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ABSTRACT This paper surveys the optimization frameworks and performance analysis methods for large
intelligent surfaces (LIS), which have been emerging as strong candidates to support the sixth-generation
wireless physical platforms (6G). Due to their ability to adjust the behavior of interacting electromag-
netic (EM)waves through intelligentmanipulations of the reflections phase shifts, LIS have shown promising
merits at improving the spectral efficiency of wireless networks. In this context, researchers have been
recently exploring LIS technology in depth as a means to achieve programmable, virtualized, and distributed
wireless network infrastructures. From a system level perspective, LIS have also been proven to be a
low-cost, green, sustainable, and energy-efficient solution for 6G systems. This paper provides a unique
blend that surveys the principles of operation of LIS, together with their optimization and performance
analysis frameworks. The paper first introduces the LIS technology and its physical working principle. Then,
it presents various optimization frameworks that aim to optimize specific objectives, namely, maximizing
energy efficiency, sum-rate, secrecy-rate, and coverage. The paper afterwards discusses various relevant
performance analysis works including capacity analysis, the impact of hardware impairments on capacity,
uplink/downlink data rate analysis, and outage probability. The paper further presents the impact of adopting
the LIS technology for positioning applications. Finally, we identify numerous exciting open challenges for
LIS-aided 6Gwireless networks, including resource allocation problems, hybrid radio frequency/visible light
communication (RF-VLC) systems, health considerations, and localization.

INDEX TERMS 6G technology, large intelligent surfaces (LIS), massive multiple-input multiple-output
(mMIMO), millimetre waves (mmWave) communication, wireless communication.

I. INTRODUCTION
The recent advent of large intelligent surfaces (LIS) empow-
ers smart radio environments at overcoming the large power
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consumption and the probabilistic nature of electromag-
netic (EM) wave transmission, thereby improving both the
quality of service (QoS) and radio connectivity [1]. In other
words, LIS combat the complex phenomena of EM prop-
agation coupled with parameters that cannot be measured
precisely by means of tactfully controlling the channel based
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on the wireless network geometry. Therefore, LIS are envi-
sioned to be one of the essential technology enablers of 6G
and beyond wireless communications [2]. By means of com-
bating the uncontrollable and stochastic wireless propagation
medium, LIS realize a controllable and smart radio envi-
ronment in a software-controlled fashion, which boosts the
communication capabilities. Software-defined or reconfig-
urable EM meta-surfaces are the fundamental technology
behind the LIS implementation that is capable of modulat-
ing data onto the received signals [3], customizing changes
to the radio waves, and intelligently sensing the environ-
ment. In other words, intelligent meta-surfaces are pro-
grammable frequency-selective surfaces that are composed
of artificial thin meta-material films, that are adequate for
energy-efficient and low-complexity wireless communica-
tions [4], [5]. The classical utilization of LIS technology
was initially restricted to satellite and radar communica-
tion systems, and was not adopted by terrestrial wireless
communications. The conventional wireless radio transmis-
sion rather relies on traditional reflecting surfaces, which
only induce fixed phase shifts, and do not adapt to the
terrestrial time-varying wireless communication channels.
Fortunately, the recent advances in metamaterials and micro-
electro-mechanical systems (MEMS) lead to the advance of
reconfigurable reflecting surfaces. For instance, Kaina et al.
first introduced the concept of LIS by using tunable sur-
faces to control the wireless propagation environment [6].
In this regard, LIS-assisted communication can be seen as an
enhanced platform of conventional wireless communication
systems, as LIS bring in more degrees of freedom via control-
ling the wireless channel. Hence, optimization of the wireless
channel leads to a more relaxed set of constraints, yielding an
increase in the overall system performance.

Moreover, meta-surfaces are immune to noise in radio
receivers and do not require either analog/digital converters,
or power amplifiers.Meta-surfaces can, therefore, manipulate
and reflect the signals with extremely low-noise amplifi-
cation. Enabling the LIS technology would also allow for
reductions in power consumption as compared to current
wireless networks. Due to its relative high energy-efficiency,
LIS technology is environmentally friendly, as its reduces the
overall carbon footprint [1], [7].

From a spectrum deployment perspective, recent studies
show that high-frequency transmission, such as millimeter
wave (mmWave) and terahertz (THz) communications, can
be well realized using LIS [8]. Providentially, significant
disadvantages for the use of LIS are not known at the moment
for very high frequency deployments, especially at the range
of 2.4 GHz to 60 GHz. This attractive attribute of LIS
makes them suitable for use in cutting edge communication
and sensing technologies of 5G and beyond systems, which
include Internet of Things (IoT), Device-to-Device (D2D)
communications, Machine-to-Machine (M2M) communica-
tions, etc. [9]–[11].

The above unique features of LIS make them suitable
for a variety of groundbreaking smart radio environments

applications, both in indoor and in outdoor environ-
ments [12]. For instance, in [13], the authors introduce the
deployment of a smart indoor environment using the con-
cept of intelligent walls empowered by machine-learning
control algorithms for realizing an indoor cognitive wireless
network. In indoor environments, various objects including
walls, furniture, and windows, can influence the communica-
tion and coverage for wireless devices. As indoor scenarios
(e.g., hospitals, hotels, security offices) require ultra-reliable
high-speed communications, the authors in [11] propose
coating the indoor objects with software-programmable
hyper-surface tiles (a novel class of meta-surfaces), so as to
improve both communication and coverage aspects of indoor
wireless systems. LIS have indeed many other prospective
applications, including indoor localization [14], health mon-
itoring using smart T-shirts [10], imaging, quantum optics,
and military purposes [11].

Thanks to the converging breakthrough in developing
smart surfaces, boosting the operation of smart radio envi-
ronments with intelligent and reconfigurable capabilities is
more feasible than ever. Such emerging capabilities would
indeed enable the network operators to shape the radio waves
propagation with customized functionalities. For example,
the embedding of meta-surfaces into the outdoor and indoor
objects would allow for sensing the incoming signal response
and feeding the system response back to the network con-
troller [12]. Based on the sensed data, meta-surfaces can
then configure and manipulate the input signal wave through
different EM behavior control functions, e.g., wave reflec-
tion, refraction, polarization, or full absorption. Moreover,
reflection and refraction functions can offer additional ser-
vices, also known as wave steering, that can override the
conventional Snell’s law [11]. Through extending the notion
of network softwarization, a smart radio environment can
facilitate programmatic commands, and can be remotely con-
figured and/or elastically optimized. Without generating new
signals, which consume an additional extent of power, LIS
are, therefore, able to meet the challenging requirements of
future wireless networks [9].

It is worthy to note that LIS are complementary mediums
to support other emerging technologies, including backscat-
ter communication, millimeter-wave communication, mas-
sive multiple-input multiple-output (mMIMO), and network
densification. For instance, LIS, albeit being distinct from
mMIMO, can be viewed as an extension of conventional
MIMO systems. In [15], the authors compare mMIMO with
Intelligent Reflecting Surfaces (IRS) deployment in terms of
information transfer capabilities. Although mMIMO boosts
the energy and spectral efficiencies of the communication
links, it is not capable of tuning and controlling the wire-
less propagation environment. Moreover, unlike the case of
IRS, for which the capacity is linearly proportional with the
average transmit power [15], a logarithmic relationship exists
between the capacity and average transmit power inmMIMO.
However, in a matching array architecture, mMIMO setups
can achieve higher signal-to-noise ratio (SNR) with reduced
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TABLE 1. A list of LIS surveys.

power consumption than in IRS-aided setups operating in a
far-field region [16].

Furthermore, the implementation of the IRS-assisted
non-orthogonal multiple access system (NOMA) has drawn
significant attention for optimizing the performance (con-
nectivity and spectral efficiency) of the next generation
multi-user wireless communication networks. Recent works
in [17]–[23] investigate the potential applications of integrat-
ing NOMA technology with IRS-based communications.

Additionally, incorporating full-duplex (FD) communica-
tion into IRS can exploit new degrees of freedom, facilitating
spectrum-efficient and low-cost designs for next-generation
wireless communication systems. Also, FD-enabled IRS sys-
tems can be further employed for other applications, e.g.,
cooperative jamming [24].

A. RELATED SURVEYS
The topic of intelligent surfaces has rapidly attracted research
interests with preliminary contributions to communication-
theoretical modeling, optimization, deployment, and design
of LIS-empowered networks. Hence, some recent surveys
overview the revolutionary technology of LIS and their
promising significance in future wireless communication net-
works. In [1], the authors outline the state-of-the-art recon-
figurable surfaces solutions, 6G applications, and theoretical
performance limits. Recently, Jun et al. provide a general
overview of the data rate and reliability issues in LIS [15].
The use of LIS in network security, channel estimation, and
deep learning-based paradigm for LIS-aided communications
are also discussed in [15]. In the context of practical imple-
mentation of LIS technology, Sean et al. surveyed the pri-
mary design architectures, such as the reconfigurable-array
lens and reflect-array antennas [25]. Furthermore, the authors
in [10] presented the recent research efforts to deploy smart
radio environments in practice, which is a step forward
towards redefining the current network communication mod-
els. The authors in [26] then provided an overview of the per-
formance analysis and optimization in LIS-assisted networks,
as a means to achieve different wireless communications
objectives. In [26], the authors further discussed the diverse

application scenarios that can exploit LIS, such as wireless
power transfer, mobile edge computing, and unmanned aerial
vehicle (UAV) based communication. Table 1 provides an
illustrative summary of the above recent LIS surveys.

Unlike all existing works, the current survey is the first of
its kind which overviews the technical and critical aspects
of mathematical optimization and performance analysis of
LIS systems, and presents a handful of promising research
directions towards the formulations of practical problems
in future beyond 5G systems. More specifically, our paper
first entails the physical working principle of LIS. It then
introduces the optimization schemes for LIS-based systems,
which include energy efficiency, power optimization, sum-
rate, secrecy-rate, and coverage. The paper afterwards sur-
veys various performance analysis works including those
which tackle capacity analysis, the impact of hardware
impairments on capacity, uplink/downlink data rate analysis,
and outage probability. The paper also presents the local-
ization error performance of centralized and distributed LIS
systems. Lastly, we suggest various open research issues in
the context of future LIS-empowered systems.

B. ORGANIZATION OF THE SURVEY
The rest of the paper is organized as follows. Section II dis-
cusses the working principle of LIS, providing the associated
enabling technologies and models for the control of EMwave
reflection. Section III covers the optimization techniques for
LIS, while Section IV sheds light on the performance anal-
ysis of LIS. Section V discusses the error performance and
reliability analysis of LIS. In section VI, recent studies on
the potential of positioning and coverage in LIS systems are
surveyed. Before concluding in section VIII, various future
research directions are discussed in section VII. Finally,
Table 2 lists the mostly utilized acronyms in the manuscript
for the convenience of the readers.

II. WORKING PRINCIPLE
This section sheds light on the basic working principle of LIS
from a physical layer perspective. We first note that there are
several terminologies that are interchangeably used to denote
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TABLE 2. List of mostly used acronyms.

LIS in the literature, namely, IRS, reconfigurable intelligent
surfaces (RIS), and software-defined surfaces (SDS). Each of
such terminologies emphasizes one particular feature of the
smart surface [15]. For completeness, we refer to Table 3 for
a comparison of such various terms.

LIS consist of a two-dimensional array made up of
numerous low-cost nearly passive reflecting EM elements
(except for few active elements connected to the LIS con-
trollers) [27]. Nevertheless, some studies show the poten-
tial of active element-based LIS designs [28]–[30]. In fact,
the latest LIS-aided hybrid wireless networks, comprising
of both active and passive elements, are projected to be
promising to achieve cost-effective sustained performance
development [31]. In our paper, we focus on the working
principle of the passive elements, also known as metamate-
rials. Such metamaterials consist of either varactor diodes or
other MEMS that can intelligently adjust their induced phase
shifts to attain the desired communication objectives [32].
They consist of repeated meta-atoms over a substrate with
a specific EM behavior. The metamaterial’s EM behavior
depends on the meta-atom structure. Hence, some patterns
of meta-atoms absorb the entire incoming EM waves, while
other models may entirely reflect the incoming EM waves.

The metasurfaces are dynamic, consisting of tunable ele-
ments that can switch their condition and EM behavior
by applying an external bias. These tunable elements may
include CMOS switches or MEMS switches. In the metasur-
faces, the switching elements control the meta-atoms that act
as input and output antennas. Besides, the switching elements
also connect the meta-atoms in custom topologies. That is,
when incoming EM waves enter from an input antenna, they
are routed based on the status of the switch, and exit via
the output antenna, helping the LIS to achieve a customized
reflection [11].

There are various switching technologies to control the
EM reflection from the smart surface, including positive-
intrinsic-negative (PIN) diodes, varactor-tuned resonators,
liquid crystal, and MEMS technologies. One way of control-
ling the reflection effect in a metasurface is by placing PIN
diodes as switch elements. An external bias switches the PIN
diodes on and off, generating two different states for the smart
surface, as shown in Fig.1. When the PIN diode is turned
off, the incoming energy penetrates the surface and is mostly
absorbed. However, when the PIN diode is on, most of the
incoming energy is reflected [1].

Additionally, varactor-tuned resonators are also used for
controlling the signal’s propagation, as illustrated in Fig. 2.
When the bias voltage is applied to the varactor, a tunable
phase shift is attained. The liquid crystals can further tune the
phase shift of the reflected signal, as suggested in [33]. By dif-
fering the direct current (DC) voltages on the patches of liquid
crystal-loaded unit cells, the effective dielectric constant of
any individual unit can be thus adjusted. As a result, the phase
shifts of the incoming signal can be controlled at various
locations of the metasurface. Dynamic metasurfaces make
up a tile that consists of a gateway, to which the controller
network acquires a slave/master relationship. The controller
network records its running state and receives instructions
to change the current condition of the switching elements
through the gateway [11].

To get a better understanding of such working principle,
we next demonstrate a basic example of a controllable wire-
less propagation by means of inducing an intelligent surface.
The example considers the conventional two-ray channel
model for a free space environment and a reflecting surface
deployed on the ground plane [1].

The propagation of radio waves is described in terms
of rays using a ray optics model which assumes that the
geometric size of the ground plane is considerably larger
than the wavelength of the radio wave and that the ground
plane reflections are specular [45]. In addition, the model
proposes that the radio waves travel in straight lines in case
of homogeneous media, i.e., the energy is transported along
certain curves.More concisely, the model adheres to Fermat’s
principle that states that the ray travels along the path between
two points with minimum travelling time. The received signal
is composed of the line-of-sight (LoS) ray and the reflected
ray from the ground, as depicted in Fig. 3. Then, according to
Snell’s law of reflection, the point of reflection is where the
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TABLE 3. List of different LIS terms.

FIGURE 1. Controlling the EM reflection using PIN diodes.

FIGURE 2. Controlling the EM reflection using varactor-tuned resonators.

imaginary vertical line stands. The angle between the incident
ray and this vertical line is equal to the angle between the
reflected ray and the imaginary line. Based on this model,
the power received at the destination is represented as

Pd = Ps

(
λ

4π

)2 1
z
+
R× e−j1φ

rs + rd

2

(1)

FIGURE 3. Conventional two-ray propagation model.

where Ps is the power transmitted from the source, λ is the
wavelength, z is the distance between the source and the
destination antennas, rs is the distance between the source
antenna and the point of reflection on the LIS, rd is the
distance between the point of reflection and the destination
antenna, R is the ground reflection coefficient, and 1φ =
2π(rs+rd−z)

λ
represents the phase difference between the two

paths. If we assume that there is no ground reflection, and the
distance between the source and the destination is very large,
i.e., d � hs+hd , then d ≈ z ≈ rs+ rd , and therefore (1) can
be simplified as

Pd = Ps

(
λ

4πd

)2

. (2)

Both (1) and (2) show that the uncontrollable reflection from
the ground surface degrades the received power of the signal.

Consider an LIS system with N reconfigurable meta-
surfaces laid on the ground, and acting as a reflecting sur-
face to support the communication between the source and
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FIGURE 4. The working principle of LIS as a reflector.

the destination, as depicted in Fig. 4. According to the gener-
alized Snell’s law, each meta-surface can independently tune
the angle of reflection and the reflected ray phase. Moreover,
unlike a typical passive surface, the incidence and reflec-
tion angles are not necessarily the same. Thus, the power
received at the destination with respect to i-th reconfigurable
meta-surface can be represented as

Pd = Ps

(
λ

4π

)2 1
z
+

N∑
i=1

Ri × e−j1φi

rs,i + rd,i

2

. (3)

To avoid the fluctuation of the power received at the des-
tination, the reflection coefficients of the reconfigurable
meta-surfaces are optimized based on various assumptions,
such as the absence of reflection losses and perfect LIS phase
knowledge. Hence, every Ri is optimized to align the phase
of the received signal with the LoS path. Then, the power
received at the destination can simply be written as follows:

Pd ≈ (N + 1)2Ps

(
λ

4πd

)2

. (4)

In conclusion, the power received at the destination is directly
proportional to the square of the number of the independently
controlled phases of LIS N 2 and inversely proportional to the
square of the distance between the source and the destination.
This clearly shows the potential of LIS in wireless networks
where a power gain is obtained as a function of the number
of reflecting meta-surfaces [1].

To best realize the full potential of LIS systems, our paper
next focuses on ways of optimizing the performance of LIS
systems through surveying the major relevant optimization
frameworks. The paper further addresses the performance
analysis of LIS systems, and illustrates several open issues
in the context of LIS-aided wireless networks.

III. OPTIMIZATION USE CASES IN IRS-BASED SYSTEMS
IRS are proposed as intrinsic components of beyond-5Gwire-
less systems, as they have the potential of transmitting data
through multiple active elements, intelligently adjusting the
communication channel in the process [46]. The increasing
demands for data rate requirements and higher-speed wire-
less communications for future networks have raised seri-
ous concerns on their power consumption, energy efficiency,

FIGURE 5. An IRS-aided wireless communication system from a BS.

secrecy rate, etc. As discussed earlier, IRS are considered
as contiguous surfaces of electromagnetically active materi-
als. Thus, to realize the full potential of IRS systems, they
have to be well-designed, optimized and integrated. Hence,
in this section, we survey the optimization frameworks of
IRS, including the maximization of energy efficiency, sum-
rate, secrecy-rate, and coverage. Fig. 5 illustrates the basic
structure of IRS system, where N indicates the number of
reflecting elements in the IRS, andM indicates the number of
transmit antennas at the base station (BS). IRS are connected
to K single-antenna users, where hd,k , hr,k , and H1 denote
the channel links between the IRS to the k-th user, the BS to
the k-th user, and the BS to the IRS, respectively. Table 4 lists
the symbols that are used in the following sections.

A. ENERGY EFFICIENCY
With the rapid growth of wireless networks, the number
of connected devices continues to increase exponentially,
leading to a dense deployment of MIMO base-stations and
access-points (APs). Since IRS comprise a massive number
of reflecting elements, their deployments would enhance the
efficiency of future wireless networks, as high passive beam-
forming gains can be collaboratively achieved via modifying
the phase shifts of the reflected signals [47].

As energy efficiency (EE) is a crucial performance metric
for balancing the throughput and the power consumption,
the question of reaching an optimized strategy to reach a
maximal EE performance is of high importance in IRS.
To this end, the work in [5] proposes a significant sus-
tainable energy-efficient approach. Since IRS-based systems
are capable of adjusting the phase shift induced by each
reflecting element to constructively combine the reflected
signal, they can amplify and forward the signals without the
need for additional power amplifiers. To this end, IRS-based
systems become more favorable than conventional amplify-
and-forward (AF) relay systems [48]. In particular, an opti-
mized EE policy in IRS systems via optimizing the phase
shifts and transmit power is proposed in [5], while satisfy-
ing specific power and QoS constraints [5]. More precisely,

202800 VOLUME 8, 2020



R. Alghamdi et al.: Intelligent Surfaces for 6G Wireless Networks: A Survey of Optimization and Performance Analysis Techniques

TABLE 4. List of Symbols.

in [5], the authors consider an IRS-based downlink multi-user
multiple-input-single-output (MISO) system with K users,
and one BS equipped with M antennas as shown in Fig.5.
Following the analysis of [5], the EE maximization problem
is addressed as:

max
2,P

∑K
k=1 log2(1+ pkσ

−2)

ξ
∑K

k=1 pk + PBS + KPUE + NPn(b)
(5a)

s.t. log2(1+ pkσ
−2) ≥ Rmin,k , ∀k = 1, 2, . . . ,K (5b)

tr((H22H1)+P(H22H1)+†) ≤ Pmax (5c)

|8n| = 1 ∀n = 1, 2 . . . ,N (5d)

where ξ = η−1, η denotes the efficiency of the power
amplifier at the transmitter side, H1 is the channel matrix
between the BS and the IRS, H2 is the compound chan-
nel matrix between the IRS and all users, i.e., H2 =

[hTr,1 h
T
r,2 . . . h

T
r,K ]

T , where hTr,k denotes the channel vec-
tor between the IRS and user k , and pk ,PBS ,PUE ,Pn(b)
denote the transmit power of user k , the total hardware power
consumption at the BS, the hardware static power, and the
power consumption of each phase shifter for b number of
bits, respectively. Moreover, the total signal power is denoted
by P = diag(p1, . . . ., pk ). The constraint in (5b) accounts
for the individual QoS requirement, i.e., Rmin,k of the k-
th user. Constraint (5c) denotes the power budget, where
H22H1 is the equivalent channel matrix, 2 is the diagonal
matrix that accounts for the effective phase shifts of the IRS

elements, tr(·) is the trace operator, and Pmax is the maxi-
mum power transmitted by the BS. Note that the superscripts
† and + indicate the Hermitian (conjugate transpose) and
the pseudo-inverse of a matrix, respectively. The constraint
in (5d) discretizes the IRS phase shifts. The optimization
problem in (5b) is non-convex and the work in [5] develops
two efficient approaches to solve it. Firstly, an alternating
optimization technique is employed that iteratively solves
for both 2 and P. Secondly, both a gradient descent and a
sequential fractional programming (SFP) are adopted to solve
the problem. The results in [5] illustrate that an optimized
IRS-based system achieves an EE gain in the order of 300%
as compared to the conventional AF-based systems.

B. POWER OPTIMIZATION
In addition to energy efficiency, power optimization frame-
works are prerequisites for efficient utilization of future
wireless networks. The majority of existing works on IRS
assume continuous phase shifts for all reflecting elements,
which is not practical due to hardware limitations [12], [39].
In [36], Wu et al. considered an IRS-assisted system which
employs discrete phase shifts at each element to support the
communication between the AP and the single antenna user.
Configuring the phase shifts results in adding the reflected
and non-reflected signals together constructively by the IRS,
thereby improving the desired signal power and the wireless
network performance. Note that the interference-free zone is
created by the IRS due to their spatial interference cancella-
tion capability, which holds only by assuming an ideal case,
i.e., where the phase shift at each reflecting element is con-
tinuous. This assumption, however, is not practical; therefore,
the work in [36] considers a more practical approach with a
limited number of discrete phase shifts, but with continuous
transmit beamforming vectors at the AP.

FIGURE 6. An IRS-aided wireless communication system from an AP.

The system model in [36] is a conventional MISO setup,
consisting of N reflecting elements, a receiver with a single
antenna, and an AP equipped with M antennas as shown
in Fig. 6. This model is developed for downlink communi-
cation assuming a quasi-static flat-fading channel. Moreover,
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[36] only accounts for the signals that are reflected by the
IRS once. The objective in [36] is to minimize the transmitted
power at the AP by optimizing the transmit beamforming
and passive reflect beamforming vectors at the AP and at
the IRS, respectively, while satisfying a signal-to-noise-ratio
(SNR) threshold at the receiver side. The problem in [36] is
formulated as follows:

min
w,8
‖w‖2 (6a)

s.t. |(h†r2G+ h†d )w| ≥ γ σ
2 (6b)

8n ∈ F ,∀n (6c)

where ‖w‖2 denotes the total transmit power, 8 is the phase
shift vector 8 = [81, . . . , 8N ], h

†
r , h

†
d , and G represent

the channel links between the IRS to user, the AP to user,
and the AP to IRS, respectively. The constraint (6b) assures
that the SNR at the receiver side satisfies the user require-
ment γ . The second constraint (6c) restricts 8n to be a
discrete value from the set F . Problem (6a) is a non-convex
optimization problem that [36] tackles using an alternating
optimization technique, where all N phase shifts are opti-
mized alternatively by tuning one phase shift at a time, while
fixing the others. The authors in [36] analytically prove
that IRS with discrete phase shifts can achieve the same
asymptotic squared power gain of the continuous phase shifts.
It further demonstrates that utilizing discrete phase shifts
accomplishes a considerable power saving.

In [49], IRS are used to address the problem of simul-
taneous wireless information and power transfer (SWIPT).
In a far-field, power transfer has low efficiency which limits
the rate-energy trade-off performance of SWIPT systems.
Furthermore, in SWIPT, energy harvesting receiver (EHR)
demands high received power that is much higher than the
information decoding receiver (IDR) power, which imposes
practical efficiency issues. To overcome these challenges,
the work in [49] proposes a novel SWIPT system aided by
IRS technology. This approach leverages the high beamform-
ing gains achieved by the IRS to enhance the wireless power
transfer efficiency and rate-energy trade-off performance of
the SWIPT systems.

The system model used in [49] is shown in Fig. 7, which
consists of a MISO IRS-aided SWIPT system from the AP to
many receivers, i.e., IDRs and EHRs. The purpose of utilizing
IRS is to enhance the efficiency of EHRs that are placed in
the coverage area of the IRS. The IRS-assisted network has
N reflecting elements to support SWIPT from M number
of APs (with multiple antennas) to two types of receivers
(each with a single-antenna), which are IDRs and EHRs,
expressed by KI and KE , respectively. Moreover, [49] con-
siders a quasi-static flat fading channel model to characterize
the optimal rate-energy performance. Note that the IRS can
create an interference-free zone via passive beamforming and
active beamforming at the IRS and at the AP, respectively.
For simplicity, the work in [49] assumes that the interference
between the AP signals cannot be canceled by the IDRs.

FIGURE 7. An IRS-aided SWIPT system.

To address the SWIPT system limitations, the authors in [49]
aim at maximizing the EHRs’ received weighted sum-power,
while achieving a certain signal-to-interference-plus-noise
ratio (SINR) threshold at IDRs. This is achieved by optimiz-
ing the transmit beamforming vectors and reflect phase shifts
at the AP and IRS, respectively. The SINR of the i-th IDR is
given as follows (by taking into consideration that IDRs can
not cancel the interference caused by the energy signals):

SINRi =
|h†i wi|

2∑
k 6=i,k∈KI

|h†i wk |
2 +

∑
j∈KE
|h†i vj|

2 + σ 2
i

(7)

where h†i = h†r,i2G + h†d,i given that h†r,i, h
†
d,i, and G

represent the channel links between the IRS and i-th IDR,
AP and i-th IDR, and AP-IRS, respectively. Note that wi and
vj are the precoding vectors for IDR and EHR, respectively,
where k, i ∈ KI and j ∈ KE . Here, let S be a positive
semi-definite matrix that accounts for the energy weights of
EHRs. The maximization problem can then be expressed as

max
wi,vj,8

∑
i∈KI

w†
i Swi +

∑
j∈KE

v†j Svj (8a)

s.t. SINRi ≥ γi, ∀ i ∈ KI (8b)∑
i∈KI

‖wi‖2 +
∑
j∈KE

‖vj‖2 ≤ Pmax (8c)

0 ≤ 8n ≤ 2π,∀ n ∈ N (8d)

where the received weighted sum-power by EHRs is given as∑
j∈KE

αjEj =
∑
i∈KI

w†
i Swi +

∑
j∈KE

v†j Svj, (9)

and where constraint (8b) ensures that the SINR at differ-
ent IDRs exceeds a certain threshold and (8c, 8d) express
the power budget and phase shift constraints, respectively.
In (8d), N denotes the set of reflecting elements with car-
dinality |N | = N . The problem (8a) is a non-convex problem
because of coupling the transmit beamforming vectors and
IRS phase shifts in the objective function and in the SINR
constraint. The optimization problem (8a) is reformulated as
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an alternating optimization problem and then solved with
semi-definite relaxation (SDR) by dropping the rank-one
constraint, which is related to the transmit pre-coders. Finally,
the transmit pre-coders are recovered through eigenvalue
decomposition over the attained rank-one. The results in [49]
show that the SWIPT system with IRS can radically increase
rate-energy performance.

In [12], the work proposes a new approach for point-
to-point MISO wireless networks using passive IRS. IRS are
used to assess the information transmitted from the AP to
the user as shown in Fig. 6. Hence, the user jointly gets
both the signals that are transmitted from the AP and the
one reflected by the IRS. The main objective is to maximize
the total received power at the receiver by optimizing the
transmit beamforming and the phase shifts at the AP and at
the IRS, respectively. The non-convex optimization problem
is formulated as:

max
w,8
|(h†r2G+ h†d )w|

2 (10a)

s.t. ||w||2 ≤ Pmax (10b)

0 ≤ 8n ≤ 2π, ∀n = 1, . . . ,N , (10c)

The diagonalmatrix2 = diag(βej81 , . . . , βej8n , . . . , βej8N )
accounts for both the amplitude reflection coefficient β ∈
[0, 1]. The problem (10a) is non-convex because of the cou-
pled expression involving transmit beamformingw and phase
shifts8 in the objective function. Therefore, problem (10a) is
reformulated using a centralized algorithm based on SDR to
relax the rank-one constraint. The resultant problem is given
as:

max
V

tr(RV )

s.t. Vn,n = 1,∀n = 1, . . . ,N + 1

V � 0, (11)

where

R =

[
99† 9hd
h†d9

† 0

]
. (12)

9 = diag(h†r )G indicates the diagonal matrix of IRS-user
link. The authors in [12] obtained the eigenvalue decomposi-
tion of V = U6U†, where U = [e1, . . . eN+1] is a unitary
matrix, and 6 = diag(λ1, . . . , λN+1) is a diagonal matrix,
both with a size of (N + 1)× (N + 1). The resultant problem
in (11) is a regular convex semi-definite program (SDP), and
therefore, can be solved using CVX optimization solver [50].
Furthermore, the work in [12] introduces a distributed algo-
rithm with low-complexity to solve (11), where the transmit
beamforming and phase shifts are tuned by the AP and IRS
alternatively.

For the transmit beamforming vectorw, the objective func-
tion in (10a) provides the resulting inequality:

|(h_r†2G+ h_d†)w| = |h_r†2Gw+ h_d†w|

≤ |h_r†2Gw| + |h_d†w| (13)

Therefore, the equality in (13) holds if and only if
arg(h_r†2Gw) = arg(h_d†w) = ϕ0. Also, by utilizing
a change of variables, such as h_r†2Gw = v†a, where,
v = [ej81 , . . . , ej8N ]†, a = diag(h_r†)Gw, and neglecting
the constant term |h_d†w|, the problem (10a) is reduced to
the following as:

max
v

|v†a|
s.t. vn = 1,∀n = 1, . . . ,N

arg(v†a) = ϕ0 (14)

The optimal solution of (14) is given by v∗ = ej(ϕ0−arg(a)) =
ej(ϕ0−arg(diag(h_r

†)Gw)) as in [12]. Therefore, the corresponding
n-th phase shift is can be written as

8∗n = ϕ0 − arg(h†n,rg
†
nw) = ϕ0 − arg(h†n,r )− arg(g†nw).

Note that h†n,r is the n-th element of h†r (and g
†
n represents the

n-th row vector ofG). g†nw includes the transmit beamforming
and the channel link between the AP and the IRS. Further-
more, the phase of h†dw is fixed as a constant for all iterations
to allow a distributed implementation. Note that summation
of the phase rotation and the beamforming vector is valid
without adjusting the beamforming gain. Then the transmit
beamforming can be written as

w∗
=

√
Pmax

(h†r2G+ h†d )
†

||h†r2G+ h†d ||
ejα. (15)

The AP adaptively chooses α in all the iterations such that
h†dw

∗ is a real number. In conclusion, the solution of prob-
lem (14) can be achieved by applying the appropriate n-th
phase shift at the IRS. The distributed algorithm does not
require a feedback channel between the AP-IRS as compared
to the centralized algorithm. Also, it does not require utilizing
SDP solution since closed-form solutions exist.

C. SUM-RATE MAXIMIZATION
Having discussed both EE and power consumption from an
optimization perspective, we hereby review several optimiza-
tion formulations of maximizing the data rate gains to fully
exploit the IRS technology. In [51], all the IRS’ elements are
considered passive in the presence of a few active elements,
which are controlled by the IRS controller. The IRS discover
the best way to interact with the incoming signal, provided
the active elements, by using a deep learning-based solution.
Furthermore, the main goal is to maximize the achievable rate
by designing the IRS reflection beamforming vector w. The
achievable rate is expressed as

R =
1
K

K∑
k=1

log2
(
1+ SNR|(hT ,k � hR,k )Tw|2

)
, (16)

where � denotes the Hadamard product, SNR = pT
Kσ 2

rep-
resents the total transmit power over the noise, hT ,k and hR,k
represent the downlink channels, and K indicates the number
of sub-carriers. The reflection beamforming vector in the IRS
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is created by using the RF phase shifter. The beamforming
vector is chosen from a predefined codebook Q where the
goal is to find an optimal transmit beamformingw∗ that yields
to an optimal rate as follows

R∗ = max
w∈Q

1
K

K∑
k=1

log2
(
1+SNR |(hT ,k�hR,k )Tw|2

)
. (17)

A comprehensive search is required to look for the opti-
mal beamforming reflected vector w∗, which does not have
a closed-form solution because of the quantized codebook
constraint and the time-domain exertion of the beamforming
vector [51]. This extensive search increases the complexity
of hardware implementation and power consumption signif-
icantly. For that reason, the objective is to design IRS-aided
systems based on a deep learning solution to find the optimal
achievable rate while satisfying a low-training overhead and
low hardware complexity. To this end, the work in [51] pro-
poses a deep learning-based solution to predict the optimal
reflection matrix while satisfying a low training overhead.
The authors have also proposed two other methods for the
IRS system design with unknown channel knowledge; one is
based on compressive sensing [52], and the other is based on
deep reinforcement learning [53]. All three methods leverage
the proposed IRS architecture with few sparse active channel
sensors.

Recently, the work in [54] considers the system model
illustrated in Fig. 6 and proposes maximizing spectral
efficiency of the IRS-based system using two different
algorithms, including manifold optimization and fixed-point
iteration methods. The proposed algorithms achieve higher
spectral efficiency with lower computational complexity. The
maximization problem is formulated as

max
2,w
|(h†r2G+ h†d )w|

2

s.t. 2 = diag(ej81 , ej82 , . . . , ej8M )

||w||2 ≤ Pmax , (18)

Note that this optimization problem (18) is non-convex due
to the presence of phase shifts, and can be re-written as

max
v

v†Rv

s.t. |υi| = 1, i ∈ {1, 2, . . . ,M + 1}, (19)

where v = [xT , t]T , x = [ej81 , . . . , ej8M ]†, t ∈ R, and

R =

[
diag(h†r )GG†diag(hr ) diag(h

†
r )Ghd

h†dG
†diag(hr ) 0

]
. (20)

This is a quadratically constrained quadratic program (QCQP)
where the objective function is concave and can be solved
with an SDR method by discarding the rank-one constraint.
This method provides an estimated solution, i.e., it does not
guarantee an optimal solution. Asmentioned before, the fixed
point iteration method and manifold optimization can be
utilized to find a locally optimal solution for problem (18).

Several other works on IRS assume fully reflective ideal
phase-shift models, where they assume a unified amplitude
at any phase shift. This implementation is not practical, due
to hardware limitations. In contrast, [55] introduces a feasible
phase shift model with a reflection coefficient which appre-
hends the phase-dependent amplitude for a MISO wireless
system. The IRS controller is utilized to communicate with
the AP to control the IRS reflections, where the IRS reflecting
elements are programmable by the controller. Recall that
9 = diag(h†r )G. To design an IRS-assisted system, it is
crucial to identify the relationship between the reflection
amplitude and phase shift. Let the incident signal be denoted
as vn = βn(8n)ej8, where 8n, and βn denote the phase shift
and its amplitude, respectively. Based on these parameters,
Fig. 6 depicts the system model that is considered in [55]
to formulate the optimization problem that maximizes the
achievable rate by optimizing both the transmit beamforming
vector w at the AP and the reflect beamforming vector v at
the IRS as follows

max
w,v,{8n}

|(v†9 + h†d )w|
2 (21a)

s.t. ||w||2 ≤ Pmax (21b)

vn = βn(8n)ej8n , ∀n = 1, . . . ,N (21c)

−π ≤ 8n ≤ π, ∀n = 1, . . . ,N , (21d)

where (21b) denotes the power constraint at the AP. Con-
straint (21c) denotes the reflection amplitude as a function
of the phase shift, whereas (21d) accounts for the phase
shift to be between -π and π . According to [55], the opti-
mal transmit beamforming optimal transmit beamforming for
(21a) is found using the maximum-ratio transmission, where

w∗ =
√
Pmax

((v†9+h†d )
†)

||(v†9+h†d )||
. By accounting for w∗, the problem

in (21a) is reformulated as

max
v,8n
||(v†9 + h†d )||

2 (22a)

s.t. vn = βn(8n)ej8n ,∀n = 1, . . . ,N (22b)

−π ≤ 8n ≤ π,∀n = 1, . . . ,N , (22c)

Although (21a) is a simplified version of (22a), it remains
non-convex and is complicated to solve using classical
techniques. Hence, the work in [55] utilizes an alternating
optimization approach to tackle the problem, reaching a
sub-optimal solution. In [56], a weighted sum-rate (WSR) is
maximized instead, by jointly determining the active beam-
forming at the BS and the passive beamforming at the IRS.
A downlink multiuser MISO communication system is con-
sidered in [56] as shown in Fig. 5, containing M antennas at
BS, IRS with N reflecting elements, and K end-users [56].
The IRS are utilized to assist the BS in reducing the fading
and shadowing effects, where the instantaneous SINR for
decoding the intended signal at user k is denoted as

γk =
|(h†d,k + h

†
r,k2

†H1)wk |2∑K
i=1,i6=k |(h

†
d,k + h

†
r,k2

†H1)wi|2 + σ 2
. (23)
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Here the k-th user treats signals that are transmitted from
other users as interference. Hence, the optimization problem
is formulated as

max
W ,2

f1(W ,2) =
K∑
k=1

wk log2(1+ γk ) (24a)

s.t. 8n ∈ F , ∀n = 1, . . . ,N (24b)
K∑
k=1

||wk ||2 ≤ Pmax . (24c)

The goal in (24a) is to maximize the WSR as a function ofW
and 2, where it represents the transmit beamforming matrix
at the BS and the reflection coefficient matrix at IRS, respec-
tively. The term wk indicates the priority of the k-th user.
In (24b), F1,F2,F3 denote an ideal reflection coefficient,
continuous, and discrete phase shifters, respectively, where
F ∈ {F1,F2,F3} (the feasible set of reflection coefficients).
(24c) is the transmit power constraint of BS, where Pmax
is the maximum feasible power. The authors in [56] tackle
this non-convex optimization problem via Lagrangian dual
transform with a low computational complexity algorithm,
by alternatively optimizing the active and passive beamform-
ing so as to attain a sub-optimal solution. The results suggest
that beamforming optimization surpasses conventional mod-
els under given phase-shift models.

D. SECRECY-RATE MAXIMIZATION
Besides improving the achievable rate and EE of wireless
communication systems, IRS can also achieve physical layer
security. In fact, the IRS improve the secrecy data rate,
i.e., when the data rate at an eavesdropper decreases and
the data rate at a legitimate receiver increases [15], [57].
Additionally, IRS focused transmissions from the smart
meta-surfaces would boost communication network security.
Therefore, given that signals might be subject to interception
after transmission, optimizing secrecy rates becomes quite
important. In [58], [59], the secrecy rate of the system is
maximized by optimizing the source transmit power and the
IRS’ phase shift matrix. Since the formulated problem in
(27a) is not convex, the work in [58] proposes an alternating
algorithm to acquire a tractable solution. First, a closed-form
solution for the source transmit power is obtained and then
a bisection search based semi-closed form solution is devel-
oped via tight bounding to optimize the phase shift matrix.

The system model in Fig. 8 consists of a source (Alice),
IRS, receiver (Bob), and an eavesdropper (Eve).M indicates
the number of antennas at Alice’s side, and N represents
the number of reflecting elements at the IRS. Also, reflected
signals from the IRS are neglected due to their small power.
Furthermore, to maximize the power matrix of the reflected
signal, the work considers maximal reflection of the reflected
signal matrix. Due to the fact that the IRS reflect Alice’s
signal, the received signals at Bob’s side are the combination
of both the signal fromAlice and the IRS. The signal received

FIGURE 8. An IRS-aided wireless communication system subject to
interception.

at Bob is denoted by

yb = h†Ib2HaIx+ h
†
abx+ nb, (25)

where h†Ib is the channel between Bob and the IRS.8i denotes
the phase shift obtained by the i-th reflecting element of the
IRS, HaI is the channel between Alice and the IRS, and x
represents the transmitted signal by Alice. The co-variance
matrixW = E{xxH } of x satisfies tr(W ) ≤ Pmax , where h

†
ab

is the channel between Alice and Bob, and nb is the AWGN
with variance σ 2

n,b at Bob’s side. Similarly, the signal received
by Eve is given as

ye = h†Ie2HaIx+ h†aex+ ne, (26)

where h†Ie, h
†
ae are the channel between the IRS and Bob, and

the channel between Alice and Eve, respectively. The AWGN
at Eve is denoted by ne with variance σ 2

n,e. To improve the
secrecy rate for the above system setup,W and the phase shift
matrix2 are jointly optimized. The achievable rateRs(W ,2)
needs to be maximized, i.e.,

max
W�0 2

Rs(W ,2) (27a)

s.t. tr(W ) ≤ P, |θi| = 1, i = 1, · · · ,N , (27b)

where Rs is given by

Rs(W ,2)

= log2

(
1+

(h†Ib2HaI + h
†
ab)W (H†

aI2
†hIb + hab)

σ 2
n,b

)

− log2

(
1+

(h†Ie2HaI + h
†
ae)W (H†

aI2
†hIe + hae)

σ 2
n,e

)
.

(28)

Note that the i-th diagonal element of2 is denoted by8i. Due
to the non-convexity caused by the unit modulus constraints,
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the optimization problem (27a) is hard to solve. Hence,
to solve the secrecy rate maximization problem, an alternat-
ing algorithm approach is used [58]. The algorithm optimizes
W with fixed2, and alternatively optimizes2 for a givenW .
Optimization over W with a fixed 2 yields the following
problem

max
W�0

h†bWhb + σ 2
n,b

h†eWhe + σ 2
n,e

(29a)

s.t. tr(W ) ≤ Pmax , (29b)

where hb = H†
aI2

†hab and he = H†
aI2

†hae. Similarly,
the problem that maximizes 2 by fixingW , is given by

max
2

|(h†Ib2HaI + h
†
ab)w|

2
+ σ 2

n,b

|(h†Ie2HaI + h
†
ae)w|2 + σ 2

n,e

(30a)

s.t. |8i| = 1, i = 1, · · · ,N . (30b)

The optimization problem (30a) is solved by using fractional
programming. The work in [58] also developed a secrecy
maximization algorithm for multi-antenna communication
systems where Eve hasM ≥ 1 antennas.

E. COVERAGE OPTIMIZATION
In the past, designing precoding and beamforming tech-
niques for MIMO systems has received significant attention.
This includes the minimization of transmit power and max-
imization of the minimum SINR. Maximizing the minimum
SINR has not been analyzed much by taking into consider-
ation the reflect beamforming design of the IRS. Therefore,
the work in [32] proposes optimizing the IRS phase matrix
that maximizes the minimum SINR. A projected gradient
ascent algorithm has been used to solve the optimization
problem and determine the phases that maximize the mini-
mum user SINR under optimal linear precoder (OLP). The
multi-user MISO communication system is shown in Fig. 5,
which consists of a BS with M antennas that communicate
with K single-antenna users, and IRS that has N passive
reflecting elements. The IRS are established on the surround-
ing building’s wall that can adjust the phase shift of each
reflecting component to realize the desired communication
objective. In [32], the work assumes that the BS-to-IRS chan-
nel satisfies the LoS conditions. Furthermore, it considers a
complex scattering environment, spatial correlation between
the IRS elements, and correlated Rayleigh channels between
the IRS and the users due to the user’s mobility. In [32], the
transmitted signal x is denoted by

x =
K∑
k=1

√
pk
K
gksk , (31)

where gk ∈ CM is the precoding vector, pk is the signal
power, and sk is the data symbol for the k-th user, respectively.
Moreover, the transmitted signal satisfies the constraint of the
average transmission power per user. Hence, the downlink

SINR at a single user k is given by

γk =

pk
K |h

†
kgk |

2∑
i6=k

pi
K |h

†
kgi|

2 + σ 2
(32)

here hk =
√
βkH12R1/2

IRSk
hr,k denotes the overall channel

between the BS and user k , where RIRSk denotes the spatial
correlation matrix of the IRS with respect to user k . The
max-min SINR problem is then defined as,

max
P,G

min
k

γk (33a)

s.t.
1
K
1TKP ≤ Pmax (33b)

‖ gk ‖= 1, ∀k. (33c)

This optimization problem can be solved using the OLP
to maximize the minimum SINR [60]. The aim is to design
the phase values of the IRS’ elements that appear in the
diagonal of the reflect beamforming. To achieve this goal,
an approach with infinite resolution phase shifters where all
channels are precisely known at the BS was assumed in [60],
which employs the OLP to allocate the optimal powers.

To summarize, when the LoS channel between the BS and
the IRS is of rank-one, a closed-form solution with minimum
SINR under the OLP is formulated [60]. As K increases,
serving more than one user becomes more challenging due to
the SINR convergence. To solve this problem, the work [60]
assumes that the LoS channel has a high rank and uses
tools from random matrix theory to develop a deterministic
approximation for the OLP parameters [32]. Lastly, the IRS
phase matrix that maximizes the minimum SINR under
the asymptotic OLP is designed using projected gradient
ascent.

This section explores relevant optimization frameworks
so as to exploit the full capabilities of IRS-based systems.
As a summary, we also provide Table. 5 which compares the
optimization frameworks for IRS and states the assumptions
considered in the literature. The next section focuses on ana-
lyzing the performance of the IRS-based system from several
perspectives including capacity, hardware impairments, and
data rate.

IV. PERFORMANCE ANALYSIS OF LIS SYSTEMS
LIS technology is expected to provide reliable wireless com-
munication when a LoS link is established, as previous sec-
tions discuss. The significance of this technology makes it
vital to study the performance analysis of LIS-based systems.
To this end, this section reviews the performance analysis of
LIS systems from different aspects, such as asymptotic anal-
ysis of uplink and downlink data rate, outage probability, and
spectral efficiency. Because of their relatively large dimen-
sions, it is often challenging to get closed-form solutions to
mathematically describe LIS systems. This section, therefore,
covers different methods of estimating and approximating
LIS systems performance.
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TABLE 5. Comparison of optimization frameworks for LIS.

A. CAPACITY ANALYSIS OF LIS SYSTEMS
Due to LIS capabilities in empowering robust and high-speed
6G communication networks, it is evidently essential to study
the systems capacity, including hardware impairment effect,
uplink/downlink transmission rate, and the impact of phase
shifts.

1) DATA TRANSMISSION CAPACITY
The authors in [4] study the achieved unit-volume normal-
ized capacity, where an infinitely-sized LIS system and a
fixed transmit power per unit volume Pu are considered.
As the wavelength λ goes to zero, the normalized capacity
per unit-volume Ĉ approaches Pu

2N0
. Here, N0 is the power

spectral density (PSD) of AWGN and Pu = P
λ
where P refers

to the terminal transmit power. In [4], the received signal
is optimized and goes through a sinc-function-like match
filtering process. As for the analysis, the LIS system’s spatial
degree of freedom (DoF) is also studied in [4] to be harvested
(i.e., the number of independent signal dimensions ρ) [61],
to alignwith Shannon’s capacity. The spatial DoF ismeasured
as a function of Ĉ for the high SNR slope, given as

ρ = lim
Pu
2N0
→∞

Ĉ

log( Pu2N0
)
. (34)

For a one-dimensional user-equipment (UE) deployment,
the normalized capacity is given by

Ĉ = lim
K→∞

C
1x
, (35)

where C, K , and 1x are the capacity, number of UEs,
and the spacing between the neighboring UEs on the x-
dimension, respectively. Similarly, the normalized capacity
for two-dimensional UE deployment is given by

Ĉ = lim
K→∞

C
1s
, (36)

where 1s = 1x1y is the spacing between the neighboring
UEs.1x and1y represent the spacing between the neighbor-
ing UEs on the x- and y-dimension respectively. Solving (35)
and (36) yield 1x =

λ
2 and 1s =

λ
π
, which means that for

infinitely-sized LIS of one-dimension, Ĉ is maximized when
2
λ
UEs are to be multiplexed per meter, whereas multiplexing

π

λ2
UEs spatially per m2 maximizes Ĉ for two-dimensional

UE deployment. Finally, [4] leverages the sampling theory
to show that a hexagonal lattice is an optimal sampling
one, which minimizes the surface area of LIS when every
deployed antenna can earn only a single spatial dimension.
Also, increasing K does not affect the capacity of the system,
proving that it is a robust system with good potentials of data
transmission interference suppression.

2) HARDWARE IMPAIRMENTS ANALYSIS
LIS systems are believed to outperform the conventional
communication systems; therefore, it is noteworthy to con-
sider the analysis of LIS-systems in the presence of hard-
ware impairments (HWI). Almost all communication systems
encounter HWI, and LIS systems are no exemptions. That is,
LIS systems have large surface areas that would impact the
HWI degradation over the system. The work in [62] studies
the capacity degradation of an LIS system in the presence
of HWI, when serving one UE. The HWI is modeled as a
Gaussian process, and its variance depends on r , the distance
of received signal power from the center of the LIS, which is
turn is modeled as

f (r) = αr2β , (37)

where α and β are two positive constants, and where α =
0 represents the case of no HWI. The capacity of an LIS
system typically increases with a large surface area; however,
an LIS system with HWI has the opposite performance.
That is, increasing the surface area degrades the system
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capacity severely, as shown in the numerical results of [62].
To overcome the significant impact of HWI on the LIS sys-
tem, [62] proposes splitting the LIS system surface into K
smaller units. This idea is yet to be discussed in section VI.

B. DATA RATE ANALYSIS
One of the critical factors of analyzing communication sys-
tems is the achievable data rate. This section presents the
literature on the data rate expressions derived for LIS systems.

1) UPLINK RATE FOR SINGLE-LIS SYSTEMS
The work in [29] studies not only the uplink data rate of
LIS systems, but also shows the superiority of LIS systems’
performance over mMIMO systems. Also, [29] takes into
consideration the channel estimation error and channel hard-
ening effects. In simple terms, [29] shows that the achieved
capacity is correlated to the mutual information under the
asymptotic analysis on the number of antennas and connected
UEs.

FIGURE 9. Single LIS system with K units serving up to K devices.

The authors in [29] consider an LIS system shown in Fig. 9.
The system consists of a single large surface divided into a
subarea of 2L × 2L denoted as units, each with N antennas
spaced by1L in a rectangular lattice. The LIS system serves
up to K devices, where each unit serves its corresponding
device. To avoid performance degradation that may occur due
to the overlapping between the LIS unit and the location of the
device, [29] assumes deploying orthogonal resource manage-
ment among devices. Therefore, all devices communicate to
a non-overlapping unit.

Using the above system, [29] analyzes the asymptotic per-
formance of the uplink data rate for boundless increasing N
and K , where [29] approximates the system performance by
first defining the uplink data rate for one unit (i.e., unit k) as

Rk = log(1+ γk ), (38)

where γk is the received SINR of unit k , and is given by

γk =
ρkSk (1− τ 2k )

Ik
. (39)

In (39), ρk is the uplink transmit SNR of device k and
τk ∈ [0, 1] represents the imperfection of the channel
error estimation. Here, Sk denotes the desired signal power,

where Sk = |hkk |4, hkk is the channel between device k and
the unit k of the LIS, and Ik is the interference-plus-noise term
for unit k .

The authors in [29] approach the asymptotic performance
analysis by first analyzing the moments of the random vari-
able Ik , then obtaining its asymptotic moment, and finally
deriving the asymptotic moment of Rk from Ik . The study
[29] shows that Sk converges to a constant that depends on
the height of the device k and length of the LIS unit when
N approaches infinity. Rk mean and variance can be approxi-
mately derived based on the mean and variance of γk , denoted
by µγk and σ

2
γk
, respectively. Therefore, using Taylor expan-

sion, the mean µ̄Rk and variance σ̄ 2
Rk of Rk can be defined

exclusively by the random variable Ik . The asymptotic mean
and variance of Ik depend on the devices’ locations and the
Non-Line-of-Sight (NLoS) interference correlation matrix:

µ̄Rk = log(1+ µ̄γk )−
σ̄ 2
γk

2(µγk + 1)2
, (40)

and

σ̄ 2
Rk =

−σ̄ 4
γk

4(µ̄γk + 1)4
+

σ̄ 2
γk

(1+ µ̄γk )2
, (41)

respectively. µ̄γk and σ̄
2
γk

are the asymptotic mean and vari-
ance of γk . Hence, the evaluation of the LIS system per-
formance can be obtained with no need to run extensive
simulations.

In large antenna-based systems, the system validity,
latency, and diversity scheduling are controlled by the fluc-
tuations of mutual information. For this reason, the study of
the channel hardening effect is crucial for LIS-based systems.
Hence, [29] studies the performance of mutual information
variance asN increases. Given the asymptotic value of γk and
N = ( 2L

1L )
2, the mean and variance of γk can be expressed

as the asymptotic mean µ̄Ik /N
2 and the asymptotic variance

σ̄ 2
Ik /N

2 of the random variable Ik . Using the scaling law,
[29] shows that the asymptotic interference-plus-noise Īk
converges to a constant as N increases; hence, the asymptotic
data rate R̄k and its mean and variance converge to a constant
value, proving that an LIS system indeed is influenced by the
channel hardening effect. Based on that, LIS lack scheduling
diversity and have better reliability and latency because of the
deterministic data rate. Finally, [29] compares the asymptotic
performance of the LIS systemwith mMIMO in terms of data
rate’s ergodic value and variance where the LIS system has a
higher ergodic rate. AsN increases, however, the gap between
the two starts shrinking, especially as the number of devices
K grows. Although the two systems have similar perfor-
mance for large values of N , this solution is not practical for
mMIMO systems, as it requires a large physical area, unlike
the LIS systems. In terms of data rate variance, a mMIMO
system shows a reduced channel hardening effect when the
variance increases with N and then converges to a constant.
As for the LIS system, the variance goes to zero with an
increase of N , which illustrates the channel hardening effect
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and eventually shows LIS systems performance superiority in
terms of reliability and latency.

FIGURE 10. The system model considered in [30], illustrating a multi-LIS
system sharing the same frequency band.

2) UPLINK RATE FOR MULTI-LIS SYSTEMS
Unlike prior works that only study the performance of a single
LIS system, [30] studies the performance of a multi-LIS
system (illustrated in Fig. 10), by deriving an upper bound
on the asymptotic system spectral efficiency (SSE) and by
investigating the impact of pilot contamination. Based on the
derivation of the upper bound, [30] attempts to optimize the
length of pilot training and the number of served devices per
an LIS system. The significance of [30]’s study lies in the fact
that acquiring the CSI requires sending pilot signals; however,
in multi-LIS systems, pilot contamination may occur due to
inter-LIS interference.

The study in [30] considers a multi-LIS system consisting
of Z number of LIS, each with the same characteristics as
in [29], where each surface of LIS has its signal processing
module to receive signals, estimate CSI and detect uplink
signal from its corresponding device. The modeling of [30]’s
system ensures not having an overlapping LIS unit (i.e.,
no intra-LIS interference) by having an orthogonal multiple
access resource management schemes for devices with sim-
ilar locations. Considering an LIS system with a matched
filter (MF), the MF requires an accurate CSI to suppress the
interference of a signal, where it gathers the CSI through
pilot signaling from a device to its corresponding LIS. Pilot
signaling of a device occurs during the coherent channel time
τ within the uplink frame structure. In the uplink structure,
pilot signaling occurs in a period of t , while data transmission
takes a period of τ − t , as shown in Fig.11. Given the
orthogonal multiple access scheme deployed, an orthogonal
pilot sequence of t ≥ K is allocated for each device for
obtaining the required CSI at the LIS side. In the case of a
multi-LIS system, the pilot symbols used by two adjacent LIS
lose their orthogonality, causing pilot contamination. For an
uplink frame structure, the instantaneous SSE of the z-th LIS
is given by

RSSEz = (1−
t
τ
)
K∑
k=1

Rzk = (1−
t
τ
)
K∑
k=1

log(1+ γzk ), (42)

FIGURE 11. The uplink frame structure showing the interval period of a
pilot signaling and data transmission [30].

whereRzk and γzk are the data rate and SINR of unit k , respec-
tively. Next, [30] optimizes t , which maximizes the asymp-
totic SSE for the unboundedly growing N . As [4] and [29]
show, the signal power of unit k of LIS z (for z ≥ 1) converges
to a deterministic value, with the increase of N . Following
the investigation of [29], [30] shows that unlike mMIMO
systems, as N increases, a multi-LIS system has negligible
inter/intra-LIS-interference through NLOS. Also, the imper-
fect CSI of a multi-LIS system does not affect its SSE; the
SSE of a multi-LIS system, regardless of its CSI, achieves
the same performance of a single-LIS with perfect CSI. Also,
[30] shows that the pilot contamination bounds a multi-LIS
SSE performance due to the inter/intra-interference caused
by LoS paths. Moreover, the authors in [63] analyze the
performance of LIS using orthogonal multiple access (OMA)
and non-orthogonal multiple access (NOMA). The study in
[63] reveals that NOMA may perform worse than OMA for
the users nearby LIS.

Unlike mMIMO systems where t is a factor affecting the
received SINR, [30] shows that when optimizing t for LIS
systems, increasing t does not increase the SINR. Therefore,
the optimal t∗ which maximizes the SINR is the minimum t
(i.e., t = K ). Finally, [30] asymptotically derives the optimal
number of devices thatmaximizes SSE. Also, [30] verifies the
analytical derivations (approximation) with extensive simu-
lations, where the study shows that the channel hardening
effect of multi-LIS is closer to that of a single-LIS system,
for a high value of K . The ergodic uplink rate of the single
and multi-LIS system is shown, where the single-LIS system
has the superior performance, and the gap between the two
follow the analytical derivation that is a result of the generated
pilot contamination and inter-LIS interference. For the SSE,
the increase of inter-LIS interference causes K to increase,
which explains the increase in the gap between the two
performances.

3) RATE IMPACT ON PHASE SHIFTS
As iteratively stated throughout this manuscript, controlling
phase shifts in LIS systems is a crucial factor for fine-tuning
the communication quality-of-service. According to [64], the
practical implementation of LIS relies on the limitations
of phase shifts, which degrades the overall system perfor-
mance. Therefore, [64] studies the uplink assisted commu-
nication system performance and provides an approximate
expression for the attainable data rate. Also, [64] derives
the optimal number of phase shifts needed for a particular
data rate threshold. In an LIS assisted communication model
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that consists of a planar array of N electrically controlled
elements, the number of phase shift patterns that can be
generated by the LIS model is 2u, where u is the number
of coding bits. The phase shifts have a uniform interval
expressed by 1θ = 2π

2u . One can obtain the phase shift value
by multiplying the phase shift interval by an integer si,j that
satisfies 0 ≤ si,j ≤ 2u−1, i.e., the phase shift value is si,j1θ ,
where the subscripts i, j refer to the element in the i-th row
and j-th column, respectively. The number of phase shifts is
limited in practice; thus, it is important to study the effect of
phase shifts limitations on the reliability of the system. The
phase shift error can be expressed as a function of the optimal
phase shift θ∗i,j and the closest phase shift θ̂i,j, that is expressed
as

δi,j = θ
∗
i,j − θ̂i,j, (43)

where

−
2π
2u+1

≤ δi,j <
2π
2u+1

. (44)

To evaluate the data rate degradation, ε must be defined,
which is the ratio of the error caused by the limited phase
shifts to the continuous phase shifts. Therefore, for the system
performance to exceed a certain threshold, ε must be greater
than ε0, i.e.,

ε =
log2

(
1+ E

[
γ̂
])

log2 (1+ E [γ ])
≥ ε0, (45)

where ε0 < 1, γ̂ is the SNR expectation, and γ is the received
SNR. The attainable data rate expression is studied in [64],
where the final expression is bounded from both sides. The
upper bound is found when the Rician factor κ →∞, while
the lower bound is calculated when κ → 0. The results in [64]
show that the data rate increases with the increase of the LIS
size. When the size of the LIS is sufficiently large, the SNR
becomes proportional to the square of the number of LIS ele-
ments. Most importantly, [64] finds that the required number
of bits to generate various phase-shifts depends on the size
of the LIS in the Rician channel conditions. The numerical
results indicate that three bits are needed for small-sized LIS,
two bits formoderate size, and one bit for infinitely-sized LIS,
which implies that two phase-shifts on average are enough for
deploying extremely sizable LIS.

V. RELIABILITY ANALYSIS OF LIS
While the above studies focus on the asymptotic analysis of
LIS systems, it is equally important to reflect on the reliability
of the LIS system from an error analysis perspective. This
section, therefore, presents some of the works which study
the error performance of LIS systems.

A. RATE DISTRIBUTION AND OUTAGE PROBABILITY
Since the coverage and interference levels of indoor networks
depend on the location and properties of objects and obsta-
cles, intelligent surfaces are competent enough to regulate
the smart propagation environment. Henceforth, LIS provide

a better quality of coverage, level of service, and improve
system performance. The improvement of coverage can be
based on using frequency selective surfaces, and applying
well-chosen machine-learning control algorithms [65].

In [66], the authors attempt to characterize the coverage
in terms of outage probability, which is a significant perfor-
mance measure to estimate the reliability of the LIS systems.
In [66], the asymptotic analysis of the sum-rate is used to
obtain the analytical expression of the outage probability. The
study in [66] claims that the approximation provides a precise
estimate of the probability of outage and reduces the necessity
for extensive simulations and extraneous computational time.
Moreover, the simulation results prove that despite the fluc-
tuating SNR, the probability of outage is unaffected when the
number of antenna and devices is significantly large. Using
the same system model as in [29] and [30], the authors in
[66] formulate the sum-rate as follows:

R =
K∑
k=1

Rk . (46)

Furthermore, [66] argues that because the individual rates
R1,R2 . . .RK are not identical in distribution, the distribution
of the sum-rate cannot be defined. The derivation of the out-
age probability is, therefore, non-trivial. Instead of analyzing
the individual rate, each rate can be written as a function of a
random variable Ik , i.e.,

Rk = ak + bk Ik , (47)

where ak and bk are deterministic values that depend on the
length of the LIS units. The distribution of R can be found
using the central limit theorem, such that for large values of
N and K , the asymptotic distribution of R can be estimated to
follow a Gaussian distribution with mean and variance as:

µ̄R =
∑
k

log (1+
ρk p̄k (1− τ 2k )

µ̄Ik
) (48)

and

σ̄R =
∑
k

σ̄ 2
Ikρ

2
k p̄

2
k (1− τ

2
k )

2

µ̄2
Ik (µ̄Ik + ρk p̄k (1− τ

2
k ))

2
(49)

respectively. In (48) and (49), p̄k depends on the device
location and ρk denotes the transmit SNR. Finally,
the closed-form expression of the probability of outage is
given as

Po = Pr[R < RD] = 1− Q
(
RD − µ̄R
σ̄R

)
, (50)

where RD is the sum-rate threshold, and Q(·) represents the
Q-function.

B. PROBABILITY OF ERROR FOR INTELLIGENT AND
BLIND TRANSMISSION
In [67], the author provides a mathematical framework that
studies the relationship between the reflecting elements, blind
phases, and modulation errors in LIS systems. The work in
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[67] assumes having an LIS system with N reconfigurable
reflecting elements and studies the error performance for two
scenarios. The first scenario considers an intelligent trans-
mission at the LIS (i.e., the channel phases are known), and
the second considers a blind transmission. By first deriving
the SNR, one can get the symbol-error-rate (SER) for M -ary
communication using phase-shift-keying (PSK). The author
in [67] first compares the binary PSK with a pure AWGN
signal and studies the effect of increasing N .
Using numerical evaluation, [67] shows that an LIS-based

signal, which smartly adjusts the phases of the reflector
(scenario-I), has low error-probability, even at low SNR val-
ues. Also, [67] shows that doubling N improves the error
performance with a 6 dB gain. For the second scenario
(scenario-II), where the channel phases are not known for
the LIS, [67] shows that a gain of N × SNR can be obtained
using the LIS system rather than point-to-point transmission.
Finally, [67] suggests using LIS as an AP and compares the
performance of the system. Furthermore, [67] shows that
the LIS-AP system can provide ultra-reliable communication
with an improvement of 1 dB in the case of intelligent trans-
mission. Blind transmission in LIS-AP systems, however,
yields the same performance of conventional-LIS systems.

C. PHASE SHIFT ERROR EFFECT ON TRANSMISSION
Adjusting the reflection phases, such that the signals at the
destination combine coherently, enhances the communica-
tion performance. The calculation of accurate phase shifts,
however, is not feasible in practice. Hence, [68] studies the
performance of the LIS in terms of signal transmission with
phase error having a generic distribution. The authors in
[68] analyze the LIS performance for a limited number of
reflectors with two types of errors, which are phase estimation
error and quantization error. The signal at the receiver’s side
is expressed as follows [68],

Y = N
√
γ0HX +W , (51)

where γ0 is the average SNR, X is the transmitted symbol,
N is the number of reflectors, and W ∼ CN (0, 1) is the
normalized receiver noise. The channel gainH is represented
as

H =
1
N

N∑
i=1

Hi1Hi2ej�i ∈ C, (52)

where Hi1 and Hi2 are the complex fading coefficients
between source to reflector and reflector to destination,
respectively.

To maximize the SNR, the practical phase 8i is set to
cancel the summation of the phases Hi1 and Hi2 that denotes
the overall phases. Also, in (52), � refers to the phase noise
which has a normal distribution between [−π, π]. The work
in [68] further assumes that θi, i = 1, . . . .,N are independent
and identically distributed having a common characteristic
function, which is labeled as trigonometric/circular moments.
When N is large, H has a complex normal distribution with

non-circular symmetry; however, [68] examines the perfor-
mance when N is finite. When there is no phase error,
which is the ideal case, the coefficient H is real and H ∼
N
(
a2, (1− a4)/N

)
, with a as the power parameter. When

phase errors exist,H ∼ CN (0, 1
N ), which indicates that there

is a lack of information about Hi1 and Hi2 phases.
The study in [68] shows that the communication channel

via LIS with phase error is the same as a point-to-point
channel with Nakagami fading, where the parameters of both
are influenced by phase uncertainty via the first two circular
moments. Moreover, the average SNR increases withN 2, and
the diversity order increases with N . Most importantly, when
the number of reflectors is limited, the numerical analysis of
error rate verifies that the LIS performance is vigorous despite
the phase errors.

D. REFLECTION PROBABILITY OF LIS SYSTEMS
The work in [69] investigates the reflection probability of
randomly distributed objects in the LIS-aided wireless net-
works, where the reflection probability is a function of the
LIS length and the locations of the transmitter, the receiver,
and the targeted object. For an object to be a reflector, two
events must hold. First, the transmitter and the receiver have
to be on one side of the reflector, lying on an infinite line
that intersects the infinite line of the object segment, which
we refer to as Event 1. Second, a perpendicular bisector line
connecting the transmitter and the receiver must intersect the
object segment itself, which we refer to as Event 2. Therefore,
for LIS to reflect, the following probability must hold,

Pr (LIS to reflect) = Pr{Event 1 ∩ Event 2}. (53)

This study indicates that the reflection probability of objects
coated with metasurfaces is independent of its length due
to its capability of adjusting the reflection angles, covering
more than what is expected by Snell’s law [69], [70]. It is
clear that for different length values, the reflection probability
is almost constant, which indicates that small-sized objects
can attain a high likelihood of being a reflector when they
are placed appropriately. Therefore, it can reduce the cost
of manufacturing and deployment over large-sized reflecting
surfaces. Moreover, large-scale deployment of LIS improves
the coverage area, reducing the blind-spots for terrestrial
cellular BSs [71]. Nevertheless, the authors in [72] show that
careful deployment and proper selection of phase shifts are
necessary to get the full potential of LIS systems.

E. IMPACT OF SIZE ON PERFORMANCE OF LIS SYSTEMS
Recent theoretical works in [70] analyze the performance of
different-sized LIS systems by comparing them with relay
stations in terms of the average SNR as a function of the
number of elements and the end-to-end transmission distance.
Furthermore, [70] states that for LIS to be large and act as
anomalous mirrors, the geometric size of each component of
LIS has to be 10 times greater than the radio wavelength of
the impinging signal. Thus, whenever less than this threshold
value, the intelligent surfaces are considered small and act
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as diffusers. The study in [70] highlights how the average
SNR is scaled differently according to the type of connec-
tivity with either relay stations, large intelligent surfaces,
or small intelligent surfaces. For example, a relay station
average SNR is scaled by a factor of

Nmin
(
d−2SR , d

−2
RD

)
, (54)

a large intelligent surfaces system average SNR is scaled by
a factor of

N 2 (dSR + dRD)−2 , (55)

and a small intelligent surfaces system average SNR is scaled
by a factor of

N 2
(
d2SR d

2
RD

)−1
, (56)

where dSR refers to the distance between the source and
relay/LIS, dRD refers to the distance between the relay/LIS
and destination, and N is the number of antenna elements at
the relay station or the LIS.

In [73], the authors show that in relay stations, the average
end-to-end SNR grows linearly with N because the total
power remains constant since the power is distributed among
all the antennas, as in (54). The average SNR, however,
increases quadratically with N in large and small intelligent
surfaces systems, as in (55) and (56). The study in [74] claims
that this is especially the case because each element behaves
as a separate reflecting mirror that scales the power by the
transmittance before reflecting it.

Moreover, in relay stations, the SNR scales with the small-
est distance between the two paths, as in (54). In LIS,
the SNR scales with the total transmission distance, as in (55).
In small intelligent surfaces, however, the signal from each
meta-element may combine, resulting in the scaled SNR,
as in (56). Hence, it is undeniable that the LIS outperform
the relay stations and small intelligent surfaces since the SNR
in the case of LIS has the most significant scaling law that
results in having a better transmission rate. Furthermore, for
specific values ofN at 2.6 GHz and 28 GHz as examples, LIS
significantly double the rate of transmission [70].

VI. THE POTENTIAL OF POSITIONING AND COVERAGE IN
LIS SYSTEMS
The next-generation wireless communication networks
anticipate enabling accurate location-based services where
mmWaves and THz technologies will achieve a centimeter
level of accuracy [75]. In this regard, LIS can be deployed
both for indoor and outdoor environments, making it one of
the options for accurate positioning and localization. This
section, therefore, surveys the recents works which study the
potential of positioning using LIS systems. Received signal
strength (RSS) based positioning methods, in general, require
high RSS values and coverage probability [76]. In particular,
[77] derives the Cramér-Rao Bound for UE localization and
positioning, whereas [4] studies the performance of LIS for
positioning and localization and comparing the accuracy of

distributed and centralized LIS systems. On the other hand,
[14] examines the potential of mmWave MIMO system posi-
tioning with and without the aid of an LIS system. Finally,
[78] expands the LIS model from planar to spherical surfaces
and assesses its RSS and coverage.

A. POSITIONING IN CENTRALIZED AND DISTRIBUTED LIS
SYSTEMS
In [4] and [77], the authors derive the Cramér-Rao Lower
Bounds (CRLB) for UE navigation using the uplink signal
of the LIS system. Notably, the analysis of [4] leverages the
LIS system to provide robustness by subdividing a given
surface area into smaller units of intelligent surfaces (i.e.,
distributed LIS system); however, the distributed LIS system
may increase the complexity and feedback overheads. The
work [4] shows that the CRLB for a UE positioned at the
perpendicular bisected line of the LIS decreases linearly as
a function of the surface area. When a UE is not positioned
as such, there is not a closed-form solution for the CRLB;
however, [4] analytically approximates and shows that CRLB
decreases in a quadratic fashion.

FIGURE 12. Centralized deployment of LIS system.

In [77], a comparison between the centralized (Fig. 12)
and distributed (Fig. 13) deployment of LIS, in terms of
coverage probability, is also provided. The centralized LIS
system refers to having each surface in the system as a whole
unit, whereas the distributed LIS system refers to having each
surface divided into several smaller independent, intelligent
units. The study [77] further shows that the distributed imple-
mentation has lower CRLB for the x− and y− dimensions
than the centralized implementation for the same total sur-
face area. Also, the probability of coverage for a distributed
LIS system is significantly better than the centralized one,
which eventually improves the positioning performance. The
study [77] also verifies that the distributed implantation facili-
tates a flexible deployment, yet requires specialized hardware
for phase calibration and cooperation between the LIS’ sub-
units. Also, the distributed implementation allows the units
to be replaced when needed without affecting the whole
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FIGURE 13. Distributed deployment of LIS system scaled by half.

system. Nevertheless, hardware impairments are minimized
in distributed LIS [4], [62].

B. POSITIONING IN mmWave AIDED SYSTEMS
The quality of RSS values is a critical factor in determin-
ing the position of UEs. The study [14] investigates lever-
aging the phase and number of elements of the LIS system
to aid the mmWave systems in obtaining high accuracy of
positioning. The authors in [14] study the difference in the
positioning performance of a conventional mmWave system
and an LIS-assisted mmWave system. The study in [14]
follows the same procedure of [77] to obtain the CRLB
performance bound of both systems. Further, [14] controls the
phase and amplitude of the propagated waves by using LIS,
where the study ultimate goal is to use the LIS-aided system
to minimize the error in the position estimation. The results
of [14] show that an LIS-aided mmWaveMIMO system has a
better positioning performance and smaller orientation error
bound, when increasing the number of elements, even for as
little as 40 elements.

C. POSITIONING USING SPHERICAL LIS
The authors in [78] expand the system of [4] to a spherical
LIS instead of a planar one. Using spherical surfaces instead
of planar has many advantages; for instance, it can act as
a reflecting surface as well as a relaying surface. One part
of the spherical LIS can work as a reflecting surface, while
the other part can act for relaying the signals to UEs. The
latter is particularly useful when a UE is blocked from its
serving BS. Also, unlike traditional planar LIS, a rotating
user over spherical LIS would not impose changes in the
information-theoretical properties, which yields an RSS gain
for amobile UE.Hence, [78] derives the CRLB for RSS based
spherical LIS systems in terms of the normalized distance
given by ν = r/ cos θ , where r is the radius for the sphere and
θ is the elevation angle of the UE. The study, then, compares
the RSS and CRLB of a spherical LIS system with a planar
LIS system of the same surface area, i.e., the radius of the
disk-shaped planar LIS is rp =

√
2r . The CRLB of spherical

LIS is derived by evaluating the Fisher-information matrix
and uses RSS to compute CRLB in terms of the sphere radius.
The CRLB of spherical LIS, therefore, is given by [78]

CRLBsph = 4ν4(ν2 − 1), (57)

while the CRLB of planar disk shaped LIS is

CRLBpl = 4(ν2 + 1)3. (58)

It can be seen from (57) and (58) that the CRLB of spherical
LIS is smaller than the planar LIS, which makes it more
accurate for positioning of the UEs. The results of [78] verify
the above findings, and show that especiallywhen r increases,
the spherical LIS outperforms the traditional planar one.

VII. OPEN RESEARCH ISSUES
Since the beginning of the recent active LIS research era,
there has been a plethora of studies that focused on the
joint beamforming optimization problems, theoretical SNR
and SEP derivations, channel estimation, and SINR max-
imization. Furthermore, many researchers investigated the
application of machine learning tools and the evaluation of
LIS potential for the mmWave/THz, free-space optics, and
visible light applications [1]. For example, in [12], the authors
explored the problem of joint active and passive beam-
forming design that minimizes the total transmit power at
the BS. They employed optimization techniques, such as
semidefinite relaxation and alternating optimization, to solve
the non-convex optimization problem. For SEP derivations,
the author in [67] proposed a SEP mathematical framework
for LIS systems by studying the ability of using an LIS as
an AP transmitter. However, in spite of the timely studies
mentioned above, there are open research issues that should
be tackled to guarantee a high level of reliability in intelligent
wireless networks. In the following, we explore few of the
promising upcoming research challenges.

A. REALISTIC OPTIMIZATION FRAMEWORKS
Classical optimization problems need to be addressed
and reformulated due to the fundamental challenges that
IRS implementation faces. Such issues are due to the
fact the most of the current works are rather based on
non-practical assumptions, e.g., perfect channel estimation
(i.e., perfect CSI assumptions), ignoring internal losses and
far-field radiations, accurate beamforming and beamstearing,
single-antenna UE, optimal precoding, etc. Hence, future
works need to revisit such assumptions and examine the
reliability of IRSs through realistic approaches.

Moreover, while the majority of the studied optimiza-
tion problems in LIS scenarios focus on maximizing the
EE, throughput, and SINR, several objectives have not been
addressed in the literature yet. Firstly, the literature lacks
undertaking LIS when it comes to ultra-reliable low latency
communication. To this end, we proposeminimizing the over-
all power consumption of LIS users subject to transmit power
budget and reliability constraints in terms of probabilistic
queuing delay. In particular, the reliability measure should
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account for events where users’ queue length exceeds a cer-
tain threshold. For instance, after accounting for unknown
CSI and networks dynamics, the problem can be solved
using federated learning, i.e., through distributed approaches.
Leveraging such approaches would enable multiple learners
to define a set of local parameters from the existing training
data where they can share their local models rather than
sharing the training data.

Secondly, one can look into the energy harvesting (EH)
aspect in LIS systems, whereby a possible source of energy
can come from the ubiquitous radio transmitters. EH pro-
vides green and sustainable solutions to the power loss.
Hence, EH-empowered LIS system can work as an energy
harvester, where it converts the incident signal into electrical
energy [79], [80]. Nonetheless, RF sources suffer from low
incident power levels, mainly depending on the transmitted
wave frequency, the antenna gain, and the communication
range. Therefore, we propose maximizing the receiver inci-
dent power subject to the transmitter power and the gap
between the transmitter and the LIS. Adjusting the position
angles of the antennas can maximize the incident power of
the received signal, where the optimal position angles can
be iteratively computed using the adaptive gradient ascent
method.

Finally, several IRS-assisted communication systems
works such as [36], [56], and [12] utilized alternating
optimization-based algorithms to tackle the optimization
problem. Applying such a technique can jeopardize the pro-
cess of reaching a joint optimal solution. Hence, alternat-
ingly solving the subproblems is costly due to the high
computational complexity. Therefore, developing advanced
algorithms that can eliminate the use of alternating opti-
mization can be a promising research topic in this direc-
tion. One possible approach that future studies must exploit
is data-driven optimization. IRS systems are complex to
analyze and design compared to conventional wireless net-
works. Therefore, to reduce the complexity system, effec-
tive data-driven optimization techniques that depend on deep
learning, transfer learning, and reinforcement learning should
be considered. In short, machine learning can prove to pro-
vide a powerful approach to improve the IRS-based commu-
nication systems performance.

Another promising future research direction is to envision
an optimized system that aims at optimizing the fraction
overlap between the uplink and downlink, i.e., introducing
a full-duplex IRS-assisted communication system [24], [81].
Incorporating the IRS’s full-duplex characteristics can further
optimize the communication systems in terms of power allo-
cation and beamforming. Besides full-duplex communica-
tions, integrating cooperative NOMA and IRS is an exciting
future research direction, through accounting for the proper
constraints and objectives when designing such systems.

B. HYBRID SYSTEMS: RF-VLC
RIS can empower the practical implementation of beyond
5G (B5G) systems by means of controlling the random-

FIGURE 14. RF-VLC hybrid system for RISs.

ness of the propagation environment. RIS provides other
advantages, including EE and full-band response. Never-
theless, B5G networks require significant enhancements in
mobile broadband, enabling ultra-reliable low-latency com-
munications [1]. To this end, deploying hybrid systems can
help in providing fast, efficient, and reliable communication
networks. Specifically, visible light communication (VLC)
has been a prominent research area in advanced commu-
nication systems [82], [83]. VLC has the potential of pro-
viding ultra-high bandwidth, robustness to electromagnetic
interference, and inherent physical security. Both RIS-RF
and VLC can be used in an outdoor environment as shown
in Fig. 14, where mirrors reflect visible light (VL) signals
to a photodetector in the users’ devices while RISs are used
to reflect RF signals from the BS. VL provides safe and
health-friendly communication schemes that can be exploited
in health-constrained centers such as hospitals. Furthermore,
RIS can be used to complement VLC whenever LoS condi-
tions fail, thus, supporting future wireless networks. Deploy-
ing this hybrid system model would provide a reliable com-
munication scheme that compensates for potential failure of
one of the connecting links. At the moment, most of the
analysis in LIS exists only for RF and mmWave commu-
nications. Hence, future research can further investigate the
performance of hybrid technologies in the LIS realm.

C. COATING EM MATERIALS
Recall from Sec. I that RIS consist of controllable EM mate-
rials, where the antennas are coated with reconfigurable thin
layers of EM materials to control the propagation of signals.
Therefore, tunable materials should be used to adjust the
signals’ phase shifts, thereby adapting the transmitted signals
according to the changes in the wireless environment [1].
Meta-surfaces are the key enablers of such technologies [73].
Moreover, a widely tunable bandgap material is suggested
to support full-band response, where theoretically, it can
operate at at any frequency band. To this end, to best realize
the RIS systems, the usage of graphene is proposed as a
future research direction. The graphene bandgap ranges from
0 eV to 4.66 eV. Consequently, it operates from the radio
wave band to the infrared band. Graphene reconfigurable
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meta-surfaces can further achieve beam steering, beam focus-
ing, and wave vorticity control by means of local tuning. For
instance, phase control in graphene metasurfaces is achieved
by changing its conductivity via electrostatic biasing. Due to
such unique characteristics, future research directions should
exploit how to adjust the performance of graphene-based
RIS systems through optimizing the system conductivity via
electrostatic biasing.

D. HEALTH ISSUES
RF technologies are proliferating with the emergence of 6G.
According to [84] and [85], a wide range of human health
concerns are correlated with exposure to the RF radiations.
The associated health issues with EM radiation exposure have
been an open research topic for decades. However, the recent
advent of the LIS in indoor communication scenarios opened
the door for more concerns regarding the possible health
risks. Mostly, indoor mmWave environments are studied for
future applications as they offer large bandwidth for enabling
high data rates. However, unlike cellular phone frequencies,
mmWave radiations are high-frequency signals that have rel-
atively deep penetration in the human body. Hence, the pri-
mary concern is the heating of the skin and eyes resulted from
the body absorption of mmWaves. In reality, recent studies
show that current estimating power density methods are not
reliable for determining the exposure compliance at close
mmWave interaction [86]. Therefore, to maintain an efficient
high-rate LIS system, we propose considering an optimiza-
tion problem that maximizes the data-rate, subject to health
constraints, by means of adjusting the distance between sev-
eral LISs, particularly in indoor environments. According
to the National Toxicology Program (NTP) studies, small
rooms with passive elements placed in close proximity to
reflect and generate EM radiation caused health issues to the
exposed rats in the long term [84], [87]. While increasing the
distance would decrease the RF exposure of users, it would
affect the system overall performance. Future research stud-
ies must, therefore, consider such trade-offs in performance
versus health issues by properly adjusting different network
parameters.

E. INTEGRATION OF 5G AND 6G TECHNOLOGIES
LIS is one of the revolutionary and potential physical layer
technologies that generate a new communication paradigm
that meets the requirements of future 6G networks [67], [88].
Also, smart radio environments may have a potential impact
on the upcoming 6G technologymarkets, facilitating substan-
tive improvements in spectral efficiency with cost-effective
solutions. One of the undiscovered research directions is the
integration of intelligent surfaces with emerging 5G technolo-
gies, such as IoT [89], drones-aided communications [90],
beamforming [91], and physical layer security [92]. For 6G
technology, an LIS system has the potential to provide a
pervasive and reliable wireless communication service, while
suppressing additional interference components such as noise
and inter-user interface through both NLOS and LOS paths.

Since the LISs decrease network interference level, they are
expected to improve the network capacity and user perfor-
mance in 6G networks, especially for high-density user envi-
ronments such as airports and stadiums. Even though the
unique benefits of LIS help creating a favorable wireless com-
munication channel, its use-cases and application scenarios
that meet new user requirements and networking trends of 6G
technology are still in their exploratory phase. Furthermore,
the economic impact and its sustainability of LIS-assisted
smart radio environment on B5G markets are key research
questions that need to be further studied [10], [67].

F. LOCALIZATION USING LIS SYSTEMS
Positioning using LIS-aided mmWave systems can be ana-
lyzed and studied by jointly considering the design of
mmWave beamformer and LIS phase shifters. Also, the local-
ization performance of distributed spherical LISs and central-
ized spherical LIS systems can be investigated. Moreover, the
study of the CRLB of LIS systems in the presence of NLoS
channels can be further pursued in futureworks. Also, the per-
formance regarding the positioning accuracy of LIS-aided
systems highly depends on the placement of the reflectors and
metasurfaces. Therefore, it is important to find the optimal
locations to place these reflectors and metasurfaces. The
placement of these materials is a challenging task, which is an
inverse problem of channel modeling. In channel modeling,
being aware of the deployment, we can obtain the channel
state information using various channel modeling techniques
such as ray tracing, etc. While based on the desired channel
state information, the optimal deployment of the materials in
LIS is an inverse task, the solution of which remains an open
problem.

VIII. CONCLUSION
Large intelligent surfaces (LIS) are a promising physical layer
technology for B5G systems. Such technology does not only
enhance wireless systems QoS, but also reduces the large
power consumption as compared to traditional networks. LIS
are made up of re-configurable EM meta-materials that are
capable of modulating data onto the received signals, cus-
tomizing changes to the radiowaves, and intelligently sensing
the environment. This paper provides a unique blend that
surveys the principles of physical operation of LIS, together
with their optimization and performance analysis frame-
works. The paper first introduces the LIS technology and
its working principle. Then, it presents various optimization
techniques that aim to optimize specific objectives, namely,
maximizing energy efficiency, power, sum-rate, secrecy-
rate, and coverage. The paper afterwards discusses vari-
ous relevant performance analysis works including capacity
analysis, the impact of hardware impairments on capacity,
uplink/downlink data rate analysis, and outage probability.
The paper further presents the impact of adopting the LIS
technology for positioning applications. Finally, we identify
numerous exciting open challenges for LIS-aided B5G wire-
less networks, including new resource allocation problems,
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hybrid RF-VLC systems, health considerations, and local-
ization. To the best of the authors’ knowledge, this survey
is the first of its kind which combines the technical aspects
of mathematical optimization and performance analysis of
LIS systems, and sheds light on promising research directions
towards the formulations of practical problems in future B5G
systems.
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