting tasks for local computation, auxiliary computation,
or edge computation must be not exceed the specific total
computation delay TD, respectively. The third and fourth
constraints represent that the total energy consumption of
CU i and TU s for local computation, auxiliary computation,
and edge computation have to less than or equal to the
energy harvested by CU i and TU s, respectively. The fifth
and sixth constraints specify that the maximum transmitting
power PMAX of CU i and TU s, respectively. The seventh
constraint denotes the distance decision that whether CU i
can harvest energy fromCAU k and whether CU i can offload
computing tasks to CAU k for auxiliary computation. Similar
to the seventh constraint, the eighth is the constraint of the
distance decision between TU s and TAU q. It should be
noted that the independent variables PCUi,k , P

CD
k,i , P

CU
i , PTUs,q ,

PTDq,s , and P
TU
s are continuous, while ui,k and εs,q are discrete.

Meanwhile, the objective function is nonlinear. Therefore, the
above optimization problem of resource allocation is MINLP
problem.

B. SUBOPTIMAL SOLUTION
The main challenge in solving MINLP problem is that it is
difficult to obtain the optimal solution at low computational
complexity. Therefore, a heuristic algorithm with moderate
computational complexity can be used to obtain the subopti-
mal solution. The QPSO algorithm [38] is a kind of heuris-
tic algorithm based on particle swarm optimization (PSO),
which is suitable to solve complex optimization problems.
Inspired by the simulation of the foraging process of birds,
the PSO algorithm was developed by J. Kennedy and R.
Eberhart [39] to solve the optimization problem. Assuming
that particle space is a multidimensional space. There are N
particles in the space. For the n-th (n = 1, 2, · · · ,N ) particle,
its position vector Xn and velocity vector Vn are initialized.
The updating of each particle is generated by comparing
its local best position Pn and global best position G with
the previous iteration under the solution of fitness function.
The update iterative equations of velocity vector and position
vector for each particle are shown as

Vn(t + 1) = Vn(t)+ c1r1(Pn − Xn(t))
+ c2r2(G− Xn(t))

Xn(t + 1) = Vn(t + 1)+ Xn(t) ,

(74)

where t denotes the iteration number, the iteration is termi-
nated onlywhen the number of iterations reaches themaximal
number of iterations T . c1 and c2 indicate two acceleration
coefficients, r1 and r2 are random numbers between 0 and
1. It can be seen in (74) that the update of particle position
depends on the step size of velocity. Therefore, the velocity
of particle evolution makes particles have the tendency to
expand the search space. The particles have the ability to
detect new search fields. In order to better control the global
detection and local development capability of PSO algorithm,
Y. Shi and R. Eberhart introduce the inertial weight m into
equations in (74) and become as follows

Vn(t + 1) = mVn(t)+ c1r1(Pn − Xn(t))
+ c2r2(G− Xn(t))

Xn(t + 1) = Vn(t + 1)+ Xn(t) .

(75)

The modified PSO algorithm is known as the standard par-
ticle swarm optimization algorithm (SPSO) [40]. However,
the movement of each particle is still described by velocity
and position in the SPSO algorithm. With the evolution of
iteration time, the trajectory of particle is constant. Mean-
while, the velocity of each particle is limited to a certain
extent, so that the search space of particles is a limited and
gradually decreasing region, which cannot cover the whole
feasible solution space. Therefore, SPSO algorithm cannot
guarantee global convergence. To deal with this issue, QPSO
algorithm is proposed based on quantum mechanics theory
and can obtain a suboptimal solution that is close to globally
optimal. The reason is that in quantum space, the aggregation
of particles is described by the binding state produced by
an attractive potential at the center of the particle’s motion.
These particles in a quantum bound state can appear at any
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point in space with a certain probability density. Particles that
satisfying the aggregation property can be searched in the
whole feasible solution space, but will not diverge to infinity.

In this paper, QPSO algorithm is adopted to solve the
MINLP problem in (73). First, the original constrained
optimization problem needs to be transformed to an uncon-
strained form by using the penalty function method. There-
fore, a fitness function that is composed of one objective
function and one penalty function is constructed as

F (A) = fobj (A)− σPpen (A) , (76)

where A represents all the independent variables ui,k , PCUi,k ,
PCDk,i , P

CU
i , εs,q, PTUs,q , P

TD
q,s , and P

TU
s in (73). fobj (A) is the

objective function, σ indicates the penalty factor, andPpen (A)
is the penalty function that includes twelve items

Ppen (A) = P1pen + P
2
pen + P

3
pen + P

4
pen + P

5
pen + P

6
pen

+P7pen+P
8
pen+P

9
pen+P

10
pen + P

11
pen + P

12
pen. (77)

They correspond to the eight constraints of the problem in
(73), which are shown as

P1pen=
I∑
i=1

[
max

(
0,max

[
TCL
i ,TCA

i ,TCE
i

]
−TD

)]2
, (78a)

P2pen=
S∑
s=1

[
max

(
0,max

[
T TL
s ,T TA

s ,T TE
s

]
−TD

)]2
, (78b)

P3pen=
I∑
i=1

[
max

(
0,ECL

i + E
CO
i − E

CH
i

)]2
, (78c)

P4pen=
S∑
s=1

[
max

(
0,ETL

s + E
TO
s − E

TH
s

)]2
, (78d)

P5pen=
I∑
i=1

K∑
k=1

[
max

(
0,PCUi,k − P

MAX
)]2

, (78e)

P6pen=
K∑
k=1

I∑
i=1

[
max

(
0,PCDk,i − P

MAX
)]2

, (78f)

P7pen=
I∑
i=1

[
max

(
0,PCUi − P

MAX
)]2

, (78g)

P8pen=
S∑
s=1

Q∑
q=1

[
max

(
0,PTUs,q − P

MAX
)]2

, (78h)

P9pen=
Q∑
q=1

S∑
s=1

[
max

(
0,PTDq,s − P

MAX
)]2

, (78i)

P10pen=
S∑
s=1

[
max

(
0,PTUs − P

MAX
)]2

, (78j)

P11pen=
I∑
i=1

K∑
k=1

(
u2i,k − ui,k

)2
, (78k)

P12pen=
S∑
s=1

Q∑
q=1

(
ε2s,q − εs,q

)2
, (78l)

where max(·, ·) means to return the larger one between two
numbers. In (78c) and (78d), ECO

i and ETO
s are given as

ECO
i =

K∑
k=1

(
ECU
i,k

)
+ ECU

i , (79)

ETO
s =

Q∑
q=1

(
ETU
s,q

)
+ ETU

s . (80)

Secondly, the particle position is defined. Assuming that
there are N particles representing the potential solution in the
search space. For the n-th particle, its position vector Xn can
be expressed as

Xn =

(
X1
n,X

2
n, · · · ,X

w
n , · · · ,X

W
n

)
, W = I + S, (81)

where Xw
n indicates optimization results of distance decision

and transmitting power for the w-th user. The specific expres-
sion of Xw

n is shown as

Xw
n = (uw,1, uw,2, · · · , uw,K ,

PCUw,1,P
CU
w,2, · · · ,P

CU
w,K ,

PCD1,w,P
CD
2,w, · · · ,P

CD
K ,w,P

CU
w ), 1 ≤ w ≤ I , (82a)

Xw
n = (εw,1, εw,2, · · · , εw,Q,

PTUw,1,P
TU
w,2, · · · ,P

TU
w,Q,

PTD1,w,P
TD
2,w, · · · ,P

TD
Q,w,P

TU
w ), I+1 ≤ w ≤ I+S.

(82b)

It can be seen that Xw
n is a multidimensional vector. The opti-

mization results of distance decision and transmitting power
for CU are given in (82a). Here, the first K elements denote
the distance decision between CU and CAU. The second K
elements indicate the transmitting power of CU offloading
computing tasks to CAU. The third K elements represent the
transmitting power of CAU transmitting computation result
to CU. The remaining elements are the transmitting power
of CU offloading computing tasks to MEC server. Similarly,
the optimization results of distance decision and transmitting
power for TU are shown in (82b).

In order to establish an attractive potential to affect the
particles in the group, the attractor vector P is defined and
its expression is P = ϕPn(t)+ (1− ϕ)G(t). Here, ϕ denotes
random number between 0 and 1. Pn(t) represents the local
best position of the n-th particle in the t-th iteration. G(t)
indicates the global best position of all the particles in the
t-th iteration. The position of each particle is updated by{
Xn(t + 1)=P+β |C(t)−Xn(t)| · ln(1/u), u > 0.5
Xn(t + 1)=P−β |C(t)−Xn(t)| · ln(1/u), u ≤ 0.5,

(83)

where u represents random number between 0 and 1. β
denotes the contraction - expansion coefficient, in the t-th
iteration, its value can be calculated by

β = 0.5
T − t
T
+ 0.5 = 1−

t
2T
. (84)
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Algorithm 1 Resource Allocation Strategy of Maximizing
the Energy Efficiency Based on QPSO
1: Initialize N , T , and Xn(1) (n = 1, 2, · · · ,N ).
2: Set Pn(1) = Xn(1). Find a best position from Pn(1) (n =

1, 2, · · · ,N ) as G(1).
3: Set t = 1 and n = 1.
4: while t ≤ T do
5: while n ≤ N do
6: Calculate P.
7: Calculate β based on (84).
8: Calculate C(t) based on (85).
9: Update the position of the particle based on (83).

10: Compare F[Xn(t + 1)] and F[Pn(t)]. Then, give the
higher value to Pn(t + 1).

11: Compare F[Pn(t + 1)] and F[G(t)]. Then, give the
higher value to G(t + 1).

12: end while
13: end while
14: Output the function value of the global best position.

Moreover, in order to control the position of the particle
convergence in probability to the attractor, the mean best
position C(t) is defined and obtained by

C(t) =
1
N

N∑
n=1

Pn(t). (85)

For the maximization problem in (73), the greater the objec-
tive function value is, the better the corresponding fitness
value is. Therefore, according to the fitness function in (76),
the local best position of the n-th particle can be obtained by

Pn(t + 1) =

{
Xn(t + 1), F[Xn(t + 1)] > F[Pn(t)]
Pn(t), F[Xn(t + 1)] ≤ F[Pn(t)].

(86)

The global best position of the group is determined by the
following equationτ = arg max

1≤n≤N
{F[Pn(t)]}

G(t) = Pτ (t).
(87)

In order to clearly illustrate the resource allocation strategy
based on QPSO, its detailed steps are shown in Algorithm 1.

C. COMPLEXITY ANALYSIS
In this subsection, the computational complexity of Algo-
rithm 1 is analyzed. The computational complexity is mainly
from Line 2 to Line 14. Line 2, which is executed once,
has a time complexity of O(1), The specific elapsed time
will depend on the function operations in (76) and (87). The
time complexity of Line 3 is also O(1). Lines 4-13 consist
of two loops: an outer loop and an inner loop. The inner
loop given by Lines 6-11 is executed TN times. The time
complexity of Lines 4-13 is O(TN ). The specific elapsed
time will depend on the function operations in (85), (83),
and (76). For Line 14, it is also executed once with time

complexity O(1). Consequently, the total time complexity of
Algorithm 1 is O(TN ).

IV. SIMULATION RESULTS AND DISCUSSIONS
In this section, the performance of the proposed resource allo-
cation strategy is analyzed by simulations. First, the related
parameter settings are given. Then, performance comparisons
are shown.

A. PARAMETER SETTINGS
In this subsection, the related parameter settings of energy
harvesting and resource allocation strategy are given. Assum-
ing that there are two TV towers and two BSs (i.e., TV 1,
TV 2, BS 1, and BS 2) as ambient RF sources, their cor-
responding coordinates at a coordinate system in unit of
meter (m) are (1800,1800), (−1800,1800), (160,−160) and
(−120,−120). The transmitting power of TV tower, BS 1
and BS 2 are 30 kW, 80 W [41] and 40 W [41]. Their
transmitting antenna gains are 15 dBi, 18 dBi [42] and 18 dBi.
The frequency of TV 1, TV 2, BS 1 and BS 2 are 558
MHz, 566 MHz, 850 MHz and 1850 MHz. All the users are
distributed randomly in a square region, the coordinates of
its four vertices are (15,15), (−15,15), (15,−15), (−15,−15),
and user’s receiving antenna gain is 0 dBi. Moreover, c =
3 × 108 m/s, ai = 1500, bi = 0.0014 [43], Mi = 20 mW
[43], TRF = 2000 s [44]. Besides, the related parameters of
MI energy harvesting are set as µ = 4π × 10−7 H/m [21],
N t
k = N r

i = 20, atk = ari = 0.03 m, dcoili,k ∈ (0.06, 0.08) m,
R0 = 0.01 �/m [21], f = 10 MHz [21], US

k = 3.7 V, TMI =

10 s. For the resource allocation strategy, the main parameters
are set as follows, PD = 10 mW [31], EC

= 0.06 µJ,
PB = 1 W [31], TO

= 71.4 µs [45], Cw ∈ (500, 1500)
cycles/bit [34], DCL

i ,DTL
s ,D

CA
i,k ,D

TA
s,q,D

CL
k ,DTL

q ∈ (0.1, 0.2)
Mbits, DCT

i ,DTT
s ∈ (3, 4) Mbits [34], f TEs = 2.5 GHz,

f CLi , f TLs , f CLk , f TLq ∈ (0.5, 2) GHz [34], FE
= 80 GHz,

PCIR = 0.3 W [44], B1 = B2 = B3 = B4 = 10 MHz
[33], PR = 0.2 W [34], PE = 30 dBm, N0 = 10−9 W [33],
δ = 1 µJ/bit, TD

= 10 s, σ = 1.5 [44].

B. AMOUNT OF ENERGY HARVESTED BY DIFFERENT
USERS
The amount of energy harvested by different users from
different ambient RF sources and MI-based wireless reverse
charging is presented in Table 1. In this simulation, the num-
ber of users is set as 5. We can observe that the users can har-
vest more energy from TV tower than the BS. That is because
the TV tower has larger transmitting power. Moreover, the
users can harvest much more energy from nearby other
multiple users through MI-based wireless reverse charging
technology than from ambient RF sources in a short time.
The reason is that the wireless energy transfer technology
based on MI has much higher receiving power and can obtain
more energy in a short time. For the energy harvested by
the MI-based wireless reverse charging, we can see that the
energy obtained by User 2 and User 4 is more than that
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TABLE 1. Energy harvested by different users from different ambient RF
sources and MI-based wireless reverse charging (unit: J).

obtained by User 1, User 3, and User 5. That is because the
number of nearby other users that can provide charging for
User 2 and User 4 is greater than that of User 1, User 3, and
User 5.

C. PERFORMANCE COMPARISONS
In this subsection, some simulation results are discussed to
analyze the performance of the proposed resource allocation
strategy. In the simulation, the performance is analyzed by
comparing different strategies. These comparison strategies
are described as follows.

1) Local-Edge-Auxiliary-Transfer represents the proposed
strategy. The computing tasks can be performed by local
computation, edge computation, auxiliary computation, and
transferring to nearby MEC server with sufficient resources
for edge computation.

2) Local-Edge-Auxiliary indicates the first benchmark
strategy. The computing tasks can be performed by local
computation, edge computation, and auxiliary computation.

3) Local-Edge denotes the second benchmark strategy. The
computing tasks can be performed by local computation and
edge computation.

4) Local-Auxiliary is the third benchmark strategy. The
computing tasks can be performed by local computation and
auxiliary computation.

5) Local-Only refers to the fourth benchmark strategy. The
computing tasks only performed by local computation.

Fig. 3 shows the convergence of the QPSO algorithm
between the energy efficiency and the number of iterations
under different numbers of particles. In the simulation, the
number of CUs and TUs are 30 and 10. It can be found that
the energy efficiency goes up as the number of iterations
increases. When the number of iterations reaches 500, the
energy efficiency tends to converge. Moreover, the energy
efficiency increases gradually with the growth of the number
of particles from 4 to 30, and the rising tendency is not
obvious when the number of particles is 20 and 30. The
reason is that a result closer to the optimal solution can be
obtained through searching from more particles. Therefore,
we set the numbers of iterations and particles as 500 and 30
in the following simulations.

Fig. 4 illustrates the time complexity of the QPSO algo-
rithm under different numbers of particles from the perspec-
tive of average CPU time. We can find that the average CPU
time rises up with the growth of the number of iterations.
Furthermore, the average CPU time increases as the number

FIGURE 3. Relationship between energy efficiency and number of
iterations.

FIGURE 4. Relationship between average CPU time and number of
iterations.

of particles increases. That is because when searching in a
solution space, the more particles there are, the longer the
search time will be.

Fig. 5 depicts the relationship between the energy effi-
ciency and the number of common users under the five
different strategies. It can be seen that the energy efficiency
increases with the growth of the number of common users.
The reason is that each common user consumes some energy
to perform its computing tasks. The more common users
are, the more total energy consumption and the amount of
total computation data are. The growth rate of the total
energy consumption is smaller than that of the amount of
total computation data. Moreover, compared with the other
four strategies, the Local-Edge-Auxiliary-Transfer strategy
has the highest energy efficiency. That is because this strategy
is the integration of the other four strategies. All the users can
perform local computation, auxiliary computation, and edge
computation. Meanwhile, transfer users can transfer their
computing tasks to nearby MEC server for edge computation
through establishing D2D relay links, which greatly improves
the total energy efficiency.

Fig. 6 presents the relationship between the energy effi-
ciency and the size of bandwidth under the five different
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FIGURE 5. Relationship between energy efficiency and number of
common users.

FIGURE 6. Relationship between energy efficiency and size of bandwidth.

strategies. We can observe in the first four strategies that the
number of energy efficiency goes up with the growth of the
size of bandwidth, while Local-Only strategy keeps invariant.
That is because the throughput rises up gradually as the size of
bandwidth increases. Therefore, the transmission duration of
computation data can be reduced gradually. As a result, the
energy consumption of mobile users for edge computation
and auxiliary computation can be reduced.

Fig. 7 depicts the relationship between the energy effi-
ciency and the energy consumption per offloaded bit under
the five different strategies. It can be observed that the energy
efficiency of the first three strategies descend with the growth
of the number of energy consumption per offloaded bit. The
reason is that mobile users can offload their computing tasks
to MEC server for edge computation. The greater the energy
required by MEC server to perform per offloaded bit data,
the greater the total energy required for edge computation.
Meanwhile, the Local-Auxiliary and Local-Only strategies
do not offload computing tasks to MEC server for edge
computation. Therefore, they are not affected by the variation
in energy consumption per offloaded bit.

Fig. 8 presents the relationship between the total com-
putation delay and the size of computation data under
the five different strategies. We can see that the total

FIGURE 7. Relationship between energy efficiency and energy
consumption per offloaded bit.

FIGURE 8. Relationship between total computation delay and size of
computation data.

computation delay of Local-Edge-Auxiliary-Transfer is the
shortest, while Local-Only is the longest. For the Local-Edge
and Local-Auxiliary strategies, when the size of computation
data is small, the total computation delay of Local-Edge is
shorter than that of Local-Auxiliary, and Local-Edge is longer
otherwise. That is because when the size of computation
data is small, the computing resources of MEC server are
sufficient to perform, and the computing speed of edge com-
putation is faster than that of auxiliary computation. However,
the computing resources of MEC server tend to be saturated
as the size of computation data increases. Therefore, the
computing speed is gradually smaller than that of auxiliary
computation.

Fig. 9 shows the relationship between the energy efficiency
and the transmitting power of BS under the different algo-
rithm and different conversion coefficient value. We can find
that the energy efficiency decreases with the growth of the
transmitting power of BS. The reason is that the downlink
throughput rises up gradually as the transmitting power of
BS grows. However, the growth rate of transmitting power
of BS is higher than that of the downlink throughput. As a
result, the total energy consumption increases with the growth
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FIGURE 9. Relationship between energy efficiency and transmitting
power of BS.

FIGURE 10. Relationship between energy efficiency and number of
transfer users.

of the transmitting power of BS. Moreover, the QPSO algo-
rithm outperforms SPSO algorithm. That is because the SPSO
algorithm only can obtain local suboptimal solution. The
global suboptimal solution can be obtained by using QPSO
algorithm.

Fig. 10 illustrates the relationship between the energy effi-
ciency and the number of transfer users under the different
algorithm and different conversion coefficient value. It can
be observed that the energy efficiency goes up as the number
of transfer users increases. The reason is that the growth rate
of the total energy consumption of transfer users is smaller
than that of the amount of total computation data. Further-
more, we can see that the energy efficiency descends with
the growth of conversion coefficient value from 0.1 to 0.3.
That is because the greater the conversion coefficient value,
the larger the computation result outputs. Consequently, the
longer the transmission time required and the more energy is
consumed.

V. CONCLUSION
In this paper, aiming at the problem of the limited battery
capacity and computing capability of mobile users, a resource
allocation strategy in D2D-assisted edge computing system

with hybrid energy harvesting has been proposed to maxi-
mize the energy efficiency. By leveraging MI-based wireless
reverse charging technology, the mobile user can supplement
energy from nearby other users when the energy harvested
from ambient RF sources is insufficient. Moreover, except for
local computation, mobile user can also offload computing
tasks to MEC server for edge computation, and to nearby idle
users for auxiliary computation through establishing D2D
communication links. If the computing resources of MEC
server under BS 1 have reached saturation, the remaining
users can establish D2D relay links with RU to transfer
their computing tasks to nearby MEC server with sufficient
resources under BS 2 for edge computation. The formu-
lated resource allocation problem is an MINLP problem.
The QPSO algorithm is adopted to obtain the suboptimal
solution. Simulation results have shown that the proposed
strategy is superior to other benchmark strategies, and QPSO
algorithm can obtain higher energy efficiency than SPSO
algorithm. We have made some assumptions in this work.
First, we assume that there is only one RU to transfer com-
puting tasks of TUs. In the future work, multiple RUs can be
considered to transfer computing tasks to further improve the
system performance. Second, instead of D2D relay link with
limited distance, we will further consider smart device with
wider coverage as relay node to broaden the relay distance.
Third, only the SPSO algorithm is compared in this paper,
we shall also take more heuristic algorithms into considera-
tion for comparison.
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